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Abstract: We study the exact small deviation asymptotics with respect to the Hilbert norm for some
mixed Gaussian processes. The simplest example here is the linear combination of the Wiener process
and the Brownian bridge. We get the precise final result in this case and in some examples of more
complicated processes of similar structure. The proof is based on Karhunen–Loève expansion together
with spectral asymptotics of differential operators and complex analysis methods.
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1. Introduction

The problem of small deviation asymptotics for Gaussian processes was intensively studied in
last years. Such a development was stimulated by numerous links between the small deviation theory
and such mathematical problems as the accuracy of discrete approximation for random processes,
the calculation of the metric entropy for functional sets, and the law of the iterated logarithm in the
Chung form. It is also known that the small deviation theory is related to the functional data analysis
and nonparametric Bayesian estimation.

The history of the question is described in the surveys [1,2], see also [3] for recent results. The most
explored is the case of L2-norm. For an arbitrary square-integrable random process X on [0, 1] put

||X||2 =

 1∫
0

X2(t)dt


1
2

.

We are interested in the exact asymptotics as ε→ 0 of the probability P{||X||2 ≤ ε}.
Usually one studies the logarithmic asymptotics while the exact asymptotics was found only for

several special processes. Most of them are so-called Green Gaussian processes. This means that the
covariance function GX is the Green function for the ordinary differential operator (ODO)

Lu ≡ (−1)`
(

p`(t)u(`)
)(`)

+
(

p`−1(t)u(`−1)
)(`−1)

+ · · ·+ p0(t)u, (1)

(p`(t) > 0) subject to proper homogeneous boundary conditions. This class of processes contains, e.g.,
the integrated Brownian motion, the Slepian process and the Ornstein–Uhlenbeck process, see [4–10].
Notice that some strong and interesting results were obtained recently for non-Green processes by
Kleptsyna et al., see [11] and references therein.
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In the present paper, we are interested in small deviations of so-called mixed Gaussian processes
which are the sum (or the linear combination) of two independent Gaussian processes, usually with
zero mean values. Mixed random processes arise quite naturally in the mathematical theory of finances
and engineering applications and are known long ago.

Cheredito [12] considered the linear combination of the standard Wiener process W and the
fractional Brownian motion (fBm) WH with the Hurst index H, namely the process

YH
(β)(t) = W(t) + βWH(t),

where β 6= 0 is a real constant. It is assumed that the processes W and WH are independent. The
covariance function of this process is min(s, t) + β2GWH (s, t), where the covariance function of the
fBm is given by the well-known formula

GWH (s, t) =
1
2
(s2H + t2H − |s− t|2H),

and H ∈ (0, 1) is the so-called Hurst index. For H = 1/2 the fBm process turns into the usual Wiener
process.

This paper strongly stimulated the probabilistic study of such process and its generalizations
concerning the regularity of its trajectories, its martingale properties, the innovation representations,
etc. The papers [13–15] are the typical examples.

The small deviations of the process YH
(β) were studied at the logarithmical level in [16], where the

following result was obtained. We cite it in the simplified form (without the weight function).

Proposition 1. As ε→ 0 the following asymptotics holds

lnP{||YH
(β)||2 ≤ ε} ∼

{
lnP{||W||2 ≤ ε}, if H > 1/2;
β1/H lnP{||WH ||2 ≤ ε}, if H < 1/2.

From [17] we know that as ε→ 0

lnP{||WH || ≤ ε} ∼ − H

(2H + 1)
2H+1

2H

(
Γ(2H + 1) sin(πH)(

sin
(

π
2H+1

))2H+1

) 1
2H

ε−1/H ,

and the exact small deviation asymptotics of W is given below, see (3).
However, the exact small deviations of mixed processes have not been explored. In general case it

looks like a very complicated problem. First steps were made in a special case when a Gaussian process
is mixed with some finite-dimensional "perturbation". The general theory was built in [18], later some
refined results were obtained in the case of Durbin processes (limiting processes for empirical processes
with estimated parameters), see [19] as a typical example.

We can give the solution in two cases. In Section 2 we consider the linear combination of two
processes whose covariance functions are Green functions for two different boundary value problems
to the same differential equation. The simplest example here is given by the standard Wiener process
W(t) and the Brownian bridge B(t). Also we provide the exact small deviation asymptotics for more
complicated mixtures containing the Ornstein–Uhlenbeck processes.

In Section 3 we deal with pairs of processes whose covariance functions are kernels of integral
operators which are powers (or, more general, polynomials) of the same integral operator. The basic
example here is the Brownian bridge and the integrated centered Wiener process

W(t) =
∫ t

0

(
W(s)−

∫ 1

0
W(u)du

)
ds. (2)
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Another series of examples is given by the Wiener process and the so-called Euler integrated
Wiener process.

2. Mixed Green Processes Related to the Same Ordinary Differential Operator (ODO)

Let X1 and X2 be independent zero mean Gaussian processes on [0, 1]. We assume that their
covariance functions G1(s, t) and G2(s, t) are the Green functions for the same ODO (1) with different
boundary conditions. This means they satisfy the equation

LGi(s, t) = δ(s− t), i = 1, 2.

in the sense of distributions and satisfy corresponding boundary conditions.
We consider the mixed process

Zβ(t) = X1(t) + βX2(t), t ∈ [0, 1].

Since X1 and X2 are independent, it is easy to see that its covariance function equals

GZβ(s, t) = G1(s, t) + β2G2(s, t)

and satisfies the equation
LGZβ(s, t) = (1 + β2)δ(s− t)

in the sense of distributions. Therefore, it is the Green function for the ODO 1
1+β2 L subject to some

(in general, more complicated) boundary conditions. This allows us to apply general results of [6,8] on
the small ball behavior of the Green Gaussian processes and to obtain the asymptotics of P{||Zβ||2 ≤ ε}
as ε→ 0 up to a constant. Then the sharp constant can be found by the complex variable method as
shown in [7], see also [20].

To illustrate this algorithm we begin with the simplest mixed process

Zβ
1 (t) = B(t) + βW(t), t ∈ [0, 1].

The covariance function G
Zβ

1
is given by (1 + β2)min(s, t) − st, and the integral equation for

eigenvalues is equivalent to the boundary value problem

− f ′′(t) =
1 + β2

λ
f (t), f (0) = 0, f (1) + β2 f ′(1) = 0.

It is easy to see that the process 1√
1+β2

Zβ
1 (t) coincides in distribution with the process W(β),

so-called “elongated” Brownian bridge from zero to zero with length 1 + β2, see ([21], Section 4.4.20).
Therefore, we obtain, as ε→ 0,

P{||Zβ
1 ||2 ≤ ε} = P

{
||W(β)||2 ≤

ε√
1 + β2

}
(∗)∼
√

1 + β2

|β| · P
{
||W||2 ≤

ε√
1 + β2

}
(the relation (∗) was derived in ([7], Proposition 1.9), see also ([18], Example 6)).

The last asymptotics was obtained long ago:

P{||W||2 ≤ ε} ∼ 4√
π
· ε · exp

(
− 1

8
ε−2
)

, ε→ 0, (3)

and we arrive at the following Theorem:

Theorem 1. The following asymptotic relation holds as ε→ 0:
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P{||B + βW||2 ≤ ε} ∼ 4√
π
· ε

|β| · exp
(
− 1 + β2

8
ε−2
)

.

The next process we consider is

Zβ
2 (t) = Ů(α)(t) + βU(α)(t), t ∈ [0, 1].

Here Ů(α)(t) is the Ornstein–Uhlenbeck process starting at the origin and U(α)(t) is the stationary
Ornstein–Uhlenbeck process. Both them are Gaussian processes with zero mean-value. Their covariance
functions are, respectively,

GŮ(α)
(s, t) = (e−α|t−s| − e−α(t+s))/(2α); GU(α)

(s, t) = e−α|t−s|/(2α).

Direct calculation shows that the integral equation for eigenvalues of Zβ
2 is equivalent to the

boundary value problem

− f ′′(t) + α2 f (t) =
1 + β2

λ
f (t);

(
f ′ − α(1 + 2β−2) f

)
(0) = ( f ′ + α f )(1) = 0.

By standard method we derive that if r1 < r2 < ... are the positive roots of transcendental equation

F1(ζ) := (ζ2 − α2(1 + 2β−2))
sin(ζ)

ζ
− 2α(1 + β−2) cos(ζ) = 0

then λn(Zβ
2 ) =

1+β2

r2
n+α2 , n ≥ 1.

Recall that the eigenvalues of the stationary Ornstein–Uhlenbeck process were derived in [22].

By rescaling we obtain λn(
√

1 + β2 U(α)) =
1+β2

ρ2
n+α2 , n ≥ 1, where ρ1 < ρ2 < ... are the positive roots of

transcendental equation

F2(ζ) := (ζ2 − α2)
sin(ζ)

ζ
− 2α cos(ζ) = 0.

We claim that λn(Zβ
2 ) and λn(

√
1 + β2 U(α)) are asymptotically close, and therefore, using the

Wenbo Li comparison theorem, see [22], we can write

P{||Zβ
2 ||2 ≤ ε} ∼ Cdist · P

{
||U(α)||2 ≤

ε√
1 + β2

}
, ε→ 0, (4)

where the distortion constant is given by

Cdist =

(
∞

∏
n=1

λn(
√

1 + β2 U(α))

λn(Zβ
2 )

) 1
2

=

(
∞

∏
n=1

r2
n + α2

ρ2
n + α2

) 1
2

.

To justify (4) we should prove the convergence of the last infinite product. As in [7], we use the
complex variable method.

For large N in the disk |ζ| < π(N − 1
2 ) there are exactly 2N zeros ±rj, j = 1, ..., N, of F1(ζ),

and exactly 2N zeros ±ρj, j = 1, ..., N, of F2(ζ). By the Jensen theorem, see ([23], Section 3.6.1), we have

ln

(
|F1(0)|
|F2(0)|

·
N

∏
n=1

ρ2
n

r2
n

)
=

1
2π

2π∫
0

ln
|F1(π(N − 1

2 ) exp(iϕ))|
|F2(π(N − 1

2 ) exp(iϕ))|
dϕ.

It is easy to see that if we take |ζ| = π(N − 1
2 ) then
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|F1(ζ)|
|F2(ζ)|

⇒ 1, N → ∞.

Therefore,
∞

∏
n=1

r2
n

ρ2
n
=
|F1(0)|
|F2(0)|

. (5)

Now we use Hadamard’s theorem on canonical product, see ([23], Section 8.24):

F1(ζ) ≡ F1(0) ·
∞

∏
n=1

(
1− ζ2

r2
n

)
; F2(ζ) ≡ F2(0) ·

∞

∏
n=1

(
1− ζ2

ρ2
n

)
.

In view of (5) this gives

C2
dist =

∞

∏
n=1

r2
n + α2

ρ2
n + α2 =

|F1(0)|
|F2(0)|

·
∞

∏
n=1

(
1 +

α2

r2
n

)/ ∞

∏
n=1

(
1 +

α2

ρ2
n

)
=
|F1(iα)|
|F2(iα)|

= 1 + β−2.

Thus, (4) is proved. Since the small deviation asymptotics of U(α) is known, see ([7], Proposition 2.1)
and ([20], Corollary 3), we obtain the following Theorem:

Theorem 2. The following asymptotic relation holds as ε→ 0:

P{||Ů(α) + βU(α)||2 ≤ ε} ∼
√

αeα

π
· 8ε2

|β|
√

1 + β2
· exp

(
−1 + β2

8
ε−2
)

.

Finally, we consider the stationary process

Zβ
3 (t) = B(α)(t) + βU(α)(t), t ∈ [0, 1],

where B(α) is the Bogoliubov periodic process ([24–26]) with zero mean and covariance function

GB(α)(s, t) =
1

2α sinh(α/2)
cosh

(
α|t− s| − α

2

)
.

A portion of tedious calculations gives the boundary value problem for eigenvalues of Zβ
3 :

− f ′′(t) + α2 f (t) =
1 + β2

λ
f (t); f ′(0)−A1 f (0) +A2 f (1) = f ′(1) +A1 f (1)−A2 f (0) = 0.

Here

A1 = α
(1 + β2γ)2 + 1
(1 + β2γ)2 − 1

; A2 = 2α
1 + β2γ

(1 + β2γ)2 − 1
; γ = 1− e−α.

Just as in the previous example we obtain λn(Zβ
3 ) = 1+β2

r2
n+α2 , n ≥ 1, where r1 < r2 < ... are the

positive roots of transcendental equation

F3(ζ) := (ζ2 − α2)
sin(ζ)

ζ
− 2A1 cos(ζ) + 2A2 = 0.

Arguing as before, we derive

P{||Zβ
3 ||2 ≤ ε} ∼ C̃dist · P

{
||U(α)||2 ≤

ε√
1 + β2

}
, ε→ 0,

where
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C̃2
dist =

∞

∏
n=1

r2
n + α2

ρ2
n + α2 =

|F3(iα)|
|F2(iα)|

=
γ(1 + β2)2

β2(2 + β2γ)
,

and thus we obtain the following Theorem:

Theorem 3. The following asymptotic relation holds as ε→ 0:

P{||B(α) + βU(α)||2 ≤ ε} ∼
√

α(eα − 1)
π

· 8ε2

|β|
√

2 + β2(1− e−α)
· exp

(
−1 + β2

8
ε−2
)

.

3. Mixed Processes Related to Polynomials of Covariance Operator

Recall that the covariance operator GX related to the Gaussian process X is the integral operator
with kernel GX .

Lemma 1. Let covariance operators GX and GZ are linked by relation GZ = P(GX), where P is a polynomial

P(x) := x + a2x2 + · · ·+ ak−1xk−1 + akxk.

Then the following asymptotic relation holds as ε→ 0:

P{||Z||2 ≤ ε} ∼ Ĉdist · P{||X||2 ≤ ε}.

Proof. By the Wenbo Li comparison theorem, we should prove that the following infinite product
converges:

Ĉ2
dist =

∞

∏
n=1

λn(X)

λn(Z)
.

It is well known that the set of eigenvalues of P(GX) coincides with the set P({λn(X)}n∈N).
Moreover, since P increases in a neighborhood of the origin, for sufficiently large n we have just
λn(Z) = P(λn(X)). Thus,

Ĉ2
dist =

∞

∏
n=1

λn(X)

P(λn(X))
=

∞

∏
n=1

(1 + O(λn(X))).

Since X is square integrable, the series ∑
n

λn(X) converges. Therefore, the infinite product also

converges, and the lemma follows. �

The first example is the mixed process

Zβ
4 (t) = B(t) + βW(t), t ∈ [0, 1],

where the integrated centered Wiener process W is defined in (2).
The integral equation for the eigenvalues of W is equivalent to the boundary value problem [4]

y(IV) =
1
λ

y, y(0) = y(1) = y′′(0) = y′′(1) = 0. (6)

It is easy to see that the operator of the problem (6) is just the square of the operator of the
boundary value problem

− y′′ =
1
λ

y, y(0) = y(1) = 0, (7)

which corresponds to the Brownian bridge. Therefore, we have the relation GW = G2
B (surely, this can

be checked directly). Thus,
G

Zβ
4
= GB + β2G2

B.
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Therefore, we can apply Lemma 1. Since the small ball asymptotics for the Brownian bridge was
obtained long ago

P{||B||2 ≤ ε} ∼
√

8
π
· exp

(
− 1

8
ε−2
)

,

it remains to calculate

Ĉ2
dist =

∞

∏
n=1

λn(B)
λn(B) + β2λ2

n(B)
=

∞

∏
n=1

(πn)2

(πn)2 + β2 .

The application of Hadamard’s theorem to the function F4(ζ) =
sin(ζ)

ζ gives

∞

∏
n=1

(
1 +

β2

(πn)2

)
=

F4(iβ)
F4(0)

=
sinh(β)

β
,

and we arrive at the following Theorem:

Theorem 4. The following asymptotic relation holds as ε→ 0:

P{||B + βW||2 ≤ ε} ∼
√

8β

π sinh(β)
· exp

(
− 1

8
ε−2
)

.

Now we consider a family of mixed processes (m ∈ N)

Ẑβ
2m(t) = W(t) + βWE2m(t); Ẑβ

2m−1(t) = W(1− t) + βWE2m−1(t), t ∈ [0, 1],

where WEm is so-called Euler integrated Brownian motion, see [27,28]:

WE0 (t) = W(t); WE2m−1(t) =
∫ 1

t
WE2m−1(s) ds; WE2m(t) =

∫ t

0
WE2m−1(s) ds.

It was shown in [28], see also ([6], Proposition 5.1), that the covariance operator of WEm can be
expressed as

GWE2m
= G2m+1

W ; GWE2m−1
= G2m

W̃
,

where W̃(t) = W(1− t). Obviously, the small ball asymptotics for W̃ and for W coincide.
Thus, we can apply Lemma 1, and it remains to calculate

Ĉ2
dist =

∞

∏
n=1

λn(W)

λn(W) + β2λk+1
n (W)

=
∞

∏
n=1

(π(n− 1
2 ))

2k

(π(n− 1
2 ))

2k + β2

(here k = 2m or k = 2m− 1).
Application of Hadamard’s theorem to the function cos(ζ) gives

∞

∏
n=1

(
1− ζ2

(π(n− 1
2 ))

2

)
= cos(ζ). (8)

Put z = exp
( iπ

2k
)

and multiply relations (8) for ζ = β
1
k z, ζ = β

1
k z3,. . . , ζ = β

1
k z2k−1. This gives

Ĉ2
dist =

(
k

∏
j=1

cos
(

β
1
k z2j−1))−1

.

We take into account that
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cos
(

β
1
k z2j−1) · cos

(
β

1
k z2k−2j+1) = | cos

(
β

1
k z2j−1)|2

= sinh2 (β 1
k sin(π(2j−1)

2k )
)
+ cos2 (β 1

k cos(π(2j−1)
2k )

)
and obtain the following Theorem:

Theorem 5. For m ∈ N, the following asymptotic relations hold as ε→ 0:

P{||W + βWE2m||2 ≤ ε} ∼ 4√
π

× 1√
m
∏
j=1

(
sinh2 (β 1

2m sin(π(2j−1)
4m )

)
+ cos2

(
β

1
2m cos(π(2j−1)

4m )
)) · ε · exp

(
− 1

8
ε−2
)

;

P{||W̃ + βWE2m−1||2 ≤ ε} ∼ 4√
π cosh

(
β

1
2m−1

)
× 1√

m−1
∏
j=1

(
sinh2 (β 1

2m−1 sin(π(2j−1)
4m−2 )

)
+ cos2

(
β

1
2m−1 cos(π(2j−1)

4m−2 )
)) · ε · exp

(
− 1

8
ε−2
)

.

4. Discussion

We have initiated the study of the complicated problem of exact small deviations asymptotics
in L2 for mixed Gaussian processes with independent components. After the survey of the problem,
we consider the linear combination of two processes whose covariance functions are Green functions
for two different boundary value problems to the same differential equation. The simplest example here
is given by the standard Wiener process W(t) and the Brownian bridge B(t). Also we provide the exact
small deviation asymptotics for more complicated mixtures containing the Ornstein–Uhlenbeck processes.

Next, we deal with pairs of processes whose covariance functions are kernels of integral operators
which are powers (or, more general, polynomials) of of the same integral operator. The basic example
here is the Brownian bridge and the integrated centered Wiener process

W(t) =
∫ t

0

(
W(s)−

∫ 1

0
W(u)du

)
ds.

Another series of examples is given by the Wiener process and the so-called Euler integrated
Wiener process.

It would be interesting to understand the genesis of boundary conditions and integral operators
in the more general cases of mixed processes.
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