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О ЮРЬЕВСКО-ВОРОНЕЖСКОМ ОЧАГЕ
ВЫСШЕГО ПРОСВЕЩЕНИЯ

© 2018 В.А. Костин, Ю.И. Сапронов, Н.Н. Удоденко,
В.Л. Бочаров, С. Г. Кадменский, О.П. Негробов,

В.И. Овчинников, В.Ф. Селеменев

«Принимая во внимание государственную
необходимость сохранить для России Юрьевский
Университет, как очаг высшего просвещения, . . .
. . . Остановиться на г. Воронеже, как месте, где в

случае необходимости, открыть деятельность
университета».

Выписка из журнала заседания Совета
Юрьевского Университета от 20(7) февраля 1918 г.

В этом году наш Воронежский государственный универси-
тет отмечает свой вековой юбилей. Однако, мы не знаем
точной даты, с которой ведётся отсчёт. До недавнего време-
ни это было 18 мая 1918 г. — дата подписания В.И. Лени-
ным Постановления Большой государственной комиссии по
просвещению о переводе Юрьевского Университета в Воро-
неж. Однако, теперь эта дата почему-то не связывается с
учреждением Воронежского государственного университе-
та. Также без объяснений меняются и гербы университета с
обозначенными на них датами.

Все это говорит о необходимости изучения истории на-
шего университета и, в частности, истории математического
факультета.

В то же время, не только нам, но и властям нашего го-
рода нелишне задуматься о том, как и почему Воронеж по-
лучил столь высокий статус университетского в кошмарных
условиях Мировой и Гражданской войн.

В своей монографии «Воронежский университет. Вехи
истории 1918—2003» профессор М.Д. Карпачев, обращаясь
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question was posed: does A−1 generate a bounded C0-semigroup or
at least generate a C0-semigroup?

In [1,2] it was shown that the answer is positive for generators
of bounded analytic C0 semigroup. For other classes of semigroups,
as multiplication semigroups or contraction semigroups in a Hilbert
space, the answer is positive again. When the semigroup generated
by A is exponentially stable, then A−1 is a bounded operator
and accordingly it generates a C0 semigroup, but in general it is
not uniformly bounded. This situation is analysed by an explicit
representation of the semigroup generated A−1 in [7,8], including
growth estimates. In [4] a sufficient condition on the resolvent
map of A under which A−1 is the generator of a bounded C0-
semigroup is provided. Several equivalences for A−1 generating a C0-
semigroup are given in [3]. There is a way to show that even if A−1

does not generate bounded C0-semigroup it can generate integrated
semigroup [5,6]. Such fact can be used to solve ill-posed problems.

The main result of this note is the following statement: if A is
the generator of a tempered β-times integrated α-resolvent operator
function and is injective, then the inverse operator A−1 is the
generator of a tempered γ-times integrated α-resolvent operator
function for γ > β + 1/2, and it is also the generator of a tempered
δ-times resolvent operator function for δ < α.
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APPROXIMATION PROPERTIES ASSOCIATED
WITH QUASI-NORMED OPERATOR IDEALS OF

(r, p, q)-NUCLEAR OPERATORS
© 2018 O. I. Reinov

(Saint Petersburg; orein51@mail.ru)

We consider quasi-normed tensor products lying between
Lapresté tensor products and the spaces of (r, p, q)-nuclear operators.
We define and investigate the corresponding approximation proper-
ties for Banach spaces. An intermediate aim is to answer a question
of Sten Kaijser. In the end we present two results in connection with
a question posed by Hinrichs A. and Pietsch A. in [2].

Throughout, we denote by X,Y, . . . Banach spaces over a field K
(which is either R or C); X∗, Y ∗, . . . are Banach dual to X,Y, . . . . By
x, y, x′, . . . (maybe with indices) we denote elements of X,Y, Y ∗ . . .
respectively. πY : Y → Y ∗∗ is a natural isometric imbedding. It
is denoted by F (X,Y ) a vector space of all finite rank operators
from X to Y. By X ⊗ Y we denote the algebraic tensor product of
the spaces X and Y. X ⊗ Y can be considered as a subspace of the
vector space F (X∗, Y ) (namely, as a vector space of all linear weak∗-
to-weak continuous finite rank operators). We can identify also the
tensor product (in a natural way) with a corresponding subspace of
F (Y ∗, X). If X = W ∗, then W ∗ ⊗ Y is identified with F (X,Y ∗∗)
(or with F (Y ∗, X∗). If z ∈ X ⊗ Y, then z̃ is the corresponding finite
rank operator. If z ∈ X∗ ⊗ X and e.g. z =

∑n
k=1 x

′
k ⊗ xk, then

trace z :=
∑n

k=1〈x′k, xk〉 does not depend on representation of z in
383



X∗⊗X. L(X,Y ) is a Banach space of all linear continuous mappings
(«operators») from X to Y equipped with the usual operator norm.

If A ∈ L(X,W ), B ∈ L(Y,G) and z ∈ X ⊗ Y, then a linear map
A⊗ B : X ⊗ Y → W ⊗G is defined by A⊗ B((x⊗ y) := Ax⊗ By
(and then extended by linearity). Since ˜A⊗B(z) = Bz̃A∗ for z ∈
X ⊗ Y, we will use notation B ◦ z ◦ A∗ ∈ W ⊗ G for A ⊗ B(z). In
the case where X is a dual space, say F ∗, and T ∈ L(W,F ) (so,
A = T ∗ : F ∗ →W ∗), one considers a composition Bz̃T ; in this case
T ∗⊗B maps F ∗⊗Y into W ∗⊗Y and we use notation B ◦ z ◦T for
T ∗ ⊗B(z).

If ν is a tensor quasi-norm (see [3, 0.5]), then ν(A ⊗ B(z)) 6
||A|| ||B|| ν(z) and we can extend the map A⊗B to the completions
of the tensor products with respect to the quasi-norm ν, having
the same inequality. The natural map (X ⊗ Y, ν) → L(X∗, Y ) is
continuous and can be extended to the completion X̂ ⊗ν Y ; for a
tensor element z ∈ X̂ ⊗ν Y , we still denote by z̃ the corresponding
operator. The natural mapping X̂ ⊗ν Y → L(X∗, Y ) need not to be
injective; if it is injective for a fixed Y and for all X, then we say
that Y has the ν-approximation property.

A projective tensor product X⊗̂Y of Banach spaces X and Y is
defined as a completion of X ⊗ Y with respect to the norm || · ||∧ :
if z ∈ X ⊗ Y, then ||z||∧ := inf

∑n
k=1 ||xk|| ||yk||, where infimum is

taken over all representation of z as
∑n

k=1 xk ⊗ yk. We can try to
consider X⊗̂Y also as operators X∗ → Y or Y ∗ → X, but this
correspondence is, in general, not one-to-one. Note that X⊗̂Y =
Y ⊗̂X in a sense. If z ∈ X⊗̂Y, ε > 0, then one can represent z
as z =

∑∞
k=1 xk ⊗ yk with

∑∞
k=1 ||xk|| ||yk|| < ||z||∧ + ε. For z ∈

X∗⊗̂X with a «projective representation» z =
∑∞

k=1 x
′
k ⊗ xk, trace

of z, trace z := z =
∑∞

k=1〈xk, yk〉, does not depend of representation
of z. The Banach dual (X⊗̂Y )∗ = L(Y,X∗) by 〈T, z〉 = trace T ◦ z.

Finally, lp(X) (resp. lwp (X)) are the Banach spaces of all

sequences (xi) ⊂ X so that the norm ||(xi)||p :=
(∑
||xi||p

)1/p (resp.
||(xi)||w,p := sup||x′||61

(∑
|〈x′, xi〉|p

)1/p) is finite.
Below 0 < r, s 6 1, 0 < p, q 6∞ and 1/r+1/p+1/q = 1/β > 1.
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1. The tensor products X⊗̂r,p,qY. We use partially notations
from [3]. For z ∈ X ⊗ Y we put

µr,p,q(z) := inf{||(αk)||r||(xk)||w,p||(yk)||w,q : z =
n∑
k=1

αkxk ⊗ yk};

X⊗r,p,qY is the tensor product, equipped with this quasi-norm µr,p,q.
Note that µ1,∞,∞ is the projective tensor norm of A. Grothendieck
[1].

Let us denote by ̂X ⊗r,p,q Y the completion of X ⊗ Y with
respect to this quasi-norm µr,p,q (in [3] — X ⊗̂

r,p,q
Y ). Every tensor

element z ∈ ̂X ⊗r,p,q Y admits a representation of type z =∑∞
k=1 αkxk ⊗ yk, where ||(αk)||r||(xk)||w,p||(yk)||w,q < ∞, and

µr,p,q(z) := inf ||(αk)||r||(xk)||w,p||(yk)||w,q (inf. is taken over all such
finite or infinite representations) [3, Proposition 1.3, p. 52]. Note that

̂X ⊗1,∞,∞ Y = X⊗̂Y.
The topological dual to ( ̂X ⊗r,p,q Y , µr,p,q) is the Banach space

Π∞,p,q(X,Y
∗) of absolutely (∞, p, q)-summing operators from X

to Y ∗ [3, Theorem 1.3, p. 57] (recall that 0 < r 6 1) : If
τ ∈ ( ̂X ⊗r,p,q Y )∗ and x⊗y ∈ X⊗Y, then the corresponding operator
T is defined by 〈τ, x ⊗ y〉 = 〈Tx, y〉 [3, pp. 56-57]. Recall that, by
definition, an operator T : X → F is absolutely (∞, p, q)-summing if
for any finite sequences (xk) and (f ′k) (from X and F ∗ respectively)
one has

sup
k
|〈Txk, f ′k〉| 6 C ||(xk)||w,p||(f ′k)||w,q.

With a norm π∞,p,q(T ) := inf C, the space Π∞,p,q(X,F ) is a
Banach space and in duality above (for F = Y ∗) π∞,p,q(T ) = ||τ ||
(on the right, the norm of the functional τ ∈ ( ̂X ⊗r,p,q Y )∗).
Futhermore, taking a sequence in X × F ∗, consisting of one
nonzero element (x, f ′), we obtain: If T ∈ Π∞,p,q(X,F ), then
|〈Tx, f ′〉| 6 π∞,p,q(T ) ||x|| ||f ′||; thus, ||T || 6 π∞,p,q(T ). On the
other hand, if T ∈ L(X,F ), then for any finite sequences (xk)
and (f ′k), supk |〈Txk, f ′k〉| 6 ||T || ||(xk)||w,p ||(f ′k)||w,q. Therefore,
Π∞,p,q(X,F ) = L(X,F ).
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I do not know whether the dual space Π∞,p,q(X,Y
∗) separa-

tes points of ̂X ⊗r,p,q Y . If so, then a natural map ̂X ⊗r,p,q Y →
X⊗̂Y is one-to-one. As a matter of fact, it follows from the above
considerations, that the space Π∞,p,q(X,Y

∗) separates points of
̂X ⊗r,p,q Y iff the natural map jr,p,q : ̂X ⊗r,p,q Y → X⊗̂Y is one-

to-one.
Definition 1.1.1. We define a tensor product X⊗̂r,p,qY as a

linear subspace of the projective tensor product X⊗̂Y, consisting
of all tensor elements z, which admit representations of type z =∑∞

k=1 αkxk⊗yk, (αk) ∈ lr, (xk) ∈ lw,p, (yk) ∈ lw,q and equipped with
the quasi-norm ||z||∧;r,p,q = inf ||(αk)||r ||(xk)||w,p ||(yk)||w,q, where
the infimum is taken over all representations of z in the above form.

Remark 1.1. We can define X⊗̂r,p,qY also as a quotient
of the space ̂X ⊗r,p,q Y by the kernel of the map jr,p,q (i.e. by
the annihilator L(X,Y ∗)⊥ of L(X,Y ∗) in the space ̂X ⊗r,p,q Y ).
Therefore:

(i) The tensor product X⊗̂r,p,qY is complete, i.e. a quasi-Banach
space. This, with the injectivity of the natural map X⊗̂r,p,qY →
X⊗̂Y answers a question of Sten Kaijser («Why the last map is
one-to-one for the «completion» X⊗̂r,p,qY ?»).

(ii) If the dual of ̂X ⊗r,p,q Y separates points of this space, then
we can write ̂X ⊗r,p,q Y = X⊗̂r,p,qY. In this case «finite nuclear»
quasi-norm µr,p,q coincides with the tensor quasi-norm ||z||∧;r,p,q
(compare with [4, 18.1.10.]).

(iii) The dual space to X⊗̂r,p,qY is still Π∞,p,q(X,Y
∗) of

absolutely (∞, p, q)-summing operators from X to Y ∗ with its
natural quasi-norm.

Proposition 1.1 Let 1) 0 < r1 6 r2 6 1, p1 6 p2 and
q1 6 q2 or 2) 0 < r1 < r2 6 1, p1 > p2, q1 > q2 and
1/r2 + 1/p2 + 1/q2 6 1/r1 + 1/p1 + 1/q1. If z ∈ X ⊗ Y, then
||z||∧;r2,p2,q2 6 ||z||∧;r1,p1,q1 . In particular, ||z||∧;1,∞,∞ 6 ||z||∧;r1,p1,q1 .
Consequently, a natural mappings X⊗̂r1,p1,q1Y → X⊗̂r2,p2,q2Y →
X⊗̂Y are continuos injections of quasi-norms 1.
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Proposition 1.2.2. If X or Y has the bounded approximation
property, then µr,p,q = ||·||∧;r,p,q on X⊗Y. Hence, in this case the dual
of ̂X ⊗r,p,q Y separates points, jr,p,q is injective and ̂X ⊗r,p,q Y =
X⊗̂r,p,qY (and equals to the corresponding space of (r, p, q)-nuclear
operators; see below Corollary 2.1).

Remark 1.2.2. For an «operator» situation, see Corollary 2.1
below and (for 1 6 p, q,6∞) [4, pp. 249-251].

2. Approximation properties. We begin with the main
definition.

Definition 2.1.1. A Banach space X has the approximation
property APr,p,q if for every Banach space Y the canonical mapping
Y ⊗̂r,p,qX → L(Y ∗, X) is one to one.

Proposition 2.1.1. The following conditions are equivalent:
1) X has the APr,p,q.
2) For every space W the natural map from W ∗⊗̂r,p,qX to

L(W,X) is one-to-one.
3) The natural map X∗⊗̂r,p,qX → L(X) := L(X,X) is one-to-

one.
Proposition 2.2.2. If X∗ has the APr,p,q, then X has the

APr,q,p.

Remark 2.1.1. The inverse statement is not true. Examples are
given in [7, Remark 6.1].

Recall that a linear map T : X → Y is called (r, p, q)-nuclear
if it has a representation T =

∑∞
k=1 αk 〈x′k, ·〉yk, where (αk) ∈ lr,

(x′k) ∈ lw,p(X∗) and (yk) ∈ lw,q(Y ). Every such a map is continuous.
The space Nr,p,q(X,Y ) of all (r, p, q)-nuclear operators from X to Y
can be considered as a quotient of the tensor product X∗⊗̂r,p,qY (as
well as a quotient of ̂X∗ ⊗r,p,q Y ) by the kernel of the natural map
X∗⊗̂r,p,qY → L(X,Y ). We equip this space with the induced quasi-
norm (β-norm) denoted by νr,p,q. If the corresponding quotient map
has a trivial kernel, then we write Nr,p,q(X,Y ) = X∗⊗̂r,p,qY Thus,
X has the APr,p,q iff for every space Y the equality Nr,p,q(Y,X) =
Y ∗⊗̂r,p,qX holds.
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It follows from Proposition 1.1:
Proposition 2.3.3. Let 1) 0 < r1 6 r2 6 1, p1 6 p2 and q1 6 q2

or 2) 0 < r1 < r2 6 1, p1 > p2, q1 > q2 and 1/r2 + 1/p2 + 1/q2 6
1/r1 +1/p1 +1/q1. If X has the APr2,p2,q2 , then X has the APr1,p2,q3 .
In particular, the AP of A. Grothendieck implies any APr,p,q.

Corollary 2.1.1. (i) If X has the bounded approximation
property, then for all r, p, q and Y the equalities Nr,p,q(Y,X) =

Y ∗⊗̂r,p,qX = ̂Y ∗ ⊗r,p,q X hold (with the same quasi-norms). (ii) If
Y ∗ has the bounded approximation property, then for all r, p, q and
X the equalities Nr,p,q(Y,X) = Y ∗⊗̂r,p,qX = ̂Y ∗ ⊗r,p,q X hold (with
the same quasi-norms).

The first part of the following fact is partially known (cf. [4,
18.11.15-18.1.16] for 1 6 p, q 6∞).

Proposition 2.4.4. For any spaces X,Y the equalities

Nr,p,2(Y,X) = Y ∗⊗̂r,p,2X = ̂Y ∗ ⊗r,p,2 X,

Nr,2,q(Y,X) = Y ∗⊗̂r,2,qX = ̂Y ∗ ⊗r,2,q X

hold (with the same quasi-norms). In particular, every Banach space
has the APr,p,2 and the APr,2,p.

Remark 2.2.2. The fact that every X has the AP1,2,∞ is
essentially contained in [4, 27.44.10, Proposition]. It is strange, but it
seems that a corresponding fact for AP1,∞,2 appears here for the first
time. Note that this fact follows also from the preceding by virtue of
Proposition 2.2: if every X has the AP1,2,∞, then X∗ possesses this
property, and by Proposition 2.2 X has the AP1,∞,2.

Many of the above approximation properties were considered
earlier, e.g. in the papers [5, 6, 7]: (i) For p = q = ∞, we get
the APr from [6, 7]. (ii) For p =∞, we get the AP[r,q] from [5, 7].
(iii) For q =∞, we get the AP [r,p] from [5, 7].

Following notations from [7] (see also [5]), we denote Nr,∞,∞ by
Nr, Nr,∞,q by N[r,q], Nr,p,∞ by N [r,p]. The corresponding notations
are used also for APr,p,q (cf. (i)–(iii) above). Almost all the
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information about Banach spaces without (or with) the properties
APr, AP[r,q] and AP [r,p] which is known to us by now, can be found
in [5, 6, 7].

3. On regularity of Nr,p,q. The following question was posed
by A. Hinrichs and A. Pietsch in [2]: suppose T is a (bounded linear)
operator acting between Banach spaces X and Y, and let s ∈ (0, 1).
Is it true that if T ∗ is s-nuclear then T is s-nuclear too? We present
here two results (answering the question in negative):

Theorem 3.1.1. Let T ∈ L(X,Y ) and assume that either X∗ ∈
APr,q,p or Y ∗∗∗ ∈ APr,q,p. If πY T ∈ Nr,p,q(X,Y

∗∗), νr,p,q(T ) < 1,
then T ∈ N1(X,Y ) and ν1(T ) 6 1.

This theorem is sharp. For example:
Theorem 3.2.2. Let r ∈ (2/3, 1], p ∈ (1, 2], 1/r − 1/p = 1/2.

There exists a separable Banach space Z so that Z∗∗ has a basis and
there is an operator U : Z∗∗ → Z such that

(α) πZU ∈ N [r,p0](Z∗∗, Z∗∗), ∀ p0 ∈ [1, p);
(β) U is not nuclear as a map from Z∗∗ into Z
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