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Abstract We consider two scale-free tests of normality based on the characterization of
the symmetric normal law by Ahsanullah, Kibria and Shakil (2014). Both tests have an
U-empirical structure, but the first one is of integral type, while the second one is of Kol-
mogorov type. We discuss the limiting behavior of the test statistics and calculate their local
exact Bahadur efficiency for location, skew and contamination alternatives.
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1 Introduction

Testing normality is one of the oldest and most studied goodness of fit problems. Statistical
tests for this problem are often based on characterizations of the normal law. Among var-
ious tests of this kind one may mention the tests developed in the papers of Csörgő et al.
(1975), Sakata (1977), Lin and Mudholkar (1980), Muliere and Nikitin (2002), Ahmad and
Mugdadi (2003), Volkova and Nikitin (2009),Villaseñor-Alva and Gonzalez-Estrada (2015),
Litvinova and Nikitin (2016), and Bera et al.(2016).

In this paper we build and study two scale-free tests for the normal law based on a recent
characterization of normality, which appeared in the book by Ahsanullah et al. (2014), see
Theorem 8.2.8 there, and it looks as follows.

Theorem 1 Let X ,Y be symmetric independent random variables with a density p. Then
the equality in distribution of max2(X ,Y ) and X2 is valid iff p(x) = 1

σ
√

2π
exp(− x2

2σ2 ),x ∈
R1, with some variance σ2 > 0. The same statement is true when replacing max2(X ,Y ) by
min2(X ,Y ).
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We consider testing the composite hypothesis H0 according to which the sample X1, . . . ,Xn
of i.i.d. observations having a density belongs to a normal law N(0,σ2) with unspecified
variance, against the general alternatives.

To this end, we introduce the so-called U-empirical distribution function (df),

Gn(t) =
(

n
2

)−1

∑
1≤i≤ j≤n

1{max2(Xi,X j)< t}, t ≥ 0,

and the so-called V -empirical df

Gn(t) = n−2
n

∑
i, j=1

1{max2(Xi,X j)< t}, t ≥ 0.

Let Fn(t) be the empirical df of X2
1 , . . . ,X

2
n . Here and in what follows 1{A} denotes the

indicator function of the event A.
We consider the integral statistic

In =
∫

∞

0

(
Gn(t)−Fn(t)

)
dFn(t)

and the Kolmogorov type statistic

Kn = sup
t≥0
| Gn(t)−Fn(t)|.

The first of these statistics is motivated by the well-known statistic for testing expo-
nentiality proposed by Hollander and Proshan (1972). One can construct also the ω2-type
statistic but the latter seems to be too complex for analytical evaluations; see, however, the
paper of Allison and Pretorius (2017) dedicated to a Monte Carlo study of similar statistics.
The Kolmogorov type statistic is well-known and needs no justification.

It is clear that under H0 both statistics are scale-invariant so we may assume that the
initial sample has unit variance. According to the Glivenko-Cantelli theorem for U-empirical
df’s (e.g., Helmers et al. (1988)), both statistics tend to zero a.s. under H0, and this gives us
the possibility to detect the alternative. We are primarily interested in the efficiency of the
new tests in comparison with other tests of normality.

2 Bahadur efficiency

Bahadur efficiency is one of several possible approaches to evaluate the asymptotic relative
efficiency (ARE) of two statistical tests. The Bahadur approach, proposed in Bahadur (1967,
1970), consists in fixing the power of concurrent tests, and then comparing the exponential
rates of decrease of their sizes for an increasing number of observations under some fixed
alternative.

For a sequence of statistics {Tn} this exponential rate is usually proportional to some
non-random function cT (θ) (depending on the alternative parameter θ ) which is called the
exact slope of the sequence {Tn}. The Bahadur ARE eB

V,T (θ) of two sequences of statistics
{Vn} and {Tn} is defined by the formula

eB
V,T (θ) = cV (θ)

/
cT (θ) .

The Bahadur exact slope of the sequence of test statistics {Tn} can be evaluated as
cT (θ) = 2 f (bT (θ)), where bT (θ) is the limit in probability of Tn under the alternative,
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while the continuous function f (t) describes the logarithmic large deviation asymptotics of
this sequence under the null-hypothesis, see details in Bahadur (1971) or Nikitin (1995).

It is important to note that there exists an upper bound for the exact slopes, see Bahadur
(1967, 1970). We have

cT (θ)≤ 2K(θ)

where the Kullback–Leibler information number K(θ) measures the ”statistical distance”
between the alternative and the null-hypothesis. In the literature on estimation theory it is
sometimes compared with the Cramér–Rao inequality. Therefore the absolute (non-relative)
Bahadur efficiency of the sequence {Tn} can be defined as eT (θ) := cT (θ)/2K(θ).

Computing the exact Bahadur ARE for arbitrary alternatives depending on θ is often
infeasible; but it is possible to calculate the local Bahadur ARE as the alternative approaches
the null-hypothesis. Then one speaks of local Bahadur slopes and local Bahadur efficiency

e∗T := lim
θ→0

cT (θ)/2K(θ), (1)

see Nikitin (1995).
The indisputable merit of Bahadur efficiency is its ability to handle statistics with non-

normal asymptotic distributions. This is the main reason for using it in the present paper, as
the Kolmogorov type statistics have a non-normal limiting distribution.

3 Integral statistic

We start with the integral statistic In. Note that∫
∞

0
Fn(x)dFn(x) = n−1

n

∑
j=1

Fn(X2
j ) = n−2

n

∑
j,k=1

1{X2
k ≤ X2

j }

= n−2

(
n+ ∑

j 6=k
1{X2

k < X2
j }

)
= n−2

(
n+

n(n−1)
2

)
=

1
2
+

1
2n

.

Hence the statistic In differs only by 1
2n from the V -statistic (or the von Mises functional)

În = n−3
n

∑
i, j,k=1

H{Xi,X j,Xk},

where H is the centered symmetric kernel

H(x,y,z) =
1
3
(
1{max2(x,y)< z2}+1{max2(x,z)< y2}+1{max2(y,z)< x2}

)
− 1

2
.

It is well-known, see the seminal paper of Hoeffding (1948), that under weak conditions
U- and V -statistics with the same kernel H are asymptotically equivalent. Consider the U-
statistic

Jn =

(
n
3

)−1

∑
1≤i< j<k≤n

H(Xi,X j,Xk).

The following relationship is almost evident, see, however, section 1.3 of Koroluk and
Borovskikh(1984):
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În =
(n−1)(n−2)

n2 Jn+3n−3
∑

1≤i< j≤n
(H(Xi,Xi,X j)+H(Xi,X j,X j))+n−3

n

∑
i=1

H(Xi,Xi,Xi).

We see that for bounded kernels H one has asymptotic equivalence In ∼ Jn, n→ ∞.
Hence in large samples we can consider the simpler U-statistic Jn instead of In. In the sequel,
we will only deal with Jn.

In order to describe its limiting distribution and large deviation asymptotics, we must
calculate the projection of this kernel and the variance of this projection. To simplify the
calculations we first prove the following simple Lemma:

Lemma 1 If X ,Y are independent standard normal rv’s , then we have

P(X < |Y |) = P(|Y |>−X) =
3
4
,

which follows from geometric considerations and is valid also for any absolutely continuous
spherically symmetric distribution in the plane.

The projection h(z),z ∈ R1, which we need has the form

h(z) = EH(X ,Y,z) =
1
3

P(max2(X ,Y )< z2)+
2
3

P(max2(X ,z)< Y 2)− 1
2
. (2)

It is easy to calculate the first probability in (2):

P(max2(X ,Y )< z2)=P(−|z|<max(X ,Y )< |z|)=Φ
2(|z|)−Φ

2(−|z|)= 2Φ(|z|)−1. (3)

The calculation of the second probability is more involved. We have

P(max2(X ,z)< Y 2) = P(max(X ,z)< |Y |)−P(max(X ,z)<−|Y |)
= P(X < |Y |,z < |Y |)−P(X <−|Y |,z <−|Y |) =: P1(z)−P2(z). (4)

Obviously P1(z) = 3
4 if z < 0 and P2(z) = 0 if z > 0. Now using Lemma 1, we have for z≥ 0

P1(z) =
3
4
−P(X < |Y | < z) =

3
4
−
∫ z

0
2ϕ(x)Φ(x)dx =

3
4
−
∫ z

0
dΦ

2(x) = 1−Φ
2(z).

Similarly, for z < 0 one has, again by Lemma 1,

P2(z) = P(|Y |< X ,z < Y <−z) = P(|Y |< X)−P(−z < |Y |< X)

=
1
4
−
∫

∞

−z
2ϕ(y)dy

∫
∞

y
ϕ(x)dx =

1
4
+(1−Φ(y))2|∞−z =

1
4
−Φ

2(z).

Hence the second probability in (2) is 1−Φ2(z) for z > 0 and 1
2 +Φ2(z) for z ≤ 0. Now

from (2) – (4) we obtain the following formula for the required projection h(z) indicating
that it is an odd function:

h(z) =


2
3 (Φ(z)−Φ2(z))− 1

6 , if z≥ 0;

1
6 −

2
3 (Φ(z)−Φ2(z)), if z < 0.

It follows that the variance of this projection is equal to∫ 1

0

(
2
3
(u−u2)− 1

6

)2

du =
1

180
.
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Hence our U-statistic Jn is a non-degenerate one, and according to Hoeffding’s theorem, see
Hoeffding(1948) or Korolyuk and Borovskikh (1994), we have convergence in distribution

√
20n Jn

d−→ N(0,1) as n→ ∞.

Using this theorem, we can establish the asymptotic critical domain for the rejection of
the null-hypothesis under any prescribed significance level.

We can use now the large deviation statement under H0 for non-degenerate U-statistics
with bounded kernels which follows from Nikitin and Ponikarov (1999):

lim
n→∞

n−1 lnP(Jn > v) =− f (v),

where f (v) is continuous in a neighborhood of zero, and moreover

f (v)∼ 10v2, as v→ 0.

This result allows us to calculate the local Bahadur exact slope under any alternative to H0.
Consider, for example, the location alternative under which the sample has a df Φ(x+ θ)
for some location parameter θ . The function bJ(θ) satisfies the relation,

bJ(θ)∼ 3
∫

R1
h(t)tϕ(t)dt ·θ , asθ → 0,

see Nikitin and Peaucelle (2004), and consequently the local exact slope has the form

cJ(θ)∼ 180
(∫

R1
h(t)tϕ(t)dt

)2

·θ 2.

Now we calculate numerically

720
(∫

∞

0

(
2
3
(Φ(t)−Φ

2(t))− 1
6

)
tϕ(t)dt

)2

≈ 0.977.

As in this case 2K(θ)∼ θ 2 as θ → 0, the local Bahadur efficiency (1) of the integral test
is close to 0.977. This is a high value. The skew normal alternative gives the same value. We
omit the calculations which can be done along the lines of Durio and Nikitin (2003, 2016).

To try other options, consider the contamination alternative

F(x,θ) = (1−θ)Φ(x)+θΦ
2(x) = Φ(x)−θ(Φ(x)−Φ

2(x)).

For this alternative it is easy to show that 2K(θ)∼ 4
5 θ 2 as θ → 0. We need to calculate

the integral

720
(∫

∞

0

(
2
3
(Φ(t)−Φ

2(t))− 1
6

)
ϕ(x)(1−2Φ(x))dx

)2

=
5
16

.

Hence the local efficiency is not so high as compared to other tests and equals 25
64 ≈

0.391.
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4 Kolmogorov type statistic

We return to the statistic Kn = supt≥0 |Gn(t)−Fn(t)|. It is based on the supremum of the
family of U-statistics with the centered symmetric kernels depending on t :

Ψ(X ,Y ; t) = 1{max2(X ,Y )< t}− 1
2
(
1{X2 < t}+1{Y 2 < t}

)
, t ≥ 0.

The limiting distribution of this statistic is unknown but one can use simulation to obtain its
critical values.

Let us calculate the projection of this kernel for any fixed t ≥ 0, namely

ψ(s; t) = E(Ψ(X ,Y ; t)|Y = s) = P(max2(X ,s)< t)− 1
2
(2Φ(

√
t)−1)− 1

2
·1{s2 < t}.

It is evident that

ψ(s; t) = P(−
√

t < max(X ,s)<
√

t)− 1
2
(2Φ(

√
t)−1)− 1

2
·1{|s|<

√
t}.

But

P(max(X ,s)<
√

t) = P(X <
√

t)1{s <
√

t}= Φ(
√

t)1{s <
√

t},
P(max(X ,s)<−

√
t) = P(X <−

√
t)1{s <−

√
t}= Φ(−

√
t)1{s <−

√
t}.

Hence we have

P(−
√

t < max(X ,s)<
√

t) = Φ(
√

t)1{s <
√

t}−Φ(−
√

t)1{s <−
√

t},

Consequently,

ψ(X ; t) =−Φ(
√

t)1{X >
√

t}−Φ(−
√

t)1{X <−
√

t}+ 1
2
·1{|X |>

√
t}.

Thus, the variance function of our family of U-statistics (see Nikitin (2010) ) is given
by

σ
2(t) :=Eψ

2(X ; t)=E
(

Φ(
√

t)1{X >
√

t}+Φ(−
√

t)1{X <−
√

t}− 1
2
·1{|X |>

√
t}
)2

= Φ
2(
√

t)−Φ
3(
√

t)+1−3Φ(
√

t)+3Φ
2(
√

t)−Φ
3(
√

t)+
1
2
− 1

2
Φ(
√

t)

−Φ(
√

t)+Φ
2(
√

t)−1+2Φ(
√

t)−Φ
2(
√

t)

=−2Φ
3(
√

t)+4Φ
2(
√

t)− 5
2

Φ(
√

t)+
1
2
.

Consider now the function

q(u) =−2u3 +4u2− 5
2

u+
1
2
> 0

in the interval (1/2,1). It is clear that the roots of the derivative are 1
2 and 5

6 , so that the
variance function attains its maximum 1

27 at u = 5/6. Hence the large deviation asymptotics,
see Nikitin (2010), has the following form:

lim
n→∞

n−1 lnP(Kn > a) =−k(a),
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where k is a continuous function in the neighborhood of zero, such that

k(a) =
27a2

8
(1+o(1)), a→ 0.

Furthermore, the function bK(θ) allows for the following asymptotics as θ → 0:

bK(θ) = sup
t≥0
|Pθ (max2(X ,Y )< t)−Pθ (X2 < t)|

= sup
t≥0
|Φ2(
√

t +θ)−Φ
2(−
√

t +θ)− (Φ(
√

t +θ)−Φ(−
√

t +θ))|

∼ 2sup
t≥0
|(2Φ(

√
t)−1)ϕ(

√
t)|θ =

√
2
π

sup
t≥0

(
2Φ(
√

t)−1)exp(−t/2)
)

θ ≈ 0.337θ .

It follows that finally cK(θ)∼ 27
4 (0.337θ)2 ∼ 0.764θ 2 as θ → 0.

The local Bahadur efficiency of the Kolmogorov test for the location alternative is then
0.764 which is distinctly high for a supremum type statistic. The same value appears for the
skew alternative. In the case of the contamination alternative

F(x,θ) = (1−θ)Φ(x)+θΦ
2(x) = Φ(x)−θ(Φ(x)−Φ

2(x))

we have
F2(x,θ) = Φ

2(x)−2θΦ(x)(Φ(x)−Φ
2(x))+O(θ 2),θ → 0.

Here the function bK(θ) looks differently as θ → 0. After simple algebra we get

bK(θ) = supt≥0 |Pθ (max2(X ,Y )< t)−Pθ (X2 < t)|
= supt≥0 |F2(

√
t,θ)−F2(−

√
t,θ)−F(

√
t,θ)+F(−

√
t,θ)|

∼ supx≥0 (2Φ(
√

x)(1−Φ(
√

x))(2Φ(
√

x)−1))θ

= sup1/2≤z≤1 (2z(1− z)(2z−1))θ ≈ 0.192θ , θ → 0.

Consequently, as θ → 0, we have cK(θ)∼ 27
4 ·b

2
K(θ)≈ 0.250θ 2, and the local Bahadur

efficiency is 0.312.

5 Conclusion

Let us summarize the values of local efficiency in Table 1 where the first row corresponds
to the integral statistic, while the second row corresponds to the Kolmogorov statistic.

Table 1 Local efficiencies of new tests

Test/Alternative location skew contamination

I,J 0.977 0.977 0.391
K 0.764 0.764 0.312

We see that the integral test is rather efficient for the location and the skew alternatives.
Remarkably many other integral tests of normality have lower local efficiency. For instance,
the corresponding value for the classical ω2-test is 0.907 (see Nikitin (1995)), for the test
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based on the Polya characterization (see Muliere and Nikitin (2002)) it is 0.966, and for the
test based on the Shepp property (see Volkova and Nikitin (2009)) it is 0.955.

The Kolmogorov type test shows also high local efficiency. One should keep in mind
that this test is always consistent while the integral test has mostly one-sided character, and
its consistency depends on the alternative. The contamination alternative was taken on the
grounds of facility, and our tests are not so efficient in this case.

Also, one should keep in mind that any hypothesis has to be tested with several possible
criteria. The point of the matter is that with absolute confidence we can only reject it, while
each new test which fails to reject the null-hypothesis gradually brings the statistician closer
to the perception that this hypothesis is true. Hence, we are interested in developing new
statistical tests based on novel ideas, specifically using characterizations. In our opinion,
both tests proposed above can be added to the existing set of normality tests due to their
high efficiency properties and relative simplicity.
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