
Journal of Algebra and Applied Mathematics
Vol. 16 (2018), No.2, pp.131-144
ISSN: 2319-7234
c© SAS International Publications

URL : www.sasip.net

Some approaches to studying the

stability of solutions of stochastic

multi-objective optimization
V.V. Kolbin and D.S. Perestoronin

Abstract. This article focuses on the issue of another way to study
of the stability of solutions of stochastic multi–objective optimization
problem. It presents some approaches to the study of the stability of
solutions of stochastic multi–objective optimization with linear and
nonlineral convolution.

AMS Subject Classification (2010): 90C15, 90C29

Keywords: Stochastic multi-objective optimization, stability of so-

lution of stochastic multi-objective optimization, stability of solu-

tions of stochastic multi–objective optimization with linear and non-

lineral convolution

1. Introduction

The problem of stohastic optimization stability is quite important and

has been studied by many authors.

In [5], the authors present stability and sensitivity analysis of a sto-

chastic optimization problem with stochastic second order dominance con-

straints. Authors of [1] consider convex optimization problems with k or-

der stochastic dominance constraints for k ≥ 2, discuss distances of ran-

dom variables that are relevant for the dominance relation and establish

quantitative stability results for optimal values and solution sets of the

optimization problems in terms of a suitably selected probability metric.
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In [3], the authors present different types of stability of stochastic

optimization problem such as ε- stability of solution in the mean, stability

with respect to the ith constraint, absolute solution stability and other. In

[7], the authors consider a parametric stochastic quasi-variational inequality

problem.

The research work presented in [6] considers distributionally robust

formulations of a two stage stochastic programming problem with the ob-

jective of minimizing a distortion risk of the minimal cost incurred at the

second stage. In [2], the authors consider distributionally robust formu-

lations of a two stage stochastic programming problem with the objective

of minimizing a distortion risk of the minimal cost incurred at the second

stage.

This paper is a generalization of the results obtained in [3] for the

scalar stochastic optimization problems to the multi-objective case and rep-

resents a continuation of the study initiated by the authors in [4], where

they considered the ε – stability in the mean multiobjective optimization

problem and the concepts of the region of admissibility and scope of opti-

mality are also taken into consideration.

2. Brief information about stochastic multi-
objective optimization

Let us introduce the concept of multi–objective optimization in the

following form:

Definition 1.

min
x∈X

f(x) (1)

where X ⊂ Rn is some given set of alternatives, f(x) – vector-valued ob-
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jective function,

f : X → Rm, f(x) = (f1(x), f2(x), . . . , fm(x)).

If a multi-objective optimization problem involve random parameter,

it makes sense to talk about stochastic multi-objective optimization. A

conceptual generalization of the problem of stochastic multi-objective op-

timization:

Definition 2.

min
x∈X(ω)

f(x, ω),

X(ω) ⊂ S(ω) ⊂ Rn, ω ∈ Ω. (2)

where X(ω) is some given set of alternatives, which depends on the random

parameter ω, Ω – set of random parameters ω, f(x, ω) – vector-valued

objective function,

f : X, Ω → Rm,

f(x, ω) = (f1(x, ω), f2(x, ω), . . . , fm(x, ω)).

In practical problems, usually each component of vector-valued ob-

jective function has its own dimension. To reduce the components to a

dimensionless form, the following methods of normalization used:

1. Change of direction of the goal fn(x, ω) = −f(x, ω)

2. Natural normalization fn(x, ω) = f(x,ω)
maxx∈X f(x,ω)−minx∈Xf(x,ω)

3. Complete normalization fn(x, ω) = f(x,ω)−minx∈X f(x,ω)
maxx∈X f(x,ω)−minx∈Xf(x,ω)

4. Change of ingredient fn = 1
f(x,ω)

5. Normalization of comparison fn(x, ω) = f(x,ω)
maxx∈X f(x,ω)

6. Normalization of Savage fn(x, ω) = maxx∈X f(x, ω) − f(x, ω)



134 V.V. Kolbin and D.S. Perestoronin

7. Normalization of averaging fn(x, ω) = f(x,ω)∑m

i
fi(x,ω)

We call the F : f(x, ω) → R1 component of the stochastic multi–

objective exponent f(x, ω) a “convolution” that converts the set of com-

ponents of the stochastic multi–objective indicator f corresponding to the

target terms i to the scalar target the exponent. When solving practical

problems of stochastic multi–objective optimization the following convolu-

tions of the criteria are usually used:

1. Linear(additive) convolution - F (f(x, ω)) =
m∑

i=1

pifi(x, ω), where pi

are real numbers.

2. Multiplicative convolution F (f(x, ω)) =
m∏

i=1

pifi(x, ω), where pi are

real numbers.

3. The ideal point method F (f(x, ω)) = ρ(Z, f(x, ω)) where Z — ideal

point, ρ(x, y) — distance between points x, y

4. Convolution of Cobb — Douglas F (f(x, ω)) =
m∏

i=1

[pif(x, ω)]qi where

pi and qi are real numbers.

Let us consider some approaches to the study of stability of solutions of

stochastic multi–objective optimization problems with linear and nonlinear

convolutions in the next sections.

3. Some approaches to the study of the stabil-
ity of solutions of stochastic multi-objective
optimization with linear convolution

Let us introduce the following concepts:

1. Feasibility region. Consider a fixed realization of random event

ω0 ∈ Ω. Suppose we have a deterministic multi-objective optimization
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with linear convolution problem of the form:

min
X∈S(ω0)

F (fn(x, ω0)), (3)

where the criteria fni(x, ω0) of the multi-objective function fn(x, ω0)

are linear.

Let lk(k = 1, 2, . . . , Kω0) denote the extreme points of the convex set

S(ω0), each of which is produced by intersection of n cutting planes,

where Kω0 is the total number of extreme points when ω0 ∈ Ω random

parameters are realized.

The region V k
ω0

∈ Ω is called the “feasibility” region of the point

lk, if for any ω ∈ V k
ω0

the intersection of the cutting planes producing

this point determines an extreme point of the corresponding set S(ω).

2. Optimality region. Let lk0 be an optimal extreme point of prob-

lem (3), i.e., for any k 6= k0, Z
k
ω0

≥ Zk0
ω0

, where Zk
ω0

is the linear

convolution value of problem (3) at the extreme point lk.

The region W k0
ω0

∈ V k0

ω0
is the optimality region of the point lk0

if for any ω ∈ W ko
ω0

, Zk
ω ≥ Zk0

ω .

We will prove that for any extreme point lk the function Zk
ω is the

continuous function of ω.

Lemma 1. The function Zk
ω is the continuous function of ω for any extreme

point lk.

Proof. The functional value at the extreme point lk of the convex set S(ω0)

for the fixed realization ω0 ∈ Ω in view of the linearity F (·) and fni(x, ω0)

is

Zk
ω0

= F (fn(lk)) = c0
1x

0k
1 + c0

2x
0k
2 + . . . + c0

2x
0k
2 ,



136 V.V. Kolbin and D.S. Perestoronin

where x0k
j are coordinates of extrime point.

Denote by x̂0k
j nonzero values of x0k

j . These values are determined from

the relation D0kX̂0k = b0, where D0k is the relevant basic matrix.

By the nonsingularity of this matrix, the values x̂0k
j are continuos

functions of a0
ij and b0

i , respectively, Zk
ω is a continuous function of ω ∈ Ω.2

We will prove that for any ω0 ∈ Ω there exist a stability region of Wωo

such that for all ω ∈ Wωo the corresponding problem (3) has same optimal

basis.

Theorem 1. Let Zk
ω0

> Zk0
ω0

(k = 1, kω0 ; k 6= k0) at the point ω0 ∈ Ω.

Then there exists a neighborhood O(ω0) of the point ω0 such that for all

ω ∈ O(ω0) ⊂ Ω

Zk
ω > Zk0

ω (k = 1, kω0 ; k 6= k0)

Proof. At the point ω0 ∈ Ω

Zk
ω0

> Zk0
ω0

(4)

By Lemma 1, the functions Zω
k and Zω

k0
are continuous in ω, hence

their difference also is a continuous function. From the properties of contin-

uous functions it follows that there exists a neighborhood O(ω0) such that

for ω ∈ O(ω0) the inequality (4) is preserved, i.e., Zk
ω > Zk0

ω , k = 1, kω0 . 2

4. Some approaches to the study of the stabil-
ity of solutions of stochastic multi-objective
optimization with nonlinear convolution

In applied problems of stochastic programming, random parameters

have optimistic and pessimistic boundaries for their variations, i.e., random

variables are distributed in a finite (continuous or discrete) way.



Stability of solutions of stochastic 137

In such cases it is possible under certain conditions to determine the

range of the objective function and localize the set of optimal solutions for

all realizations ω ∈ Ω.

Suppose we have a stochastic programmipg problem, in which the

objective function F (fn(x, ω)) = F (fn(x)) is a continuous deterministic

function, and the functions defining the problem conditions g(x, ω), ∀i =

l, m are quadratic or linear in X with nonpositive definite matrices for any

realization ω ∈ Ω , i.e., we have the problem




minx F (fn(x)),
xT Hi(ω)x + pi(ω)x − bi(ω) ≥ 0, i = 1, m,
x ≥ 0,

(5)

where all the elements of matrices Hi(ω), vectors pi(ω) and components

bi(ω), i = 1, m can be random.

Let us introduce the following sets:

S(ω) =
{
x : xT Hi(ω)x + pi(ω)x ≥ bi, x ≥ 0, i = 1, n

}
,

S−(ω) =
{
x : xT H−

i (ω)x + p−i x ≥ b−i , x ≥ 0, i = 1, n
}

, (6)

S+(ω) =
{
x : xT H+

i (ω)x + p+
i x ≥ b+

i , x ≥ 0, i = 1, n
}

.

where in H+
i , p+

i , b+
i , H−

i , p−i , b−i , i = l, m random variables representing re-

alizations of vector ω are replaced by optimistic and pessimistic boundaries,

respectively.

We have the following statement.

Theorem 2. If the set of permanent solutions S− is nonempty, then the

following relation holds for the objective function of problem (5):

min
x∈S+

F (fn(x)) ≤ min
x∈S(ω)

F (fn(x)) ≤ min
x∈S−

F (fn(x)) (7)

Proof. If is sufficient to show that S+ ⊃ S(ω) ⊃ S−, whence it follows
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that the minimum of continous function in some set is less than or equal

to the minimum of this same function in any part of this set.

If x ∈ S−, it follows that for all random realizations ω and with ∀i

xT H+
i x + p+

i x
(∗∗∗)
≥ xT Hi(ω)x + pi(ω)x

(∗∗)
≥ xT H−

i x + p−i x
(∗)
≥

(∗)
≥ b+

i

(∗∗)
≥ bi(ω)

(∗∗∗)
≥ b−i , x ≥ 0

From this it follows that any feasible solution from S− satisfying in-

equality (∗) also satisfies inequality (∗∗), i.e., S(ω) ⊃ S−. Additionaly, any

feasible solution from the set S(ω) satisfying (∗∗) also satisfies (∗ ∗ ∗), i.e.,

S+ ⊃ S(ω). Finally,

S+ ⊃ S(ω) ⊃ S−

and if S− 6= ∅, then the expression (5) from conditions of the theorem is

meaningful. 2

Corollary. Suppose we have a quadratic convolution in problem (5), i.e.

F (fn(x)) = F (fn(x), ω) is a random x-quadratic function with a nonnega-

tive definite matrix H0(ω) for ∀ ω

F (fn(x), ω) = fn(x)T H0(ω)fn(x) + p0(ω)fn(x) + b0(ω)

where among the elements of H0, p0, b0 are random components with finite

distribution. Then expression (7) in Theorem 2 becomes

F−(fn(x−)) = min
x∈S+

F−(fn(x))

≤ min
x∈S(ω)

F (fn(x), ω)

≤ min
x∈S−

F+(fn(x))

= F+(fn(x+))

where x− and x+ are optimal solutions for respective set S+ and S−, while

F−(fn(x)) and F+(fn(x)) are objective functions, in which random data

are replaced by their pessimistic and optimistic boundaries, respectively.
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Proof. In accordance with the statement of Theorem 2 the system of man-

ual inclusions S+ ⊃ S(ω) ⊃ S− is valid. If x0(ω) is the optimal solution of

problem (5) for realization of ω, then for any ω

F−(fn(x−)) = fn(x−)T H−
0 fn(x−) + p−0 fn(x−) + b−0 (ω) ≤

≤ F (fn(x), ω)

= fn(x)T H0(ω)fn(x) + p0(ω)fn(x)

+b0(ω) ≤ fn(x+)T H+
0 fn(x+)

+p+
0 fn(x+) + b+

0 (ω)

= F+(fn(x+))

whence comes the required result. 2

We introduce the following set

S−
> =

{
x : xT H−

i (ω)x + p−i x > b−i , x > 0, i = 1, n
}

.

Theorem 3. Let the functions gi(x, ω), i = l, m in problem (5) be concave

or linear, the set of feasible S− nonempty, and the set S+ bounded. If the

objective function of problem (5) is concave and deterministic, then for any

ω there is an optimal solution x0(ω), which does not belong to S−
> , and the

set of all such optimal solutions satisfies the conditions

{x0(ω)}∀ω ⊂ ∆S = S+\S−
> .

Proof. Since the minimum of the concave function F (fn(x)) on the bound-

ary is not less than the minimum of F (fn(x)) inside the convex region of

feasible solutions, by the continuity of F (fn(x)) and by the closedness and

boundedness of the region of feasible solutions for each realization of ω

there exist a boundary point X0(ω) such that

F (fn(x0(ω))) ≤ F (fn(x(ω))), ∀x(ω) ∈ S(ω).
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This means that for each realization of ω at least one of the inequalities

gi(x, ω) ≥ 0

or

xj ≥ 0

becomes an equality, i.e. either

x0T (ω)Hi(ω)x0(ω) + pi(ω)x0(ω) = bi(ω)

for some iω or x0
j (ω) = 0 for some jω. Such x0(ω) does not belong to

S−
> , because the set S−

< includes none of the x which could transform some

constraint of problem (5) into equality.

But x0(ω) ∈ S+, because S+ includes all feasibility region for any realiza-

tion of ω, and hence

{x0(ω)}∀ω ⊂ S+\S−
>

2

Suppose the functions of original problem are all quadratic in x with

nonpositive definite matrices Hi(ω), i = 1, m and nonnegative definite ma-

trix H0(ω) for ∀ω, i.e., we have the quadratic programming problem for

each realization:




minx F (fn(x), ω) = minx

(
fT

n (x)H0(ω)fn(x) + p0(ω)fn(x) + b0(ω)
)
,

xT Hi(ω)x + pi(ω)x − bi(ω) ≥ 0, i = 1, m,
x ≥ 0,

(8)

where the elements Hi(ω), pi(ω) and bi(ω), i = 0, 1, . . . , m can be random

variables.

Let hi
l, pi

j and bi be the mathematical expectations, and let σi
l , σ

i
j and

σi be variances of the elements Hi(ω), pi(ω) and bi(ω), i = 0, 1, . . . , m,

respectively.
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Introduce the following set and notations:

S(ω) = {x : xT Hi(ω)x + pi(ω)x ≥ bi(ω), i = 1, m, x ≥ 0},

S+
λ = {x : xT H+

i x + p+
i x ≥ b−i , i = 1, m, x ≥ 0},

S−
ν = {x : xT H−

i x + p−i x ≥ b+
i , i = 1, m, x ≥ 0},

∆ν,λ = {x : x ∈ {S+
λ \{x : xT H−

i x + p−i x > b+
i , i = 1, m, x ≥ 0}}},

F+
λ,ν = { min

x∈S−
ν

Fλ(fn(x))} = min
x∈S−

ν

(fT
n (x)H+

0 fn(x) + p+
0 fn(x) + b+

0 ),

F−
ν,λ = {min

x∈S+
λ

Fν(fn(x))} = min
x∈S+

λ

(fT
n (x)H−

0 fn(x) + p−0 fn(x) + b−0 ),

where H+
i , H−

i , p+
i , p−i , and b+

i , b−i are determined form the following rela-

tions for any i = 1, m and l, j = 1, n:

H−
i = (hi

lj − νσi
lj), H

+
i = (hi

lj + νσi
lj),

p−i = (pi
j − νσi

j), p
+
i = (pi

j + νσi
j),

b−i = (bi − νσi), b+
i = (bi + νσi).

Suppose ν and λ are strictly greater than zero, S−
ν 6= ∅, while the

absolute minimum in problem (8) does not belong to S−
ν , and considered

for S(ω) are all ω for which there exists at least one feasible solution.

Theorem 4. The probability that the optimal value of the objective function

F (fn(x0), ω) ∈ [F−
ν,λ, F+

ν,λ] and the solution of problem (8), x0, belongs to

the region ∆ν,λ is equal at least to

Pν,λ = P{ω : H−
i ≤ Hi(ω) ≤ H+

i ; p−i ≤ pi(ω) ≤ p+
i ;

b−i ≤ bi(ω) ≤ b+
i , ∀i = 0, 1, . . . , m}

Proof. It is sufficient to show that the requirement of the theorem holds

for the event

{ω : H−
i ≤ Hi(ω) ≤ H+

i ; p−i ≤ pi(ω) ≤ p+
i ; b−i ≤ bi(ω) ≤ b+

i }(∗).



142 V.V. Kolbin and D.S. Perestoronin

Proceeding in the same manner as in Theorem 3, we have

S−
ν ⊂ S(ω) ⊂ S+

λ for all ω

from the event (∗), while the set of optimal solutions for these ω is contained

∆λ,ν .

According to Corollary of Theorem 2 we have then that for all ω from

the event (∗) the required relations are satisfied for the objective functions:

F−
ν,λ = min

x∈S+
λ

Fν(fn(x)) ≤ min
x∈S(ω),ω∈(∗)

F (fn(x), ω) ≤ min
x∈S−

ν

Fλ(fn(x)) = F+
λ,ν

Now it is easy to show, e.g., by shifting a nonbasic constraint, that

depending on the form of objective function and constraint functions there

can be realizations such that the optimal solution x0 ∈ ∆νλ and, respec-

tively, F (fn(x0), ω) ∈ [F−
ν,λ, F+

ν,λ] ; but the strict requirement of event (∗)

is not satisfied for such realizations of ω.

From this it follows that pν,λ is the lower boundary for the probability

that the optimal solution x0 ∈ ∆ν,λ while F (f(x0), ω) ∈
[
F−

ν,λ, F+
λ,ν

]
. This

is what we set out to prove. 2

5. Conclusion

In the present article we consider problems of stability of solutions of

stochastic multi-optimization with normalizations introduced for them and

linear and nonlinear convolutions.

In Section 3, we present a study of stability of solutions of stochastic

multi–objective optimization problems with linear components and linear

convolutions, introduce feasibility and optimality regions, show that any

optimal solution of this problem has optimality region.

Problems of stability of solutions of stochastic multi-optimization with

normalizations with nonlinear convolution are also considered in Section 4;
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for them it is shown that the solution of such problems is bounded above

and below by a solution with a pessimistic and optimistic value of the

random parameter.
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