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question was posed: does A~! generate a bounded Cy-semigroup or
at least generate a Cy-semigroup?

In [1,2] it was shown that the answer is positive for generators
of bounded analytic Cy semigroup. For other classes of semigroups,
as multiplication semigroups or contraction semigroups in a Hilbert
space, the answer is positive again. When the semigroup generated
by A is exponentially stable, then A~! is a bounded operator
and accordingly it generates a Cjy semigroup, but in general it is
not uniformly bounded. This situation is analysed by an explicit
representation of the semigroup generated A=! in [7,8], including
growth estimates. In [4] a sufficient condition on the resolvent
map of A under which A~! is the generator of a bounded Cp-
semigroup is provided. Several equivalences for A~! generating a Co-
semigroup are given in [3]. There is a way to show that even if A~}
does not generate bounded Cy-semigroup it can generate integrated
semigroup [5,6]. Such fact can be used to solve ill-posed problems.

The main result of this note is the following statement: if A is
the generator of a tempered S-times integrated a-resolvent operator
function and is injective, then the inverse operator A~! is the
generator of a tempered ~-times integrated a-resolvent operator
function for v > 5+ 1/2, and it is also the generator of a tempered
d-times resolvent operator function for § < a.
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APPROXIMATION PROPERTIES ASSOCIATED
WITH QUASI-NORMED OPERATOR IDEALS OF
(r,p,q)-NUCLEAR OPERATORS
©) 2018 O. I Reinov
(Saint Petersburg; oreind1@mail.ru)

We consider quasi-normed tensor products lying between
Lapresté tensor products and the spaces of (r, p, ¢)-nuclear operators.
We define and investigate the corresponding approximation proper-
ties for Banach spaces. An intermediate aim is to answer a question
of Sten Kaijser. In the end we present two results in connection with
a question posed by Hinrichs A. and Pietsch A. in [2].

Throughout, we denote by X, Y, ... Banach spaces over a field K
(which is either R or C); X*, Y™, ... are Banach dual to X,Y,.... By
x,y,2',... (maybe with indices) we denote elements of X,Y,Y* ...
respectively. my : Y — Y™** is a natural isometric imbedding. It
is denoted by F(X,Y) a vector space of all finite rank operators
from X to Y. By X ® Y we denote the algebraic tensor product of
the spaces X and Y. X ® Y can be considered as a subspace of the
vector space F'(X™*,Y') (namely, as a vector space of all linear weak*-
to-weak continuous finite rank operators). We can identify also the
tensor product (in a natural way) with a corresponding subspace of
F(Y*, X). If X = W*, then W* ® Y is identified with F(X,Y™*)
(or with F(Y*, X*). If z € X ®Y, then 7 is the corresponding finite
rank operator. If z € X* ® X and e.g. z = >, 2} ® x, then
trace z := » ;. (x},xx) does not depend on representation of z in
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X*®X. L(X,Y) is a Banach space of all linear continuous mappings
(«operators») from X to Y equipped with the usual operator norm.

If Ae L(X,W), Be L(Y,G) and z € X ®Y, then a linear map
A®B: X®Y - W ®G is defined by A® B((z ® y) := Az ® By

—_~—

(and then extended by linearity). Since A ® B(z) = BZA* for z €
X ® Y, we will use notation Bozo A* € W ® G for A® B(z). In
the case where X is a dual space, say F*, and T' € L(W, F) (so,
A=T*: F* — W), one considers a composition BzT'; in this case
T*® B maps F*®Y into W*®Y and we use notation BozoT for
T* @ B(z).

If v is a tensor quasi-norm (see [3, 0.5]), then v(A ® B(z)) <
||A||||B||v(z) and we can extend the map A® B to the completions
of the tensor products with respect to the quasi-norm v, having
the same inequality. The natural map (X ® Y,v) — L(X*)Y) is
continuous and can be extended to the completion X/&,\Y; for a
tensor element z € X ®, Y, we st/ill\denote by z the corresponding
operator. The natural mapping X ®, Y — L(X*,Y) need not to be
injective; if it is injective for a fired Y and for all X, then we say
that Y has the v-approximation property.

A projective tensor product X®Y of Banach spaces X and Y is
defined as a completion of X ® Y with respect to the norm || - |4 :
if z € X ®Y, then ||z]|xn := inf Y p_; ||lzkl| ||lyk]], where infimum is
taken over all representation of z as > ;_; x5 ® yx. We can try to
consider X®Y also as operators X* — Y or Y* — X, but this
correspondence is, in general, not one-to-one. Note that X®Y =
Y®X in a sense. If = € X®Y,e > 0, then one can represent z
as 2 = Y2 2 @ yi with 350, [lael flyall < |[zlln + . For = €
X*®X with a «projective representation» z = Zzozl xﬁc ® x, trace
of z,trace z := z = Y = (K, k), does not depend of representation
of z. The Banach dual (X®Y)* = L(Y, X*) by (T, z) = trace T o z.

Finally, [,(X) (resp. [(X)) are the Banach spaces of all

sequences (z;) C X so that the norm [|(z;)||, := (X ||z4]|P) 1/ (resp.

1/py . :
1)l = supparier (1!, 2)l?)'77) is finite.
Below 0 < r,s <1,0<p,gq<occand 1/r+1/p+1/q=1/5> 1.

384

1. The tensor products X ®r7p7q}f. We use partially notations
from [3]. For z € X ® Y we put

prpg(2) = E{]| () el (@) ol ) lwg = 2 =Y cnr @ yiks
k=1

X ®ppqY is the tensor product, equipped with this quasi-norm ;. 5 4.
Note that (11 00,00 is the projective tensor norm of A. Grothendieck
1l -

Let us denote by X ®,,,Y the completion of X ® Y with
respect to this quasi-norm fi,.,, (in [3] — X ® Y). Every tensor

Dy
element z € X @ Y admits a representation of type z =
S anzi ® g where [[(@x)l ol lopll(g)llwg < 00, and
rpq(2) = inf ||(ag) ||| (@r)||wp!|(Yk)]|w,q (inf. is taken over all such
finite or infinite representations) [3, Proposition 1.3, p. 52|. Note that
X ®1o0m0 Y = XBY.

The topological dual to (X@ Y, ttrp.q) is the Banach space
Mo pq(X,Y™) of absolutely (oo, p,q)-summing operators from X
to Y* [3, Theorem 1.3, p. 57| (recall that 0 < r < 1) : If
Te(X @ Y)* and x®y € X®Y, then the corresponding operator
T is defined by (1,2 ® y) = (T'z,y) [3, pp. 56-57]. Recall that, by
definition, an operator T': X — F is absolutely (oo, p, ¢)-summing if
for any finite sequences (x) and (f;,) (from X and F* respectively)
one has

Sl;p|<vak,f;’g>| < CH@)llwpll (i) llwg-

With a norm 7 q(7) := infC, the space Iy, q(X,F) is a
Banach space and in duality above (for F' = Y™) 7 p o(T) = ||7]|
(on the right, the norm of the functional 7 € (X@ Y)*).
Futhermore, taking a sequence in X x F* consisting of one
nonzero element (z, f’), we obtain: If T € Ilypq(X, F), then
(T2, )] < Toopg(D) [2ll |11 thus, [ TI| < mapg(T). On the
other hand, if T € L(X,F), then for any finite sequences (xy)
and (f;), supy [(Tzg, fi)| < [TI[(2%)|lwp |(f7)]lwg- Therefore,
oo pg(X, F) = L(X, F).
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I do not know whether the dual space Il p(X,Y™) separa-
tesApoints of X@ Y. If so, then a natural map X@ Y —
X®Y is one-to-one. As a matter of fact, it follows from the above
considerations, that the space Il pq(X,Y™) separates points of
X% Y iff the natural map jrpq : X@Y — X®Y is one-
to-one.

Definition 1.1.1. We define a tensor product X@r,pqu as a
linear subspace of the projective tensor product X®Y, consisting
of all tensor elements z, which admit representations of type z =
Y orey @k, (o) € lr, (k) € lwp, (Yk) € lw,g and equipped with
the quasi-norm ||2lxrpg = iF ()l |8 lup [1(59)] lgs where
the infimum is taken over all representations of z in the above form.

Remark 1.1. We can define X@np,qY also as a quotient
of the space X@Y by the kernel of the map j.,, (ie. by
the annihilator L(X,Y™), of L(X,Y™) in the space X@ Y).
Therefore:

(i) The tensor product X&,,,Y is complete, i.e. a quasi-Banach
space. This, with the injectivity of the natural map X @r,p,qY —
X®Y answers a question of Sten Kaijser («Why the last map is
one-to-one for the «completion» X ®T7p7qY?>>).

(i) If the dual of X @ Y separates points of this space, then

we can write X ®;,,Y = X @T’pqu. In this case «finite nuclear»
quasi-norm fi.,, coincides with the tensor quasi-norm ||z||xrpq
(compare with [4, 18.1.10.]).

(iii) The dual space to X®,,,Y is still Ty, (X,Y*) of
absolutely (oo, p, ¢)-summing operators from X to Y™* with its
natural quasi-norm.

Proposition 1.1 Let 1) 0 < r; < ro < 1, p1 < py and
@ < q@or2)0<r <rg <1, p>p,q = q@ad
1/7“2 + 1/]92 + 1/QQ < 1/7“1 + 1/p1 + 1/(]1. [f z € X®Y, then

||ZH/W‘27P27112 < ||Z’|/¥T17P17q1' In particulgr, HZH/\;LOO»OO <A”Z||/\;T‘17P17111'
Consequently, a natural mappings X @ p1.qY — X Ry pogeY —
X®Y are continuos injections of quasi-norms 1.
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Proposition 1.2.2. If X or Y has the bounded approximation
property, then fiypq = ||||xrp.q on X QY. Hence, in this case the dual
of X@Y separates points, jrpq tS injective and X@Y =
X@T%QY (and equals to the corresponding space of (r,p,q)-nuclear
operators; see below Corollary 2.1).

Remark 1.2.2. For an «operator» situation, see Corollary 2.1
below and (for 1 < p, ¢, < o) [4, pp. 249-251].

2. Approximation properties. We begin with the main
definition.

Definition 2.1.1. A Banach space X has the approximation
property AP, 4 if for every Banach space Y the canonical mapping
Y ®;p X — L(Y*, X) is one to one.

Proposition 2.1.1. The following conditions are equivalent:

1) X has the AP, 4.

2) For every space W the natural map from W*@np,qX to
L(W, X) is one-to-one.

38) The natural map X*®,p,X — L(X) := L(X, X) is one-to-
one.

Proposition 2.2.2. If X* has the AP, ,,, then X has the
AP,

r,q,p*
Remark 2.1.1. The inverse statement is not true. Examples are
given in [7, Remark 6.1].

Recall that a linear map 7' : X — Y is called (r,p, g)-nuclear
if it has a representation T = Y 7 ay (z}, )Yk, where (ag) € I,
(z},) € Lwp(X*) and (yi) € luw,q(Y). Every such a map is continuous.
The space N, 4(X,Y) of all (r,p, g)-nuclear operators from X to Y
can be considered as a quotient of the tensor product X*®,,,Y (as
well as a quotient of X *@q Y) by the kernel of the natural map
X *@)np,qy — L(X,Y). We equip this space with the induced quasi-
norm (f-norm) denoted by v, 4. If the corresponding quotient map
has a trivial kernel, then we write N, (X,Y) = X*@nan Thus,
X has the AP, , iff for every space Y the equality N, , (Y, X) =
Y*®.p¢X holds.
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It follows from Proposition 1.1:

Proposition 2.3.3. Let 1) 0 <r1 <72 < 1,p1 < p2 and q1 < @2
or2) 0<ry<ro<1,p12p2, 1 2q and 1/r2 +1/p2+1/g2 <
1/ri+1/p1+1/qi. If X has the APy, p, g, then X has the APy, 1, 45
In particular, the AP of A. Grothendieck implies any AP, q.

Corollary 2.1.1. (i) If X has the bounded approzimation
property, then for all r,p,q and Y the equalities Ny, q(Y,X) =
Y*@ypgX = Y*g;;, X hold (with the same quasi-norms). (ii) If
Y* has the bounded approxémationAproperty, then/@ all r,p,q and
X the equalities Ny po(Y, X) = Y*®ppeX =Y* Qppq X hold (with
the same quasi-norms).

The first part of the following fact is partially known (cf. [4,
18.11.15-18.1.16] for 1 < p,q < o).

Proposition 2.4.4. For any spaces X,Y the equalities

Nr,p72(Ya X) = Y*@’r,p,?X =YY" ®rp2 X,

Npog(Y, X) = Y*®T,2,qX =Y* Q24X

hold (with the same quasi-norms). In particular, every Banach space
has the AP, 2 and the AP, .

Remark 2.2.2. The fact that every X has the AP is
essentially contained in [4, 27.44.10, Proposition|. It is strange, but it
seems that a corresponding fact for AP o 2 appears here for the first
time. Note that this fact follows also from the preceding by virtue of
Proposition 2.2: if every X has the AP 2 o, then X™ possesses this
property, and by Proposition 2.2 X has the AP; .

Many of the above approximation properties were considered
earlier, e.g. in the papers [5, 6, 7|: (i) For p = ¢ = oo, we get
the AP, from [6, 7]. (ii) For p = oo, we get the AP, ;i from [5, 7].
(iii) For q = oo, we get the AP[P) from [5, 7).

Following notations from [7] (see also [5]), we denote Ny o0 00 by
Npy Niooq bY Nipgls Nrpoo by N [Pl The corresponding notations
are used also for AP,,, (cf. (i)-(iii) above). Almost all the
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information about Banach spaces without (or with) the properties
AP, AP, 4 and APUPl which is known to us by now, can be found
in [5, 6, 7).

3. On regularity of N, ,,. The following question was posed
by A. Hinrichs and A. Pietsch in [2]: suppose T is a (bounded linear)
operator acting between Banach spaces X and Y, and let s € (0,1).
Is it true that if 7™ is s-nuclear then T is s-nuclear too? We present
here two results (answering the question in negative):

Theorem 3.1.1. Let T € L(X,Y) and assume that either X* €
AP, 4p or Y € AP, 4. If iyT € Nyp o( X, Y™), 10 o(T) < 1,
then T € N1(X,Y) and vi(T) < 1.

This theorem is sharp. For example:

Theorem 3.2.2. Let r € (2/3,1], p € (1,2],1/r — 1/p = 1/2.
There exists a separable Banach space Z so that Z** has a basis and
there is an operator U : Z** — Z such that

(a) mzU € NIwol(Zz=* 2) ¥ py € [1,p);

(B8) U is not nuclear as a map from Z** into Z
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