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1. Introduction

The problem of stohastic optimization stability is quite important and

has been studied by many authors.

In [5], the authors present stability and sensitivity analysis of a sto-
chastic optimization problem with stochastic second order dominance con-
straints. Authors of [1] consider convex optimization problems with &k or-
der stochastic dominance constraints for k > 2, discuss distances of ran-
dom variables that are relevant for the dominance relation and establish
quantitative stability results for optimal values and solution sets of the

optimization problems in terms of a suitably selected probability metric.
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In [3], the authors present different types of stability of stochastic
optimization problem such as e- stability of solution in the mean, stability
with respect to the i*" constraint, absolute solution stability and other. In
[7], the authors consider a parametric stochastic quasi-variational inequality

problem.

The research work presented in [6] considers distributionally robust
formulations of a two stage stochastic programming problem with the ob-
jective of minimizing a distortion risk of the minimal cost incurred at the
second stage. In [2], the authors consider distributionally robust formu-
lations of a two stage stochastic programming problem with the objective
of minimizing a distortion risk of the minimal cost incurred at the second

stage.

This paper is a generalization of the results obtained in [3] for the
scalar stochastic optimization problems to the multi-objective case and rep-
resents a continuation of the study initiated by the authors in [4], where
they considered the e — stability in the mean multiobjective optimization
problem and the concepts of the region of admissibility and scope of opti-

mality are also taken into consideration.

2. Brief information about stochastic multi-
objective optimization

Let us introduce the concept of multi-objective optimization in the
following form:

Definition 1.

min f(x) (1)

reX

where X C R" is some given set of alternatives, f(z) — vector-valued ob-
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jective function,

[ X =R f(2) = (fi(@), fa(2), - ., fin(2)).

If a multi-objective optimization problem involve random parameter,
it makes sense to talk about stochastic multi-objective optimization. A
conceptual generalization of the problem of stochastic multi-objective op-

timization:
Definition 2.

xénxl?w)f(x,w),

X(w) C S(w) C R",w e Q. (2)

where X (w) is some given set of alternatives, which depends on the random
parameter w, 2 — set of random parameters w, f(z,w) — vector-valued

objective function,

f:X,Q— R™,
f(I,LA}) = (fl(xaw)a f2(xaw)a e fm(a:,w))

In practical problems, usually each component of vector-valued ob-
jective function has its own dimension. To reduce the components to a
dimensionless form, the following methods of normalization used:

1. Change of direction of the goal fy,(z,w) = —f(z,w)

f(z.w)

2. Natural normalization f,(z,w) = e T ) i T o)

f(z,w)—mingex f(z,w)

3. Complete normalization f,(z,w) = ey F(Tw) —mineex F )

4. Change of ingredient f, = ﬁ

f(z.w)

5. Normalization of comparison f, (x,w) = e F0)

6. Normalization of Savage f,(z,w) = max,ex f(z,w) — f(z,w)
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7. Normalization of averaging f,(z,w) = %

We call the F : f(z,w) — R! component of the stochastic multi-
objective exponent f(z,w) a “convolution” that converts the set of com-
ponents of the stochastic multi—objective indicator f corresponding to the
target terms ¢ to the scalar target the exponent. When solving practical
problems of stochastic multi—objective optimization the following convolu-
tions of the criteria are usually used:

m
1. Linear(additive) convolution - F(f(z,w)) = Zpifi(:v,w), where p;

i=1
are real numbers.

2. Multiplicative convolution F(f(z,w)) = Hpifl-(:zr,w), where p; are
i=1
real numbers.

3. The ideal point method F(f(z,w)) = p(Z, f(x,w)) where Z — ideal

point, p(z,y) — distance between points z,y

m

4. Convolution of Cobb — Douglas F(f(z,w)) = H[pif(:v, w)]% where
i=1
p; and ¢; are real numbers.
Let us consider some approaches to the study of stability of solutions of

stochastic multi-objective optimization problems with linear and nonlinear

convolutions in the next sections.

3. Some approaches to the study of the stabil-
ity of solutions of stochastic multi-objective
optimization with linear convolution

Let us introduce the following concepts:

1. Feasibility region. Consider a fixed realization of random event

wp € ). Suppose we have a deterministic multi-objective optimization
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with linear convolution problem of the form:

Xg}gl(luluo) F(fn(xaw()))a (3)

where the criteria f,, (z,wg) of the multi-objective function f, (z,wq)

are linear.

Let lx(k=1,2,..., K,,) denote the extreme points of the convex set
S(wo), each of which is produced by intersection of n cutting planes,
where K., is the total number of extreme points when wg € {2 random

parameters are realized.

The region V“’fo € Q is called the “feasibility” region of the point
lg, if for any w € Vu’fo the intersection of the cutting planes producing

this point determines an extreme point of the corresponding set S(w).

2. Optimality region. Let I, be an optimal extreme point of prob-

lem (3), i.e., for any k # ko, ZE > Zko

&0, where Zfo is the linear

convolution value of problem (3) at the extreme point .

The region ng € Vu’f: is the optimality region of the point Iz,
if for any w € Wke, Zk > Zko,

wo ?

We will prove that for any extreme point I, the function Z¥ is the

continuous function of w.

Lemma 1. The function Z¥ is the continuous function of w for any extreme

point lj.

Proof. The functional value at the extreme point I of the convex set S(wp)
for the fixed realization wy € Q in view of the linearity F'(-) and fy, (z,wo)
is

ZE = F(fa(lr)) = Sa* + 929 + ...+ 5alF,
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where x?k are coordinates of extrime point.
Denote by i:?k nonzero values of x?k. These values are determined from

the relation D% X% = 0, where D is the relevant basic matrix.

0k

By the nonsingularity of this matrix, the values ;" are continuos

functions of af; and by, respectively, Zk is a continuous function of w € Q.0

We will prove that for any wgy € € there exist a stability region of W,
such that for all w € W, the corresponding problem (3) has same optimal

basis.

Theorem 1. Let ZF > ZF(k = 1,kuy;k # ko) at the point wy € €.
Then there exists a neighborhood O(wg) of the point wy such that for all
w e O((.«)Q) cQ

ZE > 78 (k =1, kuys k # ko)

Proof. At the point wy € Q
k k
Zoy > 2 (4)

By Lemma 1, the functions Z}’ and Zy, are continuous in w, hence
their difference also is a continuous function. From the properties of contin-
uous functions it follows that there exists a neighborhood O(wp) such that

for w € O(wp) the inequality (4) is preserved, i.e., Z& > ZFo k=1 k,,. O

4. Some approaches to the study of the stabil-
ity of solutions of stochastic multi-objective
optimization with nonlinear convolution

In applied problems of stochastic programming, random parameters
have optimistic and pessimistic boundaries for their variations, i.e., random

variables are distributed in a finite (continuous or discrete) way.
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In such cases it is possible under certain conditions to determine the
range of the objective function and localize the set of optimal solutions for

all realizations w € €.

Suppose we have a stochastic programmipg problem, in which the
objective function F(f,(z,w)) = F(fn(z)) is a continuous deterministic
function, and the functions defining the problem conditions g(x,w),Vi =
1,m are quadratic or linear in X with nonpositive definite matrices for any
realization w € ) , i.e., we have the problem

min, F(fn()),

2T Hy(w)x + pi(w)r — b;(w) > 0,i =T, m, (5)
x>0,

where all the elements of matrices H;(w), vectors p;(w) and components

bi(w), i = 1, m can be random.

Let us introduce the following sets:

Sw) = {z:2"Hj(w)z+pi(w)z >bj,x>0,i=1n},
S™(w) = {z:2"H (wz+p;z>b,2>0,i=1n}, (6)
StT(w) = {3::J:TH;'(w)x—l—p;"xzb;",xz(),i:l,_n}.

where in H. Z+ , pj, bj, H;,p;,b; ,i=1,mrandom variables representing re-
alizations of vector w are replaced by optimistic and pessimistic boundaries,

respectively.

We have the following statement.

Theorem 2. If the set of permanent solutions S~ is nonempty, then the

following relation holds for the objective function of problem (5):

Jnin F(fa(x)) < i (fn(2)) < min F(fu(x)) (7)

Proof. If is sufficient to show that ST O S(w) D S~, whence it follows



138 V.V. Kolbin and D.S. Perestoronin

that the minimum of continous function in some set is less than or equal
to the minimum of this same function in any part of this set.

If x € S7, it follows that for all random realizations w and with V3

ok ok ()

(xx) (%)
" Hr e +pfe > 2"Hiw)r+pi(w)z > 2"H x+p; o >

(*) (x%) (oxx)
>0 > bi(w) > b x>0

From this it follows that any feasible solution from S~ satisfying in-
equality (*) also satisfies inequality (xx), i.e., S(w) D S~. Additionaly, any
feasible solution from the set S(w) satisfying (xx) also satisfies (x * *), i.e.,

ST 5 S(w). Finally,
St 5 S(w) > S~

and if S~ # (), then the expression (5) from conditions of the theorem is

meaningful. ]

Corollary. Suppose we have a quadratic convolution in problem (5), i.e.
F(fn(z)) = F(fn(2z),w) is a random z-quadratic function with a nonnega-

tive definite matriz Ho(w) for ¥V w

F(fa(2),w) = fa(@)" Ho(w) fa(@) + po(w) fa(@) + bo(w)

where among the elements of Hy, po,bo are random components with finite

distribution. Then expression (7) in Theorem 2 becomes

F=(fu(z7)) = min F~(fu(2))

zeSt

< min F(f, (),
< min (fn(z),w)

< min F¥(,(@))

= F+(fn($+))

where x~ and T are optimal solutions for respective set ST and S, while
F~(fn(z)) and F*(f,(x)) are objective functions, in which random data

are replaced by their pessimistic and optimistic boundaries, respectively.
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Proof. In accordance with the statement of Theorem 2 the system of man-
ual inclusions ST O S(w) D S~ is valid. If 2°(w) is the optimal solution of

problem (5) for realization of w, then for any w

F~(fa(z7)) = fal@a™)THy fale™) +pp fal@™) + by (@) <
< F(fa(z),w)
= fo(@)" Ho(w) fn(x) + po(w) fu(x)
+ho(w) < fula)THS fu(2™)
+pg fu(z™) + by (W)

= F(fu(z™))
whence comes the required result. O

We introduce the following set

S ={x:2"H; (w)a+p;z>b;,a>0,i=T1n}.

Theorem 3. Let the functions gi(x,w),i = [,m in problem (5) be concave
or linear, the set of feasible S~ nonempty, and the set ST bounded. If the
objective function of problem (5) is concave and deterministic, then for any
w there is an optimal solution x°(w), which does not belong to S<, and the

set of all such optimal solutions satisfies the conditions

{2%w)}vw C AS = ST\SZ.

Proof. Since the minimum of the concave function F(f,(z)) on the bound-
ary is not less than the minimum of F(f,(x)) inside the convex region of
feasible solutions, by the continuity of F(f,(x)) and by the closedness and
boundedness of the region of feasible solutions for each realization of w

there exist a boundary point X°(w) such that

F(fa(2°())) < F(fa(2(w))), Vo (w) € S(w).
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This means that for each realization of w at least one of the inequalities
g9i(z,w) >0

or

becomes an equality, i.e. either

2" (W) Hi(w)2" (W) + pi(w)2® (w) = bi(w)

for some i, or z9(w) = 0 for some j,. Such z°(w) does not belong to
S<, because the set SZ includes none of the  which could transform some

constraint of problem (5) into equality.

But 2°(w) € ST, because ST includes all feasibility region for any realiza-

tion of w, and hence
{2%(w)}ww € ST\SS
O

Suppose the functions of original problem are all quadratic in = with
nonpositive definite matrices H;(w),i = 1, m and nonnegative definite ma-
trix Ho(w) for Vw, i.e., we have the quadratic programming problem for

each realization:

ming F(fo(2),w) = ming (7 (2)Ho(w) (@) + Po(w) /(@) + bo(w) )

o7 H(w)z + pi(w)z — bi(w) > 0,i =T, m, (8)
x>0,
where the elements H;(w),p;(w) and b;(w),i = 0,1,...,m can be random
variables.

Let h_f, p_; and b; be the mathematical expectations, and let of,aé- and
o; be variances of the elements H;(w), p;(w) and b;(w), i = 0,1,...,m,

respectively.
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Introduce the following set and notations:

Sw) = {z:2"Hj(w)z +pi(w)z > bi(w),i =1, m,x >0},

St = A{w:a"HYz+pfe>b7,i=T,m,z >0},

S; = {x:2TH z4+p x>0 ,i=Tmz >0},
Ay = {z:xe{Si\{z:2"H z+p;x>b,i=T,m,az>0}}},
Bl = min (o)) = min () H] £u(o) + o £u(o) + )
Foa = {min B(fa@)} = ;Eiri(ff(w)Han(w) +pg ful(@) +b5),

where H l+ JH,, pj, p; , and bj, b, are determined form the following rela-

tions for any ¢ = 1,m and [,j = 1, n:

HT = (W, - vaj;), H} = (hi; + voi;),
pi = = vap)pl = () +vo)),
G

Suppose v and A are strictly greater than zero, S, # (), while the

v

absolute minimum in problem (8) does not belong to S, and considered

for S(w) are all w for which there exists at least one feasible solution.

Theorem 4. The probability that the optimal value of the objective function
F(fn(2%),w) € [F;A,F:)\] and the solution of problem (8), 2°, belongs to

the region A, x is equal at least to

Py = Plo:H <Hiw) <Hip; <pi(w) <pfs

)

by <bi(w) <bf,¥i=0,1,...,m}
Proof. It is sufficient to show that the requirement of the theorem holds

for the event

{w:H < H;(w) < H;p; <pi(w) <pfib; < bi(w) <bf}(x).

AR
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Proceeding in the same manner as in Theorem 3, we have
S, C Sw) C Sf for all w

from the event (%), while the set of optimal solutions for these w is contained

Ay .
According to Corollary of Theorem 2 we have then that for all w from
the event () the required relations are satisfied for the objective functions:

Fyy = min B(fo(@) < min_ F(fy(2),0) < min F(fu(@)) = FY,

vA T es) = 2eS(w)we(x) €S,

Now it is easy to show, e.g., by shifting a nonbasic constraint, that
depending on the form of objective function and constraint functions there
can be realizations such that the optimal solution 2° € A, and, respec-
tively, F(fn(z"),w) € [F, 5 F;r)\] ; but the strict requirement of event (x)

is not satisfied for such realizations of w.

From this it follows that p, » is the lower boundary for the probability
that the optimal solution z° € A, while F(f(z2°),w) € [F;/\, F/\Jru] This

is what we set out to prove. O

5. Conclusion

In the present article we consider problems of stability of solutions of
stochastic multi-optimization with normalizations introduced for them and

linear and nonlinear convolutions.

In Section 3, we present a study of stability of solutions of stochastic
multi—objective optimization problems with linear components and linear
convolutions, introduce feasibility and optimality regions, show that any

optimal solution of this problem has optimality region.

Problems of stability of solutions of stochastic multi-optimization with

normalizations with nonlinear convolution are also considered in Section 4;
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for them it is shown that the solution of such problems is bounded above

and below by a solution with a pessimistic and optimistic value of the

random parameter.
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