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The problem of evaluating the mean service cycle time in fork-join queueing 
networks is considered. An approach is proposed based on implementation and 
further development of the methods of idempotent algebra. It is shown that 
for acyclic networks under sufficiently general conditions the mean cycle time is 
determined by mean service time at the network nodes only and it is independent 
of network topology. 

The problem of evaluating the mean service cycle time in fork-join queueing networks is considered. 
An approach is proposed based on implementation and further development of the methods of idempotent 
algebra (1]. It is shown that for acyclic networks under sufficiently general conditions the mean cycle time 
is determined by mean service time at the network nodes only and it is independent of network topology. 

1. Idempotent algebra. Denote by lRe a set of real numbers, extended by adding the element e: = -oo. 
Let on lRe the operations EB and 0 be given as 

xEBy=max(x,y), x0y=x+y 

for any x, y E lRe. Put (in the usual way) x 0 e: = e: 0 x = e:. 
The set lRe with operations EB and 0 is a commutative ring with idempotent addition. The numbers e: and 

0 are the zero and unit elements, respectively, relative to the introduced operation. A semiring is usually 
called an idempotent algebra (see, for example, [1, 2]). 

Note that in idempotemt algebra for every x =f e: the inverse element x-1, which is to be -x in the usual 
arithmetic, is defined relative to the operation 0, 

1.1. Matrix algebra. An idempotemt algebra of (n x n)-matrices is introduced in the usual way: for 
any two matrices A= (a.;j) and B = (bij) we have 

n 

{A EB B}ii = aii EB bij, {A 0 B}ii = ffiaik 0bki· 
k=1 

Both operations EB and 0 have an associative property but only EB is commutative. The matrix E, all 
the elements of which are equal toe:, and the matrix E, all the elements of which are equal to zero on the 
principal diagonal and to e: outside, are regarded as the zero and unit matrices, respectively. 

Obviously, the operations EB and 0 are monotonic, i.e. from the matrix componentwise inequalities A ~ C 
and B ~ D it follows that AEBB ~ CEBD and A0B ~ C0D. 

Let the matrix A =f E. Then the degrees of the matrices A0 = E and Ak = A0Ak-1 = Ak-1 0A for any 
integer k ~ 1 can be found. 
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The matrix D is said to be diagonal if all their off-diagonal elements are equal to e:. We can easily check 
that for any matrix D = diag(dt, ... , dn) there exists the inverse, with respect to the operation®, matrix 
n-1 = diag(d1 1, ... , d~ 1 ) under the condition rk > e: for all i = 1, ... , n. 

The operation ® has an evident distributive property relative to $. In other words, the following inequal
ities 

(A$ B)® C = A® C $ B ® C (1) 

are valid. 
The distributive property can be represented as 

k 

E9 Q9Aim,, (2) 
i=l j=l l~m1 , ••• ,mk~m i=l 

where Ai; are arbitrary matrices for all i = 1, ... , k, j = 1, ... , m. 
1.2. Arithmetic addition. Introduce the usual operation of arithmetic addition so as to be external 

relative to the algebra under consideration. Since the scalar operations ® and + are identical, only the 
external operation of matrix addition is of interest. 

We assume that in algebraic relations for any sequence of operations the arithmetic addition +is performed 
after the operations ® and $. For any matrix A, put A + E = E + A = E. 

We can check that there exists a distributive property of the operation + with respect to $: 

k m k 

LffiAi; = E9 LAim,, 
i=l j=l l~ml, ... ,mk~m i=l 

which implies, in particular, that the following inequality holds 
k m m k 

LffiAi;;;;: ffiLAii· (3) 
i=l j=l j=li=l 

In the general case it is difficult to find any simple properties relating the matrix operations ® and +. 
However, as will be shown below, some useful relations can be obtained for the special types of matrices 
involving diagonal support matrices. 

1.3. Matrix functions. Consider the arbitrary matrix A= (ai;) and introduce the following values 
n 

tr(A) = E9 ~i· 
l~i,j~n i=l 

Let A and B be any matrices. We can show that the inequality A~ B yields IIAII ~ IIBII and tr(A) ~ 
tr(B). Besides, the following evident relations hold 

IIAEBBII = IIAIIEBIIBII, 
tr(A $B) = tr(A) $ tr(B), 

IIA®Bll ~ IIAII®IIBII, 

IIA+Bll ~ IIAII + IIBII. 

Finally, for any number c > 0 we have llcAII = ciiAII and tr(cA) = ctr(A) provided the condition ce = e:. 
1.4. Eigenvalues of matrices. Consider the arbitrary matrix A. The eigenvalue A and the correspond

ing to it eigenvector x of the matrix A satisfy the inequality 

A®x=A®x. 

The following important result was obtained in [3] (see also [2]). 
Theorem 1. For any (n x n)-matrix A the following relation holds 

lim -k1 11Akll = p(A), 
k-+oo 

where p(A) is a maximum eigenvalue of the matrix A, 

n 1 (n 1 ) 
p(A) = ~ ;;tr(Ak) = tr ~ ;;Ak . 

2. Queueing networks. Let there be given a network with n nodes, the topology of which is described 
by acyclic graph. At each of the nodes there is a service facility and unlimited storage, intended for the 
queue to be served. A network node, which does not have entering edges, is regarded as a supplier ofthe 

21 



Vestnik St.Petersburg University 
Mathematics 

Vol. 35, No.3 

unlimited flow of arriving units. At the initial (zero) moment of time all the facilities are free, the queues at 
the node-suppliers have infinite length while the queues of all the remaining nodes are empty. 

Denote by Tik an active time and by xi(k) a time of finish of the k-th service at the node i, i = 1, ... , n, 
k = 1, 2, ... The values Tit. Ti2 , ••• are assumed to be independent identically distributed random quantities 
for all i = 1, ... , n. 

In the networks under consideration ordinary and fork-join queueing can be realized [4, 5]. The join 
operation is performed at the node before a call is connected with a queue and consists of the join of 
accepted calls, taken by one of each preceding node, and of the replacement of them by a new call, which 
is connected with a queue end. The fork operation is always performed after a service call at the node is 
finished. It consists of the replacement of the call by some new calls, one for every subsequent node, after which 
these new calls are immediately sent into the nodes. 

The dynamics of fork-join queueing networks can be described by means of an idempotent algebra tech
nique. As is shown in [5], for acyclic networks the following dynamic equation holds 

l 

x(k) = A(k) ® x(k- 1), A(k) = E91k ® (GT ® 'Jk)i, (4) 
j=O 

where x(k) = (x1(k), ... , x,.(k))T, 1k = diag(ru •... , r,1.), G = (g!i) is a matrix of the adjacency graph for a network 
with the elements 

.. _ { 0 if the arc (i,j) exists, 
g,, - £ otherwise , 

l is a length of maximum path in the graph. 
We assume that a work system is a sequence of service cycles. The first cycle is finished after the service 

of one call at each of network nodes is finished, the second cycle is finished after the same for two calls and 
so on. 

By the property x(O) = 0 the time of finish for the k-th cycle can be found as 

Ak = A(k) ® ... ® A(1). 

In many practical problems it is of interest to find the mean cycle time under the condition that the 
number of cycles increases without limit. In other words, we are interested in the problem of determining 
the following limit 

'Y = lim -k1 11x(k)ll = lim -k1 11AA:II 
k-+oo k-+oo 

under the condition that it exists. 
It is clear that the existence of the above limit and its value depend on as the structure of the matrix 

AA: as the probability properties of its elements. Algebraic properties of the matrices of special type, determining 
the peculiarities of the structure AA:, and also some auxiliary results, concemjng the probabilistic nature of the 
problem are given below. 

3. Diagonal and support matrices. Let D be a diagonal matrix. Then for any matrices A and B we 
have 

D®(A+B) =D®A+B=A+D®B, 
(A+ B)® D =A® D + B =A+ B ®D. 

(5) 

A square matrix with the elements 0 or£ is a support matrix. Note that any support matrix G = (gi;) 
can be regarded as an adjacency matrix of a certain graph under the condition that 9ij = 0 implies the 
existence of the arc ( i, j) and 9ij = £ implies that the arc is absent. We can easily check that if the graph is 
acyclic, then for the corresponding matrix G the relation am= E is valid for all m > l, where lis a length 
of maximum path in the graph. 

Let G be a support matrix. For any matrices A and B the following inequality holds 

G®(A+B) ~ G®A+G®B, (A+ B) ® G ~ A® G + B ®G. {6) 

Further we shall consider the product of alternating diagonal matrices and the certain support matrix G 
of the form 

Do®G®D1 ®···®G®Dk. 
Introduce the following notation: 

IP;(D) = D®(G®D)i, 
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k k 

Do® Q9( G ® Dj) s L Qi ® Dj ® ck-j 
j=1 j=O 

is satisfied. 
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(7) 

The proof is by induction. For k = 1 the assertion of the lemma results from (5) and from the evident 
relation Do ® G = Do ® G + G. 

Lemma 2. Let D1, ... , Dk be diagonal matrices, m1, ... , mk be nonnegative integers and m 1 +· · ·+mk = 
m. 

The following inequality holds 

k m ( s; ) §? q>m, (Di) ~ ~ wj-i ~ Di , (8) 

where ro = 1, Tj = Sj-1 for all j = 1, ... , m, and 

{
k ifm1 + ···+mk ~j, 

Sj = min{il m1 + · · · + mi > j} otherwise 

for all j = 0, 1, ... , m. 
Proof By inequality (7) we obtain 

k k m 

® q>m,(Di) = Q9(Di ® (G ® Di)m') ~ z=cj ® Dj ® cm-j, 
i=1 i=1 j=O 

where Dj =Dr;® Dr;+1 ® · · · ® Ds;- We can easily check that the indices rj and Sj are computed due to 
the lemma. D 

Using the induction on k and the properties (5) and (6), we can prove the following 
L <1) <1) (1) d D(2) D(2) D(2) b d. 1 . Lemma 3. et D0 , D1 , ... , Dk an 0 , 1 , ... , k e mgona matnces. 

The following inequality holds 

k k k 
Db1) ® ® ( G ® DP)) + Db2) ® ® ( G ® Di2)) ~ Db1) ® Db2) ® ® ( G ® D}1) ® D}2)). 

i=1 i=1 i=1 

L D (1) D(1) (2) D(2) b d. aJ . Corollary 1. et 1 , ... , k and D1 , ... , k e 1agon matnces. 
The following inequality 

k k k 
® q>m, ( Di1)) + ® q>m, ( Di2)) ~ ® q>m, ( DF) ® Di2)), 
i=1 i=1 i=1 

(9) 

where mt, ... , mk are arbitrary nonnegative integers, is satisfied. 
4. Random matrices. Consider the matrices, the elements of which are random quantities. Some 

elements can be degenerated random quantities, which take with probability one the value £ = -oo. 
Let A be a random matrix. Denote by JE(A] a matrix obtained from A by the change of its elements to 

their mathematical expectations under the condition IE(£] = £. 
For any random matrices A and B the following inequalities hold 

IEIIAII ~ IIIE(AJII, IE(AEBB] ~IE(A]EBIE(B], IE(A®B] ~IE(A]®IE(B]. 

Let 6, 6, ... , be independent identically distributed random quantities with the mean JE(ed = 0 and the 
dispersion ID>[e1J < oo. Consider a random quantity 

8 

(lk= E9 ®e·= max {er+er+1+···+es}• . l~r~s~k 
l~r~s~k•=r -

It is easy to check that a set of the random quantities { (1k ll ~ k; l, k ~ 1} satisfies the conditions of the 
ergodic theorem of Kingman (6]. From this theorem it follows that there exist the limits 

lim -k1 (1k = a with probability one, lim -k1JE((1k] = a. 
k-+oo k-+oo 
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On the other hand, we can show (see, for example, [7]) that JE[(lk] = 0( Vk) as k - oo. Hence 

a = lim -k1JE[(lk] = 0. 
k-+oo 

This result can directly be extended to the case of random diagonal matrices. In other words, the following 
assertion is true. 

Lemma 4. Let Vt, V2, ... , be a sequence of random diagonal matrices, the corresponding diagonal 
elements of which are independent and have identical probability distributions with zero mean and bounded 
variance. 

Then there exists with probability one the following limit 

5. Evaluation of the mean cycle time. To solve the problem of evaluating the mean cycle time it is 
necessary to find the following limit 

Consider a transposed matrix of the system (4): 

l l 

AT(k) = EB 1k ® (G ® 1k)j = EB ~;(7k). 
j=O j=O 

Then 
k l k l 

AI= AT(l) ® ... ® AT(k) = ® ffi1i ® (G ® 1i)j = ® EB ~;(7i). 
i=l j=O i=l j=O 

Consider the following matrices 

l l 

s = JE[1i], BT = EljS® (G®S); = ffi~;(S), 
j=O j=O 

l l 

cT(k) = ffink ® (G® nk); = ffi~;(nk), 
j=O j=O 

k l k l 

c'[ = CT(l) ® ·· ·®CT(k) = Q9ffi~ ® (G®'Ri); = Q9ffi~;(~). 
i=l j=O i=l j=O 

Now we prove two auxiliary assertions. 
Lemma 5. The following inequality holds 

Ak ~ Bk +Ck. 

Proof. Using relation (2) and property (3), we can write 

k 

= Q9~m,(S)+ 

By {9) the following inequality 

k k k k 

®~m,(S) +Q9~m,(~) ~ ®~m,(S®S-l ®Ji) = Q9~m,(1i) 
i=l i=l i=l i=l 

is satisfied. 

24 

(10) 



Vestnik St.Petersburg University 
Mathematics 

Finally, 

Lemma 6. The following inequalities 

k k l 

®~m,('Ji) = 0E9~;(7i) =AI. D 
i=l j=O 

l m ( s ) cr ~ ! f; wj-j l~~~k ~ ~ 
are valid. 

Proof. Since the network graph is acyclic, the matrix Cf can be represented in the form 

CT_ 
k-

Using sequentially (8), (3) and (1), we obtain 

which proves the lemma. D 

Vol. 35, No.3 

(11) 

Theorem 2. Let 1i, 72, ... , be a sequence of identically distributed independent random diagonal ma
trices and 1EII1i II < oo, ID>II1i II < oo. 

Then there exists, with probability one, the limit 

lim -k1 11Akll = p(B), 
k-+oo 

where p(B) is the maximum eigenvalue of the matrix B. 
Proof. In [8] there is shown that if the conditions of the theorem are satisfied, then there exist the following 

limits 

lim -k1 Ak = A with probability one, lim -k1JE[Ak] = A. 
k-+oo k-+oo 

Hence by the continuity of the function II · II the following limits exist 

lim -k1 11Aicll = IIAII with probability one, lim -k11EIIAkll = IIAII. 
k-+oo k-+oo 

We show first that IIAII ~ p(B). Consider a mathematical expectation 

Proceeding to limit, by Theorem 1 we obtain 

IIAII = lim -k11EIIAkll ~ lim -k111Bkll = p(B). 
k-+oo k-+oo 

We now check that the converse inequality is also valid. From (10) it is follows that 

1 I 1 k 11 
kiiAk I~ kiiB II+ I kCkll· 

Taking into account (11), we have 

~cr ~ ~ 4 f:wj-;( E9 ®~) = 4 f:wj-;(~ E9 ®ni)· 
m=O j=O l~r~s~k i=r m=O j=O lo;;;r.;;;so;;;k i=r 

By Lemma 4 as k - oo we have, with probability one, the following relation 
1 B 

k E9 0~--+E. 
lo;;;r~so;;;ki=r 
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Then 
l 

lim -k1 C'[ ~ ffi em = G* with probability one. 
k->oo Q7 

m=O 

Evidently, IIG* II = 0 and we finally obtain 

IIAII = lim -k111Akll ~ lim -k111Bkll = p(B) with probability one. D 
k->oo k->oo 

Corollary 2. The mean time of the cycle 'Y is determined by the relation 

'Y = IISII = II1E(1illl· 

Vol. 35, No. 3 

Proof Taking into account that the network graph is acyclic, the matrix B can be represented in an 
upper triangle form. Since in this case all the elements of the matrix B, laying under the principal diagonal, 
are equal to £, we have 

p(B) ~''(B) ~ '' (~ <I>;(S)) ~ ~ "( <I>;(S) ). 

The fact that the matrix Sis diagonal implies that tr(<I>i(S)) = £ for all j ~ 1. Since <I>o(S) = S, we 
finally obtain 

"f = p(B) = tr(S) = IISII = II1E[1i]ll- D 
It remains to note that the mean cycle time is independent of network topology. 
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