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Abstract—A quantitative model of the magnetic field from the large-scale system I of Birkeland currents
in the Earth’s magnetosphere is proposed. In the near-Earth space the electric current flow lines follow the
dipolar magnetic field lines, while at larger distances they enter the high-latitude magnetosheath near mid-
day, the low-latitude boundary layer along the magnetospheric flanks, and the plasma sheet boundary
layer at the nightside. The model takes into account the local time dependence of the latitude of Birkeland
current zone at the topside ionospheric level reported by lijima and Potemra (1976, J. geophys. Res. 81,
2165.) The effects of the geodipole tilt in the overall geometry of the field-aligned current system are also
incorporated. The model is sufficiently flexible; in particular, it permits an arbitrary choice of the current
sheet thickness as well as of the M.L.T. distribution of the current intensity by using an appropriate
combination of model coefficients in the corresponding Fourier expansion. One more possibility is to take
into account the asymmetry in the net intensity and M.L.T. distribution of Birkeland currents between
Northern and Southern Hemispheres which arises due to diurnal and seasonal variations of the geodipole
tilt angle. The proposed analytical representation is relatively simple, which allows it to be incorporated
in semi-emipirical statistical magnetospheric models with parameters to be determined from spacecraft
databases.

Two other approaches to the modeling of warped current sheets aimed at quantitative approximation
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of the magnetic field of Birkeland and tail current systems are considered.

1. INTRODUCTION

Large-scale systems of field-aligned currents, of which
the existence was first guessed by Birkeland (1908),
were experimentally studied by Zmuda and
Armstrong (1974) at heights of the topside
ionosphere. More complete statistical investigations
of the average distribution of the currents by using
the data from the TRIAD (lijima and Potemra,
1976a,b) and MAGSAT (Bythrow et al., 1983) space-
craft also refer to comparatively low altitudes
(h < 1000 km). As it concerns more distant mag-
netospheric regions, the experimental evidence for
Birkeland currents is much more sparse. Nevertheless,
the effects of crossing the layers of Birkeland currents
by spacecraft are clearly discernible up to distances
beyond 10 Rg, the results being in a good agreement
with the expected overall geometry of the systems I
and II (Sugiura, 1975, 1976 ; Kelly et al., 1986).
According to the generally accepted view, the cur-
rents which belong to the mid-day part of system I
are located on the field lines penetrating either the
low-latitude boundary layer, or directly the magneto-
sheath (e.g. Saflekos er al., 1982 ; Troshichev, 1982;
Stern, 1983). The rest part of system I is most likely
to be mapped into the tail region, being aligned there
with the boundary layer plasma sheet. The low-lati-
tude system Il is connected with intra-magnetospheric
sources, namely, with the Alfvén layer at the inner
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edge of the plasma sheet and probably with the partial
ring current.

Even crude estimates of the net current flowing in
the principal magnetospheric electric current circuits
show that Birkeland currents must exert a strong
influence upon the structure of the magnetospheric
magnetic field. Indeed, according to the results of
Tijima and Potemra (1976a), the net current flowing
in systems I and II is on average about 2,000,000—
3,000,000 Amperes in each hemisphere, and it is quite
reasonable to expect values several times larger during
extreme conditions. For comparison, the net current
flowing at the dayside magnetopause across the noon
meridian between the subsolar point and the polar
cusp has the same order of magnitude (about
3,000,000 A); almost the same estimate can also be
obtained for the total current flowing in the near part
(up to r ~ 15 Ry) of the tail plasma sheet and the ring
current. Therefore, there is no doubt that an accurate
account of Birkeland current systems should be con-
sidered as the prime task in quantitative modeling
of the terrestrial and planetary magnetospheres.
However, attempts to solve this problem meet with
considerable difficulties.

2. GENERAL CONSIDERATIONS

One of the principal difficulties stems from lack
of knowledge about the configuration of Birkeland
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currents at large geocentric distances, where a rela-
tively large contribution to the net magnetic field
comes from extraterrestrial sources, including the
field-aligned currents themselves. At closer distances
(r < 6-8 Ry) the field is quasi-dipolar; here the situ-
ation is clearer, since we know, at least approximately,
the shape of the current flow lines [note, however, that
even at the relatively close distances Rich ef al. (1981)
found significant inconsistencies in Birkeland current
densities measured simultaneously at two different
altitudes, which implies partial cross-B closure of the
field-aligned currents between 300 and 3000 km)]. This
allows the evaluation of magnetic fields from the
Birkeland current by specifying their local time dis-
tribution as obtained from the low-altitude measure-
ments (see, e.g. Fig. 16 by Potemra in the review
paper by Saflekos et al., 1982) and then performing a
numerical integration over the current sheets. Such
calculations provide a quantitative evaluation of the
magnetic effects produced by Birkeland currents at
different locations (Sugiura, 1976; Tsyganenko and
Suslikov, 1982). However, such “wire” models are
almost useless for practical applications, since for
evaluating the field components at any point of space
it is necessary to integrate over the two-dimensional
surface; in the vicinity of current layers there also
arise troubles with singularities of the integrands in
Biot-Savart integrals. The main drawback of this
approach is that it only provides a solution of a direct
problem in which the parameters of the current system
are considered to be fixed at some a priori specified
values. However, the most interesting and promising
prospects in geophysical research are related to devel-
opment of the inverse problem methods, in which
parameters of the modeled object are derived by adjust-
ing the model to fit experimental databases. This
approach requires development of quantitative
models of magnetospheric current systems with the
following properties.

(1) A sufficient flexibility which is defined by the
number of independent free parameters. From the
computational point of view, it is desirable that the
parameters be linear, to enable the entry of the model
expressions as coefficients. On the other hand, it is
also important that the parameters have clear physical
meaning, such as, for example, the tail current sheet
thickness or the subsolar point distance.

(ii) Mathematical simplicity of expressions and/or
algorithms representing the model field distribution.
This requirement becomes important if sufficiently
large experimental databases are involved in the
numerical fitting procedure.

(iii) The model representation should not contain
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any singularities or discontinuities of the magnetic
field and must also satisfy the condition VB = 0.

It is worth noting in addition that the choice of
mathematical methods for modeling should be done
with an account of the most essential a priori infor-
mation on the observed structure of the corresponding
electric current system, in particular by using the data
on charged particles.

The outlined approach to modeling magneto-
spheric current systems was developed in our earlier
papers (Tsyganenko and Usmanov, 1982; Tsy-
ganenko, 1987, 1989). However, neither of the pro-
posed models incorporates in an explicit form the
contribution from the field-aligned current systems,
though their average effect is actually included in the
group of terms representing the magnetic field of the
magnetopause current. Recently, some attempts have
been made to create more elaborate methods for
modeling the field from Birkeland currents. Thus,
Tsyganenko (1988) proposed an explicit model of the
systems I and II magnetic field, based on a modi-
fication of the vector potential corresponding to a
toroidal field. Stern (1989) proposed an interesting
method for modeling system I, starting from a Euler
potential representation for a purely dipolar magnetic
field.

In the present work new methods pertaining to the
modeling of the system I of Birkeland currents are
proposed. System I is the most large-scale field-aligned
current circuit extending from ionospheric heights up
to the magnetospheric boundary and remote regions
of the tail plasma sheet. It forms a natural transition
layer dividing the whole magnetosphere into two
domains with essentially different physical regimes of
plasma and magnetic field topology (Sugiura, 1975,
1976) : the polar cap region and the low-latitude mag-
netosphere (including the auroral region). Birkeland
currents manifest themselves in an abrupt rotation
of the field vector on crossing the current sheet. This
effect is observed throughout the whole extension of
the current “curtain”. At low altitudes, however, the
rotation of B must be smaller than at larger distances,
in spite of which the absolute values of AB across the
sheet are much larger near the Earth (of the order of
several hundreds of nanoteslas) due to the con-
vergence of the electric current flow lines. An obvious
reason is that the current density integrated over the
layer thickness (proportional to AB) decreases with
the geocentric distance, roughly as »~ ¥, while the net
B magnitude falls off much more rapidly as r~°.

In a crude approximation, the global distribution
of the magnetic field B from the system I current is
such that, at a fixed altitude, the B vector does not



Quantitative modeling of the magnetic field from Birkeland currents 643

FiG. 1. ILLUSTRATING THE MAGNETIC EFFECT OF THE SYSTEM I
OF BIRKELAND CURRENTS IN THE DAWN-DUSK MERIDIONAL
CROSS-SECTION OF THE MAGNETOSPHERE.

change significantly in the polar cap regions, being
directed sunward in the Northern Hemisphere and
antisunward in the Southern. At low latitudes in the
dawn—dusk sectors the field is directed oppositely to
that in the adjacent polar cap and reverses its direction
on crossing the equatorial region, as shown in Fig. 1.
At the dayside the system I current induces a
depression in the net B which leads to an equatorial
shift of polar cusps, most pronounced during dis-
turbed periods. In the nightside magnetosphere the
field-aligned currents are localized in the plasma sheet
boundary layer and, most likely, are produced by a
different physical mechanism than those in the day-
time sector. For this reason it is desirable that the
quantitative model be able to reproduce variations in
the relative intensity of the currents flowing in the
different M.L.T. sectors of the system I ““curtain”.

3. THE CONICAL MODEL OF SYSTEM 1
OF BIRKELAND CURRENTS

A general outline of the proposed method is as
follows. First of all we derive expansions for the vector
potential of the magnetic field produced by a dis-
tribution of electric current flowing along generatrices
of the conical surface shown in Fig. 2. The derived
potentials are then used for extending the result to the
case of the conical current layer of a finite angular
thickness. The last step is to introduce a deformation
of the current layer, in order to simulate the expected
overall configuration of system 1. This is achieved by
applying a transformation of coordinates entering the
expansions for the corresponding vector potential.
The resultant magnetic field B =V x A remains

FiG. 2. THE INITIAL ELECTRIC CURRENT SYSTEM FOR THE
CONICAL MODEL OF BIRKELAND CURRENTS.

The current is flowing radially to and from infinity, being

confined within the infinitesimally thin conical current sheet.

divergenceless; this is one of advantages of the
method, which closely resembles that used for con-
structing a model of the warped tail current sheet
(Tsyganenko, 1989).

3.1. Magnetic field from the conical current sheet

Let us introduce a spherical coordinate system
(r,0, ) and assume that the vector potential cor-
responding to the conical current sheet shown in Fig.
2 has the only radial component 4, = A(r, 0, ¢). The
magnetic field components are

B, =0, BH=—.1~6—A, o = Ll M
g rsin 0 do g r dp
The electric current density is
j=(c/Am)V xV x A, 2)
and, since we assume j, = j, = 0, it follows that
24 0’4
% =0 and 7 o =0,

and hence that d4/0r = 0, or A = A(0, ¢).

The radial component of the electric current should
vary with distance as r~ 2, in order to ensure the con-
tinuity condition V+j = 0, and can be specified as a
given function of the azimuthal angle represented by
Fourier series, so that we can treat the problem for
cach term separately.

Assuming now the system I current to be symmetric
with respect to the noon—-midnight meridian plane
(this assumption is not essential and the foregoing
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treatment can be readily generalized for a non-sym-
metric case), we have for the mth term

sin mo

J = 2 é(0—6), 3)
where 0 is the angular half-width of the cone and the
weight coefficient is taken to be unity for simplicity.

Separating the variables in the vector potential as
A" = T™(B) sin me )

and writing down the radial component of Ampere’s
law (2), we obtain

2 (m)

oT™ m?
L, TM™ = 20

t0——— o
teotl g —Gnzp T

=8(0—0). (5

'm

Solution of equation (5) provides Green’s function
G“(0, 0"y which enables us to solve a more general
problem

L, T = FO) (6)

in particular, to find the vector potential cor-
responding to a conical current layer with a finite
angular thickness contained within the interval
0 < 8 < 0%, Inthe last case F(0) # 0 inside the inter-
val and is zero outside of it. The solution is given by
the integral

0+
T™(60) = L G0, 0)F(0) do. )

To obtain G"(9, 0), we have first to derive two inde-
pendent solutions of the corresponding uniform
equation

L, T =0.
These are (Kamke, 1959, formula 2.370).

T (0) = tan’"g and T(0) = cot"’g. (8)
In principle, the function G"(6,6’) can be obtained
from (8) by using a standard method (e.g. Korn and
Korn, 1968, ff. 9.3-7 and 9.3-9). However, in our case
it is more convenient to use another approach, taking
into account that the currents are flowing inside a
relatively thin layer. Namely, let us consider

G™(0.0) = T ()1 —H(0—0)
+ T O)HEO—0)-CO), (9)

where H is Heaviside step function, defined as
H(x) = 0for x < 0and H(x) = 1 for x > 0. The func-
tion C(6) is introduced in order to ensure continuity

of Green’s function (8) with respect to 0 at 6 = 0",
This requires
C0) = T/ T (). (10)

It can be shown that substitution of (9) and (10) in
(7) yields a function T{™(0) which, being inserted
under the differential operator L, in (6), leads to the
result

L, T 0) = FO) - 3W™ @) T 0). (1)
rather than F(0), as required by (6). Here W is the
Wronskian composed of the solutions 7" and T,
Nevertheless, in our particular case this inconsistency
does not matter, since the function F(0) is zero every-
where except a narrow interval of # and the additional
factor in (11) can be accounted for merely by an
appropriate renormalization of coefficients. On the
other hand, standard methods for derivation of
Green’s function turn out to lead to more complex
final expressions and that is why we have chosen it in
the form (9).

From equations (7) and (9) we have

9+
T"(0) = T (0) f FO)do
0

"
+T§'">(0)j C(OOF()do, (12)
-
where
7 for 6 <0
0*=4¢0 for 0 <0<0*
0t for 6>0%.

Which analytic form should be chosen for the func-
tion F defining the electric current profile? At first
glance, the rectilinear “impulse” profile would seem
the simplest choice. However, this leads to somewhat
cumbersome quadratures in the second integral in
(12). On taking account of (8) a much more con-
venient form for F(6) is found to be that containing
the derivative of tan 6/2 as a factor. This slightly modi-
fies the slope of the current density profile across the
layer (see Figs 4-6 below) and does not exert any
significant influence on the overall magnetic field dis-
tribution. Bearing in mind the subsequent defor-
mation of the conical current surface, we introduce a
normalization factor, in order to keep the net current
flowing between 6~ and 6% at different geocentric
distances constant. All these considerations lead to:



Quantitative modeling of the magnetic field from Birkeland currents 645

1

2 coszg (tano+ —tan 0>
2 2 2 (13)
for 07 <6 <07
0 for

FO) =
0 <0 or 6>07.
Substituting (13) in (12) yields

( 0
tan™ 5 for 0 < 6~

I 0 (00
e é’7 an i anj— dni

tan—- —tan—-
2 2

2m+1 _ m+l07

N tan 3 —tan” 3 ]
0
@2Cm+1) tan”’i (14

for 0~ <0<0*

T™() = <

+ -
tan2m+ 1 64 "tan2m+1 0_77
2

cot™
2m+1) | t i te 0 2
(2m+1) | tan 5 —tan 5

for 0>0".

On being substituted in (4) T" yields the mth
term of the vector potential expansion which, with a
proper choice of coefficients, can in principle represent
the field produced by an arbitrary azimuthal distri-
bution of radial currents flowing within a thin conical
current layer. Outside the layer the field is current-
free, which can be verified by a direct substitution of
the vector potential in (2).

3.2. Deformation of the conical current layer

The simplest way to make the necessary defor-
mation of the conical current layer is to introduce the
dependence of the parameters 0~ and 6% in (14) on r
and ¢. In such a case at different distances and azi-
muthal angles the current sheet crossings will be
observed at different values of 0. It is more convenient
now to introduce parameters 6, and A instead of 0%
and 6, so that 07 = 0,+ A0 and 6~ = §,—A#6. The
shape of the Birkeland current sheet is defined by the
choice of the function 8, = 8(r, ). In principle, the
angular half-thickness of the current sheet, A0, can
also be made to depend on r and ¢. Thus defined
deformation of the current sheet brings some modi-
fication in the expressions for the magnetic field com-

ponents which, for the mth terms of the expansions,
are now

Bim) — 0
. o L OT™ 30,
o rsin 6 " cosme 500 (7(,0 Snme
- 107" .
B(/, = — 7 "W Sin me. (15)

How does one define the function Oy(r,¢)? It
is evident that, for small geocentric distances, 0,
and r must satisfy the dipolar field line equation
r = Lsin? 0,. The L parameter must depend on the
local magnetic time in such a way that in the daytime
sector the field-aligned current sheet be mapped onto
the ionosphere at latitudes 78-80 and to descend
equatorward up to 70-72¢ at the nightside, in line with
the results of lijima and Potemra (1976a). At larger
distances, that is for r > L, it is natural to impose a
requirement on 6Oy(r, ) to approach asymptotic
values near 90°, so that in the noon, dawn and dusk
sectors the outer edge of the current layer be immersed
into the low-latitude boundary layer, and in the night-
side magnetosphere the current flow lines be aligned
with the plasma sheet boundary layer. These require-
ments are met by choosing the following relationships
between r, 0, and ¢

sin? 0, = 2% [\/(7+L)2+52—\/(r—1‘)2+(32]

L=IL(p)=L,+L,cos g, (16)
where the parameters L, and L, yield the location and
shape of the zone I of Birkeland currents and ¢ defines
the degree of abruptness of the transition from the
quasi-dipolar shape of the current flow lines at r < L
to that stretched parallel to the dipole equator at
r> L.

The next feature to be taken into account is the
influence of the geodipole tilt upon the shape of the
current layer. To our knowledge, this effect has not
been studied experimentally so far ; nevetheless, there
exist weighty indirect considerations concerning this
point. Indeed, it is natural to suggest that in the noon
sector the location of the system I current is closely
related to that of the polar cusps. The latter can be
assumed in a crude approximation to be rigidly tied
to the geodipole axis orientation and hence be fixed
in the solar-magnetic coordinate system. In a more
accurate treatment a latitudinal shift of the cusps
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toward summer polar cap (not larger than by 3-4" or
maximal tilt angles of Yy & + 357) should be taken into
account, following the results of model calculations
(c.g. Mead and Fairfield, 1975; Tsygancnko, 1990)
and spacecraft measurements (Newell and Meng,
1989). At the nightside it is natural to model the tilt-
related deformation of the system | current layer in
accordance with the observed warping of the tail
plasma sheet, assuming that for » < L the attitude of
the Birkeland current layer is also approximately fixed
in the solar-magnetic coordinate system.

Taking into account all these considerations, we
choose the function 0, for approximating the
Birkeland current layer geometry in the northerm
hemisphere as

0011("* (107 'w[/)
= arcsin {ZIL [\/(;:{: L)i;|;(35_\/t;~ L)é +52]} !

- % [V (r—L)+8+r—Lly cos . (17)

The first term corresponds to (16) and yields the shape
of the current sheet for the perpendicular geodipole
orientation. The second term accounts for the dipole
tilt effects and, in line with the above arguments,
becomes significant only for r > L. If necessary, this
approximation can be improved by introducing the
tilt-related effects in the inner magnetosphere as well.
This can be done, for example, by means of the fol-
lowing modification of the second term in (17)

l N ———
=5 AW =LY +8 +r—L1+ftr. @)}v cos o,

where f(r,¢) is a relatively small quantity which
models more detailed effects of the diurnal and
seasonal variations of the position of the polar cap
boundary at middle and low altitudes.

In the Southern Hemisphere the shift of the current
layer due to the dipole tilt must be nearly the reverse
of that in the Northern Hemisphere and, hence, the
opposite sign should be ascribed to the second term
in (17) in this case.

In Fig. 3 the shape of the northern and southern
Birkeland current layer represented by (17) is shown
in the noon—midnight and dawn—dusk cross-sections
for the maximal value of the tilt angle y = 34° and
with: L, = 15Rg, L, = 5R;, and § = 2R;.

3.3. Derivation of the net magnetic field components
The net model magnetic field is composed of con-

tributions coming from the northern and southern

current layers. Note first of all that in a limited range
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F1G. 3b. DAWN-DUSK CROSS-SECTION OF THE MODEL SURFACE
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of altitudes just above the ionosphere (4 < 0.5R;) the
model is likely to be inaccurate, since the currents are
closing in the vicinity of the origin, rather than via the
ionosphere, as is really the case. It should be realized,
however, that the degree of the inconsistency depends
on the degree of non-uniformity of the ionospheric
conductivity. In an ideal case of a completely uniform
conductivity distribution it can be shown by using the
same arguments as those given in the proof of
Fukushima’s theorem (Fukushima, 1969), that above
the ionosphere the contribution from the Pedersen
current closing each Birkeland current “wire” is
nearly equivalent to the field produced by a rectilinear
current segment connecting the ionospheric end of the
“wire” with the origin, i.e. just as in the present model.

The next important point is that the intensities of
Birkeland currents in the summer and winter hemi-
spheres can considerably differ from each other, due
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to asymmetry of the conductivity distribution for
¥ # 0 (Fuijii et al., 1981). In the proposed model this
can be easily taken into account by representing the
Fourier coefficients in the vector potential expansions
for each half of the entire current system as a sum of
two terms, of which the first one is symmetrical and
the second is antisymmetrical with respect to the tilt
angle /.

Having made these comments, we give the final
expansions for calculating the magnetic field com-
ponents. The contribution from the northern half of
the model current system is represented in the spheri-
cal solar-magnetic coordinates by the sum of M lead-
ing terms:

1 M .
By, = Ym0 mgl (a,, cos Y +b,, sin )
T cos mo+ - AT 3on .
mT™ cos m —sinm
@ 300, 5(0 @

()
sin mp, (18)

\\»—t

M T
z (a,, cos Y +b,, sin l//) g

where the functions 7%, their derivatives 67\™/é6 and
T 80,,, and also 00,,/0p can be obtained in a
straightforward way from (14) and (17); the index n
means that the quantities refer to the northern current
layer. Similar expressions for the southern layer are:

Bo = rsmB Z (@ cos Y —b,, siny)
™ 3
) 0s
<mT( cosm(p—’r 6905 20 snm<p>
| M (3T('")
Bp=1, ¥ (@ncosy—bysing)z5—sinmo.  (19)

Calculation of the functions T, their derivatives,
and 00,,/0¢ should be done by using equations (14)
and (17), the differences being that (i) tan /2 in (14)
is to be replaced by cot /2 and vice versa, and (ii) the
sign of the second term in (17) should be plus instead
of minus.

Figures 4-6 show the results of computation of
the profiles of the volume current density and the
magnetic field components along the lines crossing the
field-aligned current layer in the dayside, dawn-dusk,
and nightside sectors. As can be seen from the plots,
the results obtained are close to those expected from
the a priori considerations discussed in Section 2. As
a consequence of the transformation distorting the
initially conical shape of the current surface, a

0.30
0.10F
B. C
~0.10F
_0_30:1|||||11|l;1||||1|:||:|4_]
~5.00 ~1.00 3.00 Re

Y

FiG. 4a. PLOT OF B, IN THE MODEL OF BIRKELAND CURRENT
SYSTEM, COMPUTED ALONG THE LINE x = 0.2Rg, z = 3Rg,
PARALLEL TO THE Y AXIS, THAT IS ACROSS THE POLAR CAP
REGION.
The field is nearly uniform in the X and Y directions through-
out the polar cap and displays abrupt reversals on crossing
the model field-aligned current layers, with downward and
upward current at dawn and dusk, respectively.
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Y

FIG. 4b. PLOT OF THE Z-COMPONENT OF THE VOLUME CURRENT
DENSITY CORRESPONDING TO THE B, PLOT IN FIG. 4a.
Note a non-constancy of j inside the layers (see text for
explanation).

secondary electric current arises outside the warped
layer. This defect is an inevitable artifact of the
method of the vector potential modification.
However, the volume density of the secondary cur-
rents is on average much smaller than that inside the
model Birkeland current layer and the corresponding
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FIG. 5. PLOT OF j, ALONG THE LINE X = —10Rg, y = —2Rg,
PARALLEL TO THE Z-AXIS, THAT IS ACROSS THE PLASMA SHEET
IN THE NEAR TAIL REGION.

The profile crosses the northern and southern layers with
sunward Birkeland currents.

magnetic field should have a much larger variation
scale, so that in principle it can be eliminated by intro-
ducing simple polynomial terms in the modeling
expressions. Note also that the current density profiles
across the layer are not flat. This is a consequence of
the adopted method of defining Green’s function (9)
as well as of the “turning inside out” deformation of
the initial conical current layer.
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FiG. 6a. PLOT OF j, ALONG THE LINE X = 6Rg, y = 2Rg,
PARALLEL TO THE z AXIS, THAT IS ACROSS THE DAYSIDE CUSP
REGION.

The model Birkeland current layer is located at
6R: < z < 8Rg. Note a significant secondary current density
in the low-latitude region z < 6Rg.
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Figure 7 illustrates the overall distribution of the j
vector inside the model current layer in projection
onto the plane z = 0. It displays a family of unit
vectors h = (j.+j,)/(ji+j?)'"* showing at each point
the direction of the electric current component parallel
to the equatorial plane. Note that the vectors in the
figure are not strictly radial and there exist two wedge-
shaped regions centered about the x-axis with the
current flow lines crossing the noon—midnight mer-
idian plane, while in the initial conical model (Fig. 2)
all the lines pass through the cone vertex. This is the
artifact of the imposed deformation; however, this
does not seem to be a serious drawback for the fol-
lowing reasons : (1) the net current crossing the noon—
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F1G. 7. EQUATORIAL PROJECTIONS OF THE ELECTRIC CURRENT DENSITY VECTORS COMPUTED INSIDE THE MODEL
BIRKELAND CURRENT LAYER.

Due to normalization, all the vectors are of equal length, thus showing only directions of the electric

current in projection onto the plane z = 0. Note that a small portion of the net current crosses the noon—

midnight meridian plane at relatively large distances,

in contrast with the corresponding electric current

pattern in the initial conical model of Fig. 2 (see text).

midnight plane outside the Earth is relatively small;
and (ii) both in the noon and midnight sectors the
secondary azimuthal currents coincide in direction
with the diamagnetic currents flowing at the
equatorward boundary of the polar cusp and in the
plasma sheet boundary layer.

3.4. Modeling the effects of interhemispherical field-
aligned current

One more possibility of the proposed approach
should also be pointed out. In the above outlined
derivation of the mth term of the expansion for the
vector potential we have not included the one with
m = 0, because it corresponds to radial currents which
do not depend on the local time. This means that there
exists a source or a sink of the electric current at
the cone vertex and, hence, the solution is physically
senseless if we consider only half of the current system.
However, the current inflow in, say, the Northern
Hemisphere can be balanced by the corresponding
outflow in the Southern one. From this follows the
possibility of modeling a hypothetical effect of inter-

hemispherical electric current flow related to the IMF
B,-component (Leontyev and Lyatsky, 1974).

For this case, having integrated the uniform equa-
tion corresponding to (4) with m = 0, we obtain the
solutions,

T{” = constant and 71" = Intan /2, (20)

where the first one refers to the polar cap regions
(inside the conical cavities) and the second refers to
the low-latitude region. The corresponding magnetic
field is zero inside the cones and has the only azimuthal
component B, ~ (r-sin §)~' outside. This result is
also evident from simple considerations taking into
account the axial symmetry and Ampére’s law in its
integral form. The potentials (20) can be used in a
similar way for constructing the warped Birkeland
current layer model. Introducing the corresponding
terms in the magnetic field representation yields a
dawn—dusk asymmetry whose sign and degree depend
on the IMF orientation. This opens the possibility of
studying these effects on a statistical basis by fitting
the corresponding model parameters to the spacecraft
datasets.
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The dawn—dusk asymmetry of the magnetic field
can also be induced by a prevalence of Birkeland
currents inflow (outflow) at the dayside, with a cor-
responding outflow (inflow) at the nightside in the
same hemisphere (Crooker and Siscoe, 1981 ; Suzuki
and Fukushima, 1984). Such an asymmetry can be
modeled by including in the expansions (18) and (19)
the terms containing cos m@ (—sin me) instead of
sin mg (cos me), as has already been mentioned
briefly in Section 3.1.

4. MODELS BASED ON DEFORMATION OF
INITIALLY FLAT CURRENT SHEETS

The conical current sheet described in Section 3.1
seems to be the best generic surface for global model-
ing of system I of the Birkeland currents by using
the method of vector potential modification. In local
modeling studies two other models can also be
applied. These are based on planar current sheets
with a sufficiently flexible distribution of the electrical
current density. The models outlined below can also
be employed for a more refined quantitative simu-
lation of the tail current system, including local tran-
sient redistributions of the current density in the near
plasma sheet during substorms.

4.1. A modification of the Tsyganenko—Usmanov
current sheet model

In one of our earlier papers (Tsyganenko and
Usmanov, 1982) a simple method for modeling the
tail current sheet was proposed, in which the current
sheet is composed of continuously distributed spread-
out straight current filaments. Each filament con-
tributes the magnetic field dB ~ p/(p*+ D?), where p
is the distance from the central axis and D is the
characteristic half-thickness of the filament. Having
chosen simple approximations for the electric current
distribution along the sheet, it is possible to reduce
the corresponding integrals to concise analytic ex-
pressions for the magnetic field components which
satisfy the condition V+B = 0 and do not contain any
singularities or discontinuities.

It is easy to generalize this model by introducing
the effects of warping of the current sheet as well as
variations of its thickness and width along the direc-
tion of current flow. Let the initial current sheet have
the parameters x,, x, and x,, which define the
location of its front and rear edges and of the current
density maximum, respectively, as sketched in Fig. 8.
If the current density profile along the sheet J(x) has
a triangular shape, then the expressions for the mag-
netic field components are
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B, {L, L, 2

Bx = EZ{A_XI

Ax, 7B

X=X,
X |:S,A1+S2Az—(x—x,,,)R arctan 5 ]}

B, =0
B, L L,
= P8 —x) |+ )+ L,— L
Bz 2 {(X xm) <AX1 + Ax2> + 2 1

X—X,, A| AZ
Sl I 1
+2p l:R arctan B Ax, ij}, @21

where
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Now let the parameters Ax,, Ax,, x,,, and D depend
on y and replace the coordinate z by z—z(y), where z,
is a function defining the shape of the warped current
layer. Such a modification does not violate the con-
dition VB = 0 and can yield the necessary shape of
the model electric current flow lines. On the other
hand, the modification again gives rise to the sec-
ondary currents outside the current sheet, the mag-
nitude of which depends on the rate of the spatial
variation of the model parameters.

4.2. A generalization of the equatorial current disc
model

The recent version of our magnetospheric magnetic
field model (Tsyganenko, 1989) was based on a model
of the equatorial current disc which incorporated the
warping effects due to the geodipole tilt. The model
used a simple representation for the vector potentials
corresponding to spread-out current discs with
different rates of decrease of the electric current den-
sity with radial distance p from the axis of symmetry.

As shown below, this approach can be extended to
another class of models which provide a sector-shaped
distribution of radial and azimuthal components of
the electric current density. An appropriate modi-
fication of the z coordinate provides a way to intro-
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Fi1G. 8. A SKETCH OF THE INITIAL (LEFT) AND FINAL (RIGHT) CONFIGURATIONS OF THE SPREAD-OUT CURRENT
SHEET WITH A TRIANGULAR PROFILE OF THE ELECTRIC CURRENT DENSITY, BASED ON THE MODEL OF TSYGANENKO
AND UsMaNov (1982).

duce a moderate warping of the initially flat sheets,
which makes it possible to propose a further method
for modeling the magnetic effects of Birkeland cur-
rents as well as for improving the tail field models.

The initial point for the present treatment is an
infinitesimally thin current sheet in the equatorial
plane z =0 of the cylindrical coordinate system
(p, @, z). Outside the current sheet the magnetic field
is curl-free and hence can be represented by the gradi-
ent of a scalar potential which, in its turn, can be
expanded in a series of cylindrical harmonics (e.g.
Stern, 1987) with the mth term

cos me
{sm o }exp (kD). (23
where J,,(kp) are Bessel functions of mth order.

In the case of the current disc (Tsyganenko, 1989) the
situation was much easier due to the axial symmetry,
which enabled us to represent the field by only the
azimuthal component A4, containing the harmonics
(23) with m = 0. We now consider a more general case,
in which the radial component of j and the azimuthal
component of B, varying with ¢, are also present. It
is evident that in the present case we cannot proceed
with only one component of A and, hence, inevitably
we arrive at a system of partial differential equations.
To avoid this, let us choose another way, namely,
consider first the scalar potential u(p,¢,z). In the
region z > () the mth harmonic can be represented as

o0

| C(k)exp (—kz)J,,(kp) dk.
(24)

U™ = cos mo J
0

The boundary condition for 4 will be given by speci-
fying the radial distribution of B, in the equatorial
plane for ¢ = 0:

o0

= B.(p) = J kC(k) (kp) dk.

0

du
0z

Inverting the last equation (Bateman and Erdelyi,
1954), we have

Clk) = L B.(p),.(kp)p dp.

Since our goal is to obtain a representation for Birke-
land current contribution which is the largest near the
Earth due to convergence of the current flow lines, we
choose the simplest dependence for B,(p) satisfying
this criterion, namely, B.(p) ~p~"'. In this case
C(k) ~ k="' and therefore (Bateman and Erdelyi,
1954)

/2 +p* ="

» (25)

u"™ = cos me

Now we have to find a representation for the vector
potential providing the same magnetic field as the
scalar potential (25). This can be done by using a
relation given by Stern (1987):

A = p*VyxVp = pVy xe,,

where y is a scalar function related with the potential
u by the equation u = —0y/0¢. Using these relations,
we obtain the components of the vector potential
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WL 22 =<y

J1+22p
AP =0, AP = AP p) 26)

)y __ M
AJ" = —sin mo

It can be verified by direct inspection that the vector
potential (26) yields a curl-free magnetic field every-
where, while we need a current layer centered about
the equatorial plane. It is found, however, that the
vector potential corresponding to a current sheet with
a half-thickness scale D can be readily obtained from
(26) by replacing z with \/22+D2 in the expression
for 4. Rewriting (26) for the modified vector poten-
tial, we have finally

m+ !

p

Al = C™ sin mo

A = AL (), @7)

where C" is the weight coefficient of the mth term,
(= \/;,.2+D3, and z, = z—z(p, ¢). Here the function
z,(p, @), again, defines the shape of the warped current
sheet.

It is not difficult to derive from (27) explicit for-
mulae for the magnetic field components and compute
from them the electric current components. Figure 9
shows the patterns of the current flow lines in the
plane z = 0 computed from (27) for m = 1, 2 and 3.
As can be seen, the first term with m = 1 yields the
simplest geometry of the electric current distribution
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FiG. 9a. PATTERN OF THE ELECTRIC CURRENT FLOW LINES IN
THE SECTORIAL CURRENT SHEET MODEL, COMPUTED FROM THE
VECTOR POTENTIAL (27).

The above pattern corresponds to the first harmonic (m = 1).
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F1G. 9c. SAME AS FIG. 9a, EXCEPT FOR m = 3.

in which the lines converge towards the origin as a
single bundle. In the case of m = 2 we obtain two
antiparallel bundles which interconnect near the
origin, and in the case of m = 3 the pattern is still
more complex. Having composed linear combinations
of the terms with various weight coefficients C™ we
can obtain a variety of net configurations. An appro-
priate choice of the function z,(p, ¢) can yield the
necessary shape of the current layer for modeling the



Quantitative modeling of the magnetic field from Birkeland currents 653

northern and southern halves of Birkeland current
surfacc.

As a closing remark, note that the models outlined
in this section are developed from planar current
sheets and therefore yield inaccurate results at small
geocentric distances, where we have to make the
strongest deformation of the initial current layer lead-
ing to a significant secondary electric current density.
For this reason, the model described in Section 4.1
would be most convenient for simulating the magnetic
effects of Birkeland current jets confined within a
limited interval of longitudes, such as the polar cusp
currents (Iijima and Potemra, 1976b). The approach
outlined in Section 4.2 can be applied for local model-
ing of field-aligned currents flowing along the warped
boundary layer plasma sheet in the magnetotail.

5. CONCLUSIONS

In the present paper we have proposed methods for
quantitative representation of the magnetic field from
the most large-scale system I of Birkeland currents.
The best results are obtained in the model which is
developed by using a coordinate deformation in the
expressions for the vector potential corresponding to
the conical current layer of finite thickness. The model
is sufficiently flexible, which allows the simulation of
the main observed features of system I, which are:

(1) At ionospheric level the latitude of the field-
aligned current layer depends on local time, so that by
choosing proper values of parameters we can obtain a
good fit to the spacecraft data (e.g. Iijima and
Potemra, 1976a).

(2) Depending upon how detailed a representation
of the magnetic field the model must provide (this
depends also on the amount of available experimental
information), we can set an appropriate number of
terms in the Fourier expansions for the magnetic field
components which define the local time distribution
of Birkeland current magnitude.

(3) The model accounts for all the general features
of the system I configuration: at relatively small alti-
tudes the current is flowing nearly along the dipolar
magnetic field lines; at larger distances they enter
either the region adjacent to the polar cusps and the
low-latitude boundary layer at the dayside, or ex-
tend along the plasma sheet boundary layer in the
magnetotail.

(4) The model allows the incorporation of dawn—
dusk asymmetry effects as well as a non-zero net cur-
rent inflow in one of the hemispheres with the cor-
responding outflow in the opposite one; this possi-
bility can be presumed in relation to the reconnection
effects due to the B,-component of the IMF.

(5) The model simulates principal anticipated
effects of the geodipole tilt, namely (i) a general defor-
mation of the current layers in both hemispheres and
(ii) the North-South asymmetry in the net magnitude
and M.L.T. distribution of Birkeland current inten-
Sity.

To our knowledge, the proposed model is the first
attempt to develop a detailed and realistic quantitative
representation of the magnetic field of Birkeland cur-
rents in a wide range of geocentric distances. The
proposed model can be used for determination of
main characteristics of Birkeland current system in
relation to the state of the magnetosphere and the
solar wind, on condition that a sufficient amount of
spacecraft data taken at different altitudes are avail-
able for the statistical modeling study.

Two other methods for modeling warped current
layers with variable geometry and electric current dis-
tribution have been outlined.

As a closing remark, note that we still have no
suitable representation for the system Il magnetic
effects. The present model does not allow for a natural
incorporation of the partial ring current which closes
the outer bundles of the electric current flow lines.
The development of such a model remains an urgent
task to be solved.

Acknowledgement—I thank Drs D. P. Stern and W. J. Burke
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