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Abstract—This is the first in a series of reviews devoted to the scientific achievements of the Lenin-
grad–St. Petersburg school of probability and statistics in the period from 1947 to 2017. It is devoted
to limit theorems for sums of independent random variables—a traditional subject for St. Petersburg.
It refers to the classical limit theorems: the law of large numbers, the central limit theorem, and the
law of the iterated logarithm, as well as important relevant problems formulated in the second half of
the twentieth century. The latter include the approximation of the distributions of sums of independent
variables by infinitely divisible distributions, estimation of the accuracy of strong Gaussian approxi-
mation of such sums, and the limit theorems on the weak almost sure convergence of empirical mea-
sures generated by sequences of sums of independent random variables and vectors.
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1. INTRODUCTION
This article, written at the kind invitation of the editorial board of the journal “Vestnik of St. Petersburg

University: Mathematics. Mechanics. Astronomy”, opens a series of reviews of the achievements of the
Leningrad–St. Petersburg School of Probability and Statistics in the period from 1947 to the present day.
Main attention will be paid to the achievements of the staff of the Department of Probability Theory and
Mathematical Statistics of the Faculty of Mathematics and Mechanics of the Leningrad State University
(LSU, SPbSU), founded by Yu. V. Linnik in 1948, as well as its alumni who continued their work in Len-
ingrad–St. Petersburg. This kind of extensive description of the activities of this mathematical school is
being done for the first time. The well-known review by Yu. V. Linnik [1] was brief and covered only the
period until 1969.

Studies on probability theory in St. Petersburg were started by V. Ya. Bunyakovsky (1804–1889), a dis-
ciple of Cauchy, who received an excellent education in Lausanne and Paris and defended a doctoral the-
sis at the University of Paris. He was the first who began to teach a course of probability theory at
St. Petersburg University; he also wrote the first Russian textbook on this subject [2]. This textbook—
“excellent for that time,” according to B. V. Gnedenko [3], p. 28—became very popular; there is an evi-
dence that Gauss and Bienaymé studied Russian to read it [4]. It gave an original presentation of both the
probability theory and its application to insurance, demography, etc.
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In review [1], Yu. V. Linnik wrote: “Bunyakovsky gave an important formulation of the issues concern-
ing the acceptance inspection, e.g., the reception of a lot of sacks of sugar on the basis of sampling. In the
history of mathematics, this is the first publication on the statistical control of the quality of industrial
products. A number of later articles by Bunyakovsky are applications to various practical problems in prob-
ability and statistics, e.g., calculating the probable strength of the Russian army after the draft and deter-
mining observation errors. Beginning in 1858, Bunyakovsky was the chief expert of the government on sta-
tistics and insurance. From 1864 to 1889, he was vice-president of the Academy of Sciences.

A new phase of research on probability began in St. Petersburg after the relocation there of P. L. Che-
byshev (1821–1894), who, in 1860, replaced V. Ya. Bunyakovsky as a lecturer in the course of probability
at the university. In the works of Chebyshev and his disciples—beginning with A. A. Markov (1856–1922)
and A. M. Lyapunov (1857–1918)—numerous brilliant results were obtained; they are well-known and
described in detail in textbooks on probability and statistics, as well as in works on the history of mathe-
matics. An idea of the level of research and teaching is also given by Chebyshev’s lectures, recorded by
A. M. Lyapunov [5], and by Markov’s textbook [6].

The prewar period in research on probability is associated with the name of the outstanding mathema-
tician, academician S. N. Bernstein (1880–1968), who, in 1933–1941, lectured at the university as a pro-
fessor at the Faculty of Mathematics and Mechanics. In this period, in particular, he laid the foundations
of stochastic differential equations (in the discrete version), proved the central limit theorem for new
classes of dependent random variables, and found one of the first variants of characterizing the normal
law by the independence of the sums and differences of random variables. In 1937, Bernstein gave a num-
ber of far-reaching generalizations of Chebyshev’s inequality, now called Bernstein inequalities and
widely used in the theory of large deviations and other issues of limit theorems. In the period from 1927
to 1946, four editions of the remarkable textbook on probability by Bernstein were published [7]. (Con-
cerning Bernstein’s works in the field of probability, see also [8, 9].)

Bernstein then moved to Moscow, and the revival of the research on probability and statistics at the
Leningrad University in the post-war period is associated with the name of Academician Yu. V. Linnik
(1915–1972), by that time a renowned author of exceptionally strong results in analytic number theory.
According to Linnik himself, he was recommended to conduct research in probability by the outstanding
Moscow mathematician A. Ya. Khinchin, who believed that mathematicians should work in at least two
different fields of their discipline. This prompted Linnik to begin intensive research in the field that was
new for him. On his initiative, in 1948, the Department of Probability Theory and Mathematical Statistics
at the Faculty of Mathematics and Mechanics was inaugurated.

Linnik’s interests gradually extended to statistics and led to a number of remarkable books and articles,
which can be found in his collected works [10, 11] (see also the jubilee article [12]).

Linnik’s bright personality attracted many talented disciples, some of whom (V. V. Petrov, V. P. Skito-
vich, and I. A. Ibragimov) began working at the Department of Probability Theory and Mathematical Sta-
tistics, while others worked at the Leningrad Division of the Mathematical Institute of the Academy of
Sciences (LDMI, now PDMI) or at universities and research institutions in the city. They also acquired
disciples, mainly students and postgraduate students of the Department. Eventually, a considerable
school formed, which, in the 1990s, under the leadership of Academician I. A. Ibragimov, was officially
recognized by the Ministry of Education and Science of the Russian Federation and the Russian Federa-
tion Presidential Council for Grants.

The aforementioned series of articles is intended to give a brief account of the main achievements of
this scientific school. In this issue, we focus mainly on the limit theorems for sums of independent random
variables. Section 2–4 were written by V. V. Petrov (SPbSU), Section 5, by A. Yu. Zaitsev (PDMI RAS
and SPbSU), Section 6, by A. A. Zinger (SUAI), and Section 7, by M. A. Lifshits (SPbSU). The intro-
duction was compiled by Ya. Yu. Nikitin (SPbSU).

2. CENTRAL LIMIT THEOREM FOR SUMS OF INDEPENDENT RANDOM VARIABLES
Among the works of the founders of the St. Petersburg School of Probability, P. L. Chebyshev,

A. A. Markov, and A. M. Lyapunov, whose works became classics of our discipline, an important place
belongs to research on limit theorems for sums of independent random variables. In the 1930s, their works
were continued at Leningrad University by S. N. Bernstein and, from the end of the 1940s, the founder of
the Department of Probability Theory and Mathematical Statistics, Yu. V. Linnik, his numerous disciples,
and the disciples of their disciples.

In his first publication on probability theory [13], Linnik obtained nonuniform estimates of the devia-
tion of the distribution function of the sum of independent non-identically distributed random variables
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from the normal distribution on an arbitrary finite interval. Along with the traditional technique of char-
acteristic functions, he used new methods [13], previously used in the analytic numbers theory, a field of
mathematics in which Linnik had made outstanding discoveries.

An extensive literature is devoted to estimating the convergence rate of the distributions of sums of
independent random variables to the normal distribution. Classical results in this field are the Lyapunov,
Berry–Esseen, and Esseen inequalities. Generalizations and strengthening of these results, containing
both uniform and more accurate nonuniform estimates, were obtained by V. V. Petrov [14], I. A. Ibragi-
mov [15], L. V. Osipov [16], L. V. Osipov and V. V. Petrov [17], and B. A. Lifshits [18]. Let us formulate
one result of I. A. Ibragimov.

Let {Xn} be a sequence of independent random variables with the common distribution function V(x),
Sn = X1 + … + Xn, and suppose that there exist sequences of constants {an} and {bn} such that Fn(x) → Φ(x)
as n → ∞ for any x, where Fn(x) = P(Sn/an – bn < x) and Φ(x) is the standard normal distribution function.

Set rn = . For rn = O( ), where 0 < δ < 1, it is necessary and sufficient that

(1)

For rn = O( ), it is necessary and sufficient to satisfy conditions (1) for δ = 1 and the condition

(2)

L. V. Osipov and V. V. Petrov [17] obtained an estimate for the deviation of the distribution function of
an arbitrarily normalized sum of n independent non-identically distributed random variables from a nor-
mal distribution function without assuming the existence of any moments. Heyde [19] found the optimal
asymptotic behavior of this estimate. Despite the relative simplicity of the formulations of the estimates
obtained, their implications are the Lyapunov and Esseen inequalities.

For a sequence of independent equally distributed random variables with finite variance, L. V. Osipov
[20] joined the upper and lower bounds of the remainder term in the central limit theorem.

Considering a sequence of independent random variables with a common distribution function,
V. A. Egorov [21] and L. V. Rozovsky [22] studied the relationship between the moment properties of this
function and various forms of the asymptotic normality of the distribution function of an arbitrarily nor-
malized sum of n random variables from an original sequence.

An important place in the literature on limit theorems of probability theory belongs to the theorems on
the asymptotic expansions for distributions of sums of independent random variables. For a sequence of
independent identically distributed random variables, I. A. Ibragimov [23] obtained the necessary and
sufficient conditions for the classical form of the asymptotic expansion in the central limit theorem.
L. V. Osipov [24] obtained nonuniform estimates of the remainder term in the asymptotic expansion of
the distribution function Fn(x) of the normalized sum of n independent identically distributed random
variables with a finite absolute moment of order k ≥ 3; no other additional assumptions were made. These
estimates are valid for all x and n. The simple implications of the results obtained are the known nonuni-
form estimates.

V. V. Petrov [25] found explicit formulas for any terms of the classical asymptotic expansion in the cen-
tral limit theorem. In [26], theorems on the asymptotic expansions of the distribution function of the nor-
malized sum of independent non-identically distributed random variables, as well as the derivatives of any
order of this distribution function, were obtained. Some of these results refer to local theorems for the dis-
tribution densities of normalized sums of such random variables.

V. V. Petrov [27, 28] obtained local limit theorems for the distribution densities of the sums of indepen-
dent non-identically distributed random variables with estimates of the remainder term and with asymp-
totic expansions.

A prominent place in the literature belongs to the limit theorems for probabilities of large deviations of
sums of independent random variables. In many applications, an important role is played by information
about the probabilities of the form P(Zn ≥ x), where Zn is the normalized sum of n independent random
variables as x = xn → ∞ (n → ∞). The fundamental result in the field of the limit theorems for probabilities
of large deviations is Cramér's theorem [29] for a sequence of independent identically distributed random
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variables {Xn}, under the condition that the generating function of the moments  is finite in the
domain |t| < H for some H > 0 (Cramér's condition). This theorem contains asymptotic equalities for the
ratios (1 – Fn(x))/(1 – Φ(x)) and Fn(–x)/Φ(–x) for x = xn =  (n → ∞), where Fn(x) = P(Sn <

) under the conditions EX1 = 0 and DX1 = σ2. The simplest implication of Cramér's theorem is the
assertion that, under Cramér's condition, each of these relations tends to 1 for x = o(n1/6).

V. V. Petrov [30] obtained a generalization of Cramér's limit theorem for sequences of independent
non-identically distributed random variables with the condition x = o( /logn) replaced by the condition
x = o( ), which is optimal in this situation, and with the corresponding improvement of the order of the
remainder term in the asymptotic expansions for the ratios of tail probabilities. The limit theorems for
large deviations of sums of independent non-identically distributed random variables had previously been
studied by Feller [31], but Feller’s results, who considered only sequences of bounded non-identically dis-
tributed random variables, do not imply Cramér’s theorem.

W. Richter [32] obtained local limit theorems for large deviations of sums of independent random vari-
ables under Cramér's condition.

Cramér's condition is rather restrictive; it implies the analyticity of the characteristic function of ran-
dom variables in some neighborhood of zero and, therefore, in some strip containing the real axis. Yu. V.
Linnik [33, 34] developed new methods that made it possible to study the probabilities of large deviations
of sums of independent random variables when Cramér's condition is violated.

Let us present one of Yu. V. Linnik’s results. Let {Xn} be a sequence of independent identically distrib-
uted random variables with zero mean and a variance σ2 > 0. Set Sn = X1 +… + Xn and Fn(x) = P(Sn <

). Let ρ(n) be a function satisfying the condition ρ(n) → ∞ as n → ∞. If 0 < α ≤ 1/6, then the con-
dition

(3)

is sufficient for

(4)

uniformly in x in the domain 0 ≤ x ≤ nα/ρ(n), and it is necessary that relations (4) be uniform in x in the
domain 0 ≤ x ≤ nαρ(n). If, on the other hand, 1/6 < α < 1/2, then conditions (3) and

(5)
are sufficient for relations (4) to take place uniformly in x in the domain 0 ≤ x ≤ nα/δ(n) and are necessary
for these relations to take place uniformly in x in the domain 0 ≤ x ≤ nαρ(n). Here, γm is the cumulant of
order m of the random variable X1, and s is the nonnegative integer number defined by the inequalities s/(2(s +
2)) < α < (s + 1)/(2(s + 3)). It should be noted that, for α = 1/2, condition (3) coincides with Cramér’s
condition and, for α < 1/2, it represents a weakened Cramér's condition.

Yu. V. Linnik also obtained the corresponding local limit theorems for large deviations when Cramér’s
condition is weakened and the limit theorems for large deviations on the whole axis, i.e., theorems on the
asymptotic behavior of probabilities of the form P(Sn ≥ x) for sums of independent random variables, with-
out any restrictions on the order of growth of x.

Yu. V. Linnik’s works on the limit theorems for large deviations of sums of independent random vari-
ables have found a broad response in the domestic and foreign literature. V. V. Petrov [35], under condi-
tions (3) and α < 1/2, studied zones in which normal convergence (4) was replaced by more general
asymptotic relations connected with segments of Cramér’s series. L. V. Osipov [36] found the necessary
and sufficient conditions for relations (4) (or the asymptotic relations just mentioned) to be satisfied in the
domain 0 ≤ x ≤ bnα uniformly in x, where α < 1/2 and b are positive constants. The limit theorems for large
deviations of sums of independent non-identically distributed random variables, generalizing Linnik’s
theorems, were obtained by V. V. Petrov [35]. In [37], asymptotic representations were found for the prob-
abilities P(Sn ≥ nx) and P(Sn = nx), uniform in x in the domain EX1 + ε ≤ x ≤ A – ε, where Sn is the sum of
n independent random variables with the same non-lattice or lattice distribution, respectively, satisfying
the one-sided analogue of Cramér’s condition, ε is an arbitrary positive constant, and the constant A is
given in explicit form. Interesting supplements to these results were obtained by L. V. Rozovsky (see, e.g.,
[38, 39]).
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148 LIFSHITS et al.
Along with the limit theorems, inequalities for the probabilities of large deviations of the sums Sn of
independent random variables that are valid for any number of summands can be useful. V. V. Petrov
obtained the following result for the distributions of sums of n independent random variables. Suppose

that there exist positive constants g1, …, gn, and T such that  ≤  (k = 1, …, n) for 0 ≤ t ≤ T. Set

Gn = . Then, we have the following inequalities:

There is a left-sided analogue of this assertion and a corollary of these assertions, in which the condi-
tion on the moment generating function is assumed to be satisfied in the domain |t| ≤ T. The set of formu-
lated conditions implies the fulfillment of Cramér's condition. The result obtained is stronger than the
more complex formulation of S. N. Bernstein’s inequalities and is much easier to prove.

Books by I. A. Ibragimov and Yu. V. Linnik [40] and V. V. Petrov [41, 42] contain the results obtained
by the authors and other materials concerning the limit theorems for sums of independent random vari-
ables.

3. THE LAW OF LARGE NUMBERS
A prominent place in modern studies belongs to works on strong limit theorems of probability theory,

including various forms of the strong law of large numbers and the law of the iterated logarithm for
sequences of independent random variables and the case where the condition of independence is replaced
by some condition of dependence or where the condition of independence is removed.

For a sequence of independent non-identically distributed random variables, A. I. Martikainen [43]
found the necessary and sufficient conditions for the strong law of large numbers with an arbitrary (not
necessarily monotonic) sequence of normalizing constants. If {Xn} is a sequence of independent random
variables and {an} is a sequence of positive numbers such that lim inf an + 1/an > 1, then Sn/an → 0 a.s. if
and only if  < ∞ for any ε > 0, as shown by L. V. Rozovsky [44].

It is of interest to estimate the growth of sums of random variables almost surely in terms of the sum of
the moments of these variables. To formulate results of this type obtained by V. V. Petrov [45], some addi-
tional notation is required. The set of functions ψ(x) such that each ψ(x) is positive and non-decreasing
in the domain x > x0 for some x0 (not necessarily the same for different functions ψ) and the series

  converges (diverges) will be denoted by Ψc (respectively, Ψd). For example, ψ(x) = xα ∈ Ψc for

any α > 0, ψ(x) = (logx)1 + δ ∈ Ψc for every δ > 0, and ψ(x) = logx ∈ Ψd.
Let g(x) be an even continuous function that is positive and strictly increasing in the domain x > 0,

where g(x) → ∞ as x → ∞, and {Xn} be a sequence of independent random variables such that Eg(Xn) < ∞
for all n. Suppose that one of the following two conditions are satisfied:

(A) the function x/g(x) does not decrease in the domain x > 0;
(B) x/g(x) and g(x)/x2 do not increase in the domain x > 0.
In case (B), it is additionally assumed that EXn = 0 for all n.

Next, suppose that Mn =  → ∞ as n → ∞. Then,

, (6)
for any function ψ ∈ Ψc, where g–1 is the inverse function of g.

If, instead of ψ ∈ Ψc, we take a more slowly increasing function ψ ∈ Ψd, then, as shown in [45], the
assertion may be incorrect.

The formulations are significantly simplified if we set g(x) = |x|p, where 0 < p ≤ 2. In particular, for p = 2,
we obtain the following assertion.

Let Xn be a sequence of independent random variables with finite variances. Set Bn = DSn. If Bn → ∞
as n → ∞, then Sn – ESn =   a.s. for any ψ ∈ Ψc. This assertion may be wrong for a slower
increasing function ψ ∈ Ψd.
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Hence, for the sum Sn of independent random variables with finite variances and an unlimited increase
of the variance of the sum, Bn = DSn, we have the following estimates of the growth order, each of which
is stronger than the previous one: for any ε > 0, we have

and so on. In these estimates, ε cannot be replaced by zero without introducing additional conditions.
V. A. Egorov in [46] generalized these results.
As was shown in [47], with complete abandoning  the independence assumption and under the condi-

tion that the absolute moments of order p ≤ 1 of these quantities are finite, the estimates are valid if Sn –

ESn is replaced by Sn and Bn is replaced by Mn = . It was shown in [48] that, under this con-

dition, we can additionally replace the sum Sn by the sum Tn = .

In terms of the classes Ψc and Ψd, we can describe the behavior of liminf b(n)Sn, where b(n) is a given
function and Sn is the sum of n independent random variables. In [42, Section 6.6], one can find the fol-
lowing results, which generalize and strengthen some results of Chung and Erdös. Let {Xn} be a sequence
of independent identically distributed random variables with the characteristic function f(t) satisfying the
condition limsup| f(t)| < 1 as |t| → ∞. Then, lim   = ∞ a.s. for any function ψ ∈ Ψc and, under
the additional conditions EX1 = 0 and DX1 < ∞, we have liminf   = 0 a.s. for any function ψ ∈ Ψd.

As A. A. Markov remarked, the Chebyshev inequality immediately implies the following proposition:
if {Xn} is an arbitrary sequence of random variables with finite variances and the condition DSn/n2 → 0 as
n → ∞ is satisfied, then (Sn – ESn)/n → 0 in probability. It was shown in [49] that some strengthening of
the Markov condition leads to the strong law of large numbers. Namely, if {Xn} is a sequence of nonnega-
tive random variables with finite variances satisfying conditions

, (7)

and the condition E(Sn – Sm) ≤ C(n – m) for all sufficiently large n – m, where C is a constant, then (Sn –
ESn)/n → 0 a.s. In this proposition, one cannot replace condition (7) by the weaker condition DSn =
O(n2/ψ(n)) for some function ψ ∈ Ψd.

V. V. Petrov [50] proved the following theorem, in which the conditions of independence and nonneg-
ativity of the initial random variables are absent. If EXn = 0, E|Xn|p < ∞ for all n and some p > 1, and the
condition E|Sn – Sm|p ≤ C(n – m)pr – 1 holds for all n and m such that n > m ≥ 0, where r ≥ 1 and C is a con-

stant, then  → 0 a.s. Hence, for a sequence of random variables with finite variances, the condition
D(Sn – Sm) ≤ C(n – m)2r – 1 for all n and m such that n > m, where r ≥ 1, implies the relation (Sn – ESn)/nr →
0 a.s.

4. THE LAW OF THE ITERATED LOGARITHM
The best-known results among the theorems on the law of the iterated logarithm are Kolmogorov’s and

Hartman–Wintner’s theorems concerning the sequences of independent non-identically distributed and
identically distributed random variables, respectively. The formulations of these theorems and of a num-
ber of their generalizations can be found, e.g., in [41].

The applicability of the central limit theorem to a sequence of independent random variables with
finite variances does not imply the applicability of the law of the iterated logarithm but a rather weak esti-
mate of the convergence rate in the central limit theorem already ensures this applicability, as shown by
the following V. V. Petrov’s theorem [51].

Let {Xn} be a sequence of independent random variables such that EXn = 0 and DXn < ∞ for all n. Set
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150 LIFSHITS et al.
where Φ(x) is the standard normal distribution function. Under the conditions Bn → ∞ (n → ∞),

(8)

(9)

we have the relation

(10)

V. A. Egorov [52, 53] showed that, under the hypotheses of this theorem, one cannot replace the pos-
itive number δ by zero.

As shown in [54], if condition (8) is removed from the hypotheses of the above theorem, then we obtain
relation (10) with the sign of equality replaced by the sign ≤. There are publications in which relations of
type (10) are obtained for an arbitrary nondecreasing numerical sequence {Bn} and a sequence {Xn} of
independent random variables without assumptions on the existence of any moments of these quantities.

A. Martikainen, A. Rosalsky, and W.E. Pruitt independently and almost simultaneously published the
following result: if a sequence of independent identically distributed random variables {Xn} satisfies the
equality lim sup Sn/(2n loglogn)1/2 = 1 a.s., then EX1 = 0 and DX1 = 1 (the references can be found in [42]).

Many works have been devoted to the generalized law of the iterated logarithm for sequences of ran-
dom variables without assuming the independence and existence of any moments of the random variables.
In these works, the conditions under which the relations limsupSn/an ≤ 1 a.s. or limsupSn/an = 1 a.s. takes
place were studied, where {an} is a sequence of positive numbers such that an → ∞ (n → ∞); it is not always
assumed that the normalizing numerical sequence is nondecreasing. This kind of normalizing sequence
occurs in the study of the law of the iterated logarithm for sequences of m-dependent or m-orthogonal ran-
dom variables. There is an extensive literature on the limit theorems for sequences of m-dependent ran-
dom variables and for sequences of orthogonal random variables. The concept of a sequence of m-orthog-
onal random variables was introduced in [55]; in [55, 56], theorems on the iterated logarithm law for these
sequences were obtained.

For a sequence of independent random variables, A. I. Martikainen and V. V. Petrov found the condi-
tions necessary and sufficient for the applicability of the generalized law of the iterated logarithm with a
nondecreasing normalizing numerical sequence (see, e.g., [42, Section 7.3]). More simply formulated
sufficient conditions without the assumption of independence can be found in [56].

Much attention in the literature on limit theorems of probability theory has been given to strong limit
theorems for increments of sums of independent random variables. One of the objects of study in this field
is the conditions under which equalities of the type limsupUn/bn = limsupWn/bn = 1 a.s. take place, where

{Xn} is a sequence of independent identically distributed random variables, and {an} is a sequence of pos-
itive integers, an ≤ n. For an = n, we have Un = Sn and Wn = . In a series of works by A. N. Frolov
(see [57, 58] and references therein), the dependence of the asymptotic behavior of Un and Wn on the
growth rate of the sequence {an} was studied. In particular, generalizations of the Erdös–Rényi and
Csörgő–Revesz theorems were obtained.

5. APPROXIMATION OF DISTRIBUTIONS OF SUMS OF INDEPENDENT VARIABLES
In the early 1960s, I. A. Ibragimov was interested in two problems on the accuracy of the infinitely

divisible approximation of distributions of sums of independent random variables, formulated in the mid-
1950s by A. N. Kolmogorov [59]. In the book by I. A. Ibragimov and Yu. V. Linnik [40], a special chapter
is devoted to this subject. A number of results were obtained in the joint article by I. A. Ibragimov and
E. L. Presman [60]. In particular, the optimal (up to a logarithm) estimate was proven for the proximity
of n-fold convolutions Fn of symmetric one-dimensional probability distributions F with accompanying
infinitely divisible laws e(nF) of the form

(11)
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Here, ρ(·, ·) is the classical uniform Kolmogorov distance between the corresponding distribution func-
tions, and e(nF) is the infinitely divisible distribution with the characteristic function exp{n(  – 1)}, t
∈ R, where   is the characteristic function of the probability distribution F. Hereinafter, the symbols c
and c(·) (sometimes with indices) denote, in general, various positive absolute constants and variables that
depend only on the argument in parentheses. The concentration function of a random variable Y with the
distribution F =   is defined by the equality

This subject was also interesting and important because it concerned the case of arbitrary distributions
of variables without standard assumptions on the moments. In light of this, I. A. Ibragimov began to offer
Kolmogorov’s problems to his disciples. As a result, both problems were solved by his disciples, graduates
of the Leningrad University T. Arak and A. Yu. Zaitsev. In 1986, a joint monograph by Arak and Zaitsev
[61], containing an account of these results, was published in the Proceedings of the Steklov Mathematical
Institute.

In the early 1980s, T. Arak obtained the complete solution of the first Kolmogorov’s problem, having
proven in [62] the following remarkable result: There exists an absolute constant c such that, for any one-
dimensional probability distribution F and any natural number n, there exists an infinitely divisible distribution
Dn such that

(12)
Тherefore,

(13)

where  is the set of all one-dimensional infinitely divisible distributions. Arak [63] also established that
there is a similar lower bound:

(14)
In 1986, these results were reported by T. Arak in an invited talk at the International Mathematical

Congress in Berkeley.
A multidimensional analogue of (13) has not yet been obtained. E. L. Presman [64] obtained in a

d-dimensional situation an estimate of the form

(15)

Here, ρd(·, ·) is the uniform distance between the corresponding d-dimensional distribution functions and
 is the set of all d-dimensional infinitely divisible distributions.
Somewhat earlier, Arak [65] showed that, if F is a symmetric one-dimensional distribution with a non-

negative characteristic function for all t ∈ R, then

(16)

Therefore, for particular distributions F, the decay of ρ(Fn, ) can be much faster than O(n–2/3). In the
mid-1990s, A. Yu. Zaitsev [66] formulated a conjecture that, for any one-dimensional distribution F,
there exists a variable c(F) depending on F and such that ρ(Fn, ) ≤ c(F)n–1 for any positive integer n. Ear-
lier, E. L. Presman [67] showed that this is true for the binomial distribution if the distribution F is con-
centrated at two points. For some distributions, this conjecture was confirmed in the works of Čekanav-
ičius [68, 69] and Čekanavičius and Wang [70]. In particular, it was shown in [69] that the conjecture is
valid for discrete distributions concentrated at a finite number of points.

To solve the aforementioned problems, Arak used new estimates for the concentration functions of the
sums of independent random variables. These estimates were formulated in terms of the arithmetic struc-
ture of the supports of the distributions of summands. It was shown that, if the concentration function of
the sum is large, then the supports of the distributions of the summands are concentrated near some set
with a nontrivial arithmetic structure.

In the recently published work by F. Götze, Yu. S. Eliseeva, and A. Yu. Zaitsev [71], it was shown that
Arak’s results make it possible to obtain estimates of the concentration functions of the weighted sums of

ˆ( )F t
ˆ( )F t

( )Y+

∈
τ = ∈ + τ τ ≥( , ) sup ( [ , ]), 0.

x
Q F Y x x

R
P

−ρ ≤ 2/3( , ) .n
nF D cn

−ϕ = ρ ≤ 2/3( ) sup ( , ) ,n

F
n F cnD

D

−ϕ ≥ 2/3( ) .n cn

−ϕ = ρ ≤ 1/3( ) sup ( , ) ( ) .n
d d d

F
n F c d nD

dD

−ρ ≤ 1( , ( )) .nF e nF cn

D

D

VESTNIK ST. PETERSBURG UNIVERSITY, MATHEMATICS  Vol. 51  No. 2  2018



152 LIFSHITS et al.
independent identically distributed random variables Sa =  in the Littlewood–Offord problem,
first considered in [72, 73]. In this case, we are dealing with sums of non-identically distributed random
variables with distributions of a special kind. Estimates of a non-asymptotic nature were obtained that are
valid without additional assumptions, expressed in terms of the number of terms n, of the type of the con-
dition Q( (Sa), τ) ≥ n–A assumed in the formulation of the so-called inverse principle in the Littlewood–
Offord problem, introduced in works by Nguyen, Tao, and Vu [74–78]. The interrelation of these esti-
mates was studied. It was shown in [71] that Arak’s results have implications that can be interpreted as
manifestations of the inverse principle for the Littlewood–Offord problem. Some of them have a non-
empty intersection with the results of Nguyen, Tao, and Vu, in which the arithmetic structure of the coef-
ficients a1, …, an under the condition Q(Fa, τ) ≥ n–A, where A is a positive constant, is discussed.

In addition, monograph [61] contains some structural results that imply assertions apparently new in
the Littlewood–Offord problem and have no analogues in the literature.

Another disciple of I. A. Ibragimov, A. Yu. Zaitsev, at the beginning of his research activity, was
engaged in solving the second problem formulated by Kolmogorov in [59]. He succeeded in obtaining an
estimate of the order of accuracy of infinitely divisible approximation of the distributions of sums of inde-
pendent random variables whose distributions are concentrated on an interval of small length τ up to a
small probability p. It turned out that the accuracy of the approximation in the Lévy metric is of the order
p + τlog(1/τ), which is much more accurate than Kolmogorov’s original result p1/5 + τ1/2log(1/τ) (see
[59]) and the later results of other authors (see, e.g., [60]). For the approximation, the so-called accom-
panying infinitely divisible distributions were used. Moreover, as shown by T. Arak, the estimate proved
to be order correct. These results can be found in [79] and in monograph [61]. Later, in [80], it was shown
that a similar estimate holds also in the multidimensional case and, instead of an absolute constant, the
estimate acquires a factor c(d) depending only on the dimension d. In the course of the proof, it was estab-
lished that, for p = 0 (i.e., if the norms of the terms are bounded by a constant τ with probability one), for
any fixed λ > 0, the random vector X, which has the same distribution as the sum under consideration, can
be constructed on the same probabilistic space with the corresponding Gaussian vector Y such that

(17)
(see [81, 82]). Moreover, A. Yu. Zaitsev [82] proved that the same result holds for vectors with the distri-
butions from the class —which he introduced—of distributions with sufficiently slowly increasing
semi-invariants.

The class  (with a fixed τ ≥ 0) consists of d-dimensional distributions F for which function

(18)

is defined and analytic for ||z||τ < 1, z ∈ Cd, and

(19)

for all u,   ∈ Rd and ||z||τ < 1, where   = covF and dug is the derivative of the function g in the direction u.
The class  is closed with respect to convolution and contains, in particular, all possible convolu-

tions of distributions concentrated on a ball of radius cτ centered at zero. It also contains arbitrary
infinitely divisible distributions with spectral measures concentrated on the same ball. Applying a linear
operator  : Rd → Rm to a random vector with distribution from the class , we obtain a vector with
distribution from the class . If some d-dimensional random vector ξ has finite exponential

moments   < ∞ for all h ∈ V, where V ⊂ Rd is some neighborhood of zero, then F =  ∈ .
Inequality (17) implies known results for the probabilities of large deviations. Assuming that the inde-

pendent identically distributed random variables X1, X2, … with finite exponential moments have zero
means and unit variances, it is easy to deduce from (17) that

(20)

if 0 < x = xn = o(n1/6) (see (4)). Here, η is a standard normal random variable. Thus, inequality (17) can
be interpreted as a simple formulation of the multidimensional analogue of relation (9).
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Another important special case for estimating the accuracy of infinitely divisible approximation is
obtained for τ = 0, when the right-hand side of the estimate of the uniform distance between the distribu-
tion function, ρd(·, ·), has the form c(d)p (see [80, 83]). In [84], this result was interpreted as a general esti-
mate of the accuracy of the approximation of a sample composed of non-identically distributed rare events
of the general form by a Poisson point process. For any measurable function f :  → Rd, we have the fol-
lowing inequality:

Here,  is the space of rare events, Xj are independent rare events occurring with probabilities not exceed-
ing p, and Yk are points of the corresponding Poisson point process.

Some optimal estimates were obtained in other papers for the uniform distance ρ(·, ·) in the general
case. In particular, in [85, 86], A. Yu. Zaitsev succeeded in strengthening the results of [60, 87] and obtain-
ing simple one-dimensional formulation of the results, which imply order correct estimates of the
infinitely divisible approximation of convolutions by the accompanying laws and very general estimates in
the central limit theorem. Since the “tails” of the distributions of terms are arbitrary, the results also cover
the case—actively studied in recent years—of “heavy tails” of distributions of summands. In [88], the
result of Le Cam [87] on the approximation of convolutions of one-dimensional probability distributions
Fj by convolutions of infinitely divisible distributions e(Fj) was refined.

In proving these results, A. Yu. Zaitsev used the methods used by Arak in proving inequality (2). He
managed to modify these methods, adapting them to the multidimensional case (see [89–91]). In partic-
ular, in [90], a multidimensional analogue of inequality (2) was obtained. By similar methods, the follow-
ing paradoxical result was obtained (see [92–94]). There exists a variable c(d) depending only on the
dimension d and such that, for any symmetric distribution F and any natural number n, the uniform dis-
tance between powers in the sense of convolution Fn admits the estimates ρd(Fn, Fn + 1) ≤ c(d)n–1/2 and
ρd(Fn, Fn + 2) ≤ c(d)n–1, and both estimates are unimprovable with respect to order. In [93], A. Yu. Zaitsev
also succeeded in removing the logarithmic factor in inequality (1).

Arak’s methods were used by V. Čekanavičius in his studies on infinitely divisible approximation of
convolutions of one-dimensional probability distributions. Recently, he published a monograph [95] pre-
senting the results and the methods.

In [96], A. Yu. Zaitsev also succeeded in giving a negative answer to Kolmogorov and Yu. V. Prok-
horov’s question on the possibility of infinitely divisible approximation of the distributions of sums of
independent identically distributed random variables in terms of the variation distance. A one-dimen-
sional probability distribution was constructed whose all n-fold convolutions are uniformly separated
from the set of infinitely divisible laws in terms of the distance in variation by at least 1/14.

The accuracy of strong Gaussian approximation for sums of independent random vectors is usually
estimated in two different but closely related situations. The estimation of the accuracy of strong approx-
imation in the invariance principle can be reduced to these problems.

One of these can be formulated as follows. It is required to construct—on the same probability space—
independent random vectors X1, …, Xn (with given, generally non-identical distributions, EXj = 0 and

 < ∞) and independent Gaussian random vectors Y1, …, Yn in such a way that EYj = 0, covYj =
covXj, j = 1, …, n, and such that the quantity

(21)

be small with a sufficiently high probability.

In the second problem, it is required to construct—on the same probability space—a sequence of inde-
pendent identically distributed random vectors X1, X2, … (with a given distribution  with zero mean
and E||X||2 < ∞) and a sequence of independent Gaussian random vectors Y1, Y2, … such that

(22)
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and

as n → ∞ with a sequence f(n) tending to infinity as slowly as possible.
The most significant result obtained by A. Yu. Zaitsev in the 1990s is the multidimensional version of

the classical one-dimensional result of Komlós, Major, and Tusnády [97] on estimating the accuracy of
strong Gaussian approximation of sums of independent identically distributed random variables under the
existence of exponential moments of the summands. By analogy with the one-dimensional result of
A. I. Sakhanenko [98], the result of [99] is formulated as an estimate of the exponential moment of the
quantity Δn(X, Y). In this case, the dependence of the constants on the dimension and the distributions of
the summands is given explicitly (see [98–100]). This dependence is formulated in terms of the member-
ship of the distributions of the summands in the class  defined above. In [99], A. Yu. Zaitsev suc-
ceeded in getting rid of the unnecessary logarithmic factor in the result of Einmahl [100]. In the second
problem, this corresponds to the estimate of the order O(logn) (instead of O(log2n)) for vectors with finite
exponential moments, obtained in the one-dimensional case in [97]. Somewhat later, A. Yu. Zaitsev [101]
transferred the result to the case of non-identically distributed terms and obtained a complete multidi-
mensional analogue of the one-dimensional result of A. I. Sakhanenko [98], who generalized and refined
the results of [97]. In 2002, these results were reported by A. Yu. Zaitsev in an invited talk at the Interna-
tional Mathematical Congress in Beijing [102].

At the end of the last decade, in [103–105], estimates were studied of the accuracy of the strong Gauss-
ian approximation of the sums of independent d-dimensional random vectors Xj with finite moments of
the form EH(||Xj ||), where H is a monotonic function increasing not slower than x2 and not faster than
exp(cx). Multidimensional generalizations of the results of Komlós, Major, and Tusnády [97] and
Sakhanenko [106] were obtained. In particular, for the second problem in [105], an estimate of the form
O(H–1(n)) was obtained, where H–1 is the inverse of the function H. This refines the multidimensional
result of Einmahl [100], who proved the same assertion for a narrower class of functions H.

When considering the first problem in a special case of H(x) = cγ, γ > 2, in the joint papers [107] and
[108], F. Götze and A. Yu. Zaitsev obtained estimates that proved to be order optimal for identically dis-
tributed summands. In the case where X1, …, Xn are d-dimensional independent random vectors identi-
cally distributed with a random vector X with the standard unit covariance operator covX = , it was shown
in [108] that there exists a construction ensuring the inequality

(23)

where

(24)

This assertion is a multidimensional version of the result of A. I. Sakhanenko [106] for a special case
of identically distributed summands. In the general case, A. I. Sakhanenko [106] proved that, for d = 1,
there is a construction for the first problem such that

(25)

In [107], it was established that, in the multidimensional case, the analogous assertion holds for non-
identically distributed summands but under the additional conditions that the covariance operators of
partial sums are not degenerate and the partial sums of order γ moments of the norms of the summands
are regular. With the help of the results of [107], the infinite-dimensional case was considered in [109] and
[110].

On the basis of the above results on the strong Gaussian approximation, review [111] was published in
the journal “Russian Mathematical Surveys”.

In [112], for any ε > 0, A. Yu. Zaitsev constructed two-dimensional distributions such that the distance
in variation between their projections on an arbitrary one-dimensional direction does not exceed ε,
although the uniform distance between the corresponding two-dimensional distribution functions is 1/2.
This shows the instability of the inversion of the Radon transform of multidimensional probability distri-
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butions. There are distributions that are almost indistinguishable by tomography methods and, at the
same time, very distant from one another.

Under the assumption that the independent identically distributed d-dimensional random summands
X, X1, X2, … have zero mathematical expectations and finite fourth-order moments, in joint works [113,
114], it was shown that, for sets bounded by second-order surfaces, the accuracy of approximation by short
asymptotic expansions in the central limit theorem is of the order O(1/n), where n is the number of sum-
mands, provided that the there are no less than five dimensions of the space. Earlier, similar statements
were obtained in the joint work by F. Götze and V. Bentkus [115] under the assumption that the space
dimension is at least nine. In [114], nine was replaced by five and no further reduction in the dimensions
is possible. Estimates are uniform with respect to isometric operators participating in the definition of the
surfaces. In [114], explicit simple expressions were obtained for the power-law dependence of the corre-
sponding constants on the fourth-order moments and on the eigenvalues of the covariance operator of
finite-dimensional summands. In particular, it was proven that, for 5 ≤ d < ∞, we have the inequality

Here,  is the covariance operator of the random vector X, σ2 = E||X||2, and η is a centered Gaussian vector
with the covariance operator . Note that the results of [113] are not overlapped by the results of [114].
The quantity σd( )–1/2 for σ2 = 1 is replaced in [113] by a quantity that depends only on the five max-
imal eigenvalues of the operator .

In recent years, A. Yu. Zaitsev has published several joint works on estimating the concentration func-
tions of the distributions of sums of independent random variables. In addition to the aforementioned
work [71], in recent papers [116–118], the inequalities for estimating the concentration functions of the

weighted sums of independent identically distributed random variables Sa =  in the Little-
wood–Offord problem from [119–121] and [122] were refined. These results reflect the dependence of the
estimates on the arithmetic structure of the weight coefficients ak and on the common distribution of the
random variables Xk.

Esseen [123] showed that Q(Fn, λ) =  for fixed λ > 0 if and only if EY2 = ∞ and F = . In
[124, 125], quantitative refinements of this result were obtained.

In [126], the connection between the rate of decay of Q(Fn, λ) and the assumptions on the exis-
tence of finite moments Eψ(Y) of the functions ψ(Y) was studied. It was shown that no condition of
the infiniteness of the moments can provide a decay of the concentration functions Q(Fn, λ) which is
much faster than o(n–1/2).

6. ON A CLASS OF LIMIT DISTRIBUTIONS FOR NORMALIZED SUMS 
OF INDEPENDENT RANDOM VARIABLES

Let ξ1, ξ2, … be a sequence of mutually independent random variables, and

be a sequence of normalized sums having—with an appropriate choice of the normalizing constants
Bn (Bn → ∞)—its own limit distribution. In the mid-1950s, Gnedenko [127] formulated the problem of
characterizing the class of limit distributions of such sums when, among the laws of distribution of random
variables ξn, there are no more than r different. Denote this class by Pr.

This problem aroused a keen interest from the very beginning, and a hypothesis was suggested that class
Pr must coincide with the composition of stable distributions, which was facilitated by certain facts such
as, e.g., the descriptions of P1 and P2 obtained by V. M. Zolotarev and V. S. Korolyuk [128]. However, fur-
ther studies have shown that the hypothesis about the nature of Pr should be substantially refined.

The corresponding results are contained in the papers of A. A. Zinger [129, 130] in three theorems for-
mulated there that allow one to describe the laws belonging to Pr with the help of the character of the spec-
tral measures in their Lévy–Khinchin representation. Theorem 3 gives a condition under which the
Gnedenko hypothesis is true. As follows from the formulation of Theorem 1, the laws of the class Pr are a
special case of the laws of a more general nature, first studied by Yu. V. Linnik [131] in connection with
the laws admitting identically distributed linear statistics in repeated samples.
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7. ALMOST SURE LIMIT THEOREMS
An almost sure limit theorem (ASLT) is an assertion about the weak convergence with probability one

(almost surely) of empirical measures generated by a sequence of random variables. This type of conver-
gence was independently discovered by Schatte and Brosamler in 1988 and aroused great interest (see,
e.g., review [132]). Here, we describe only the results obtained in St. Petersburg, where I. A. Ibragimov,
M. A. Lifshits, and E. S. Stankevich [133–138] worked on this subject.

We begin with a sufficient condition for the ASLTs for sums of independent non-identically distributed
random vectors [135].

Let {ξj} be a sequence of independent random vectors taking values in a separable normed space ( , ).
Consider the normalized sums

and assume that they satisfy the limit theorem

(26)

with some limit distribution law G in .
Define empirical measures

(27)

where {bk} is a positive bounded sequence satisfying the condition

and γn = . For u ≥ 1 and a function H : [1, ∞) → (0, ∞], set

Then we have the following theorem on the almost sure convergence.

Theorem 7.1. Suppose that Bn  ∞ and condition (26) is satisfied. If there exists a function H such that

then P{Qn ⇒ G} = 1.
This result holds for any sequence of random vectors ζk admitting the representation

for all  ≤ k, where  and  are independent and the family of linear operators {  : } is uni-
formly bounded. In this form, it can be applied, e.g., to sample trajectories of the partial sum processes
arising in the classical invariance principle.

It should be noted that, later, this type of results was developed in the work by Berkes and Csáki [139],
who considered the nonlinear functionals of sequences of independent variables.

Further on, in [135], the delicate difference between the central limit theorem (CLT) and its almost
sure analogue (ASCLT) was studied. Berkes and Dehling [140] established the equivalence of the CLT and
the ASCLT under the assumption

with an arbitrarily small h > 0. The following result shows that the parameter h in this statement cannot be
excluded.
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Theorem 7.2. Let a > 1, α ∈ , and ξj = Yj + Xj, where {Yj, Xj} are independent collectionwise, Yj are

standard normal variables, and Xj = 0 for all xj except for the sequence nm = [exp{am}]. Let  = ±Um with

equal probabilities  and an amplitude Um = . Set  = 0 with the residual probability 1 – .

Then, the normalized sums

satisfy the condition

and the central limit theorem ζn ⇒ (0, 1) but the almost sure limit theorem for them is not satisfied.

In [138], the applicability of ASCLT to the normalized values of martingales with discrete time was
studied. It turns out that, unlike the sums of independent variables, even under relatively strong moment
conditions, the ASCLT does not follow from the classical limit theorem. Nevertheless, the ASCLT can be
proven under conditions fairly close to those under which the classical limit theorems are proven. It is only
necessary to make sure that the increments of the martingale be asymptotically smaller than the normal-
izing sequence. It is interesting that, in the limit, random limiting distributions G can arise.

Let {Xj} be a square-integrable martingale difference with zero expectation and Bk  ∞ be a sequence

of positive numbers. Set ζk = . Define the empirical measures Qn by relation (27) and assume

that the corresponding weights {bk} satisfy the condition

Let  be analogous empirical measures obtained by replacing ζn by the self-normalized sums

, where  = .

Finally, if η is a nonnegative random variable, then denote by  the η-mixture of normal laws, i.e., a
distribution with the characteristic function φ(t) = Eexp{–ηt2/2}.

Theorem 7.3. Let Xj, Bk, ζk, Uk, and bk be defined as above and be supposed to satisfy the condition

Suppose that the limit relations Xj/Bj → 0 and

are satisfied a.s.

Then, almost surely, Qn ⇒ (0, η) and   ⇒ (0, 1).

Some results were obtained for the classical statement of the problem that appears as follows. Let {Sk}
be partial sums of a sequence of independent identically distributed random variables with zero mean and

a unit variance: X1, X2, … Denote ζk = . Define the corresponding empirical measures as

(28)
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The ASCLT states that P{Qn ⇒ } = 1, where  is the standard normal distribution. Therefore, for
any continuous bounded function h, we almost surely have

The following theorem from [136] shows that this assertion holds for an unbounded function, provided
that its increase is subject to a minimal condition.

Theorem 7.4. Let {Xj} be a sequence of independent identically distributed variables with zero mean and a
unit variance. Let Qn be empirical measures from (28) and  be the standard normal distribution. Let A,
H0 > 0 and the function f : [A, ∞)  R+ be nondecreasing, the function x  f(x) exp{–H0x2} be nonincreas-
ing, and

(29)

Then, for any continuous functions h satisfying the estimate

we have

The assertion of the theorem, which is naturally interpreted as the convergence of generalized
moments, will become false if we remove the assumptions on the regularity and leave only basic condition
(29).

For the same classical ASCLT scheme, the necessary conditions for the principle of large deviations
were found in [137]. As shown by Heck [141] and P. March and T. Seppäläinen [142], if E|X1|m < ∞ for all
m > 0, then the measures Qn satisfy the strong principle of large deviations in the space (R) of finite non-
negative measures equipped with the topology of weak convergence. In other words, for all closed sets
F ⊂ (R) and all open sets G ⊂ (R), we have the relations

Here, the deviation function I for probability distributions is equal to the entropy of the Ornstein–
Uhlenbeck process IOU and is equal to infinity on the remaining measures. It should be noted that I(μ) =
0 is equivalent to μ = (0, 1).

It appears that, in this statement, the moment conditions are optimal (although, in the classical prin-
ciple of large deviations for empirical measures, moment restrictions are not required at all).

Theorem 7.5. Let a sequence of empirical measures Qn corresponding to independent identically distributed
variables {Xj} satisfy the strong principle of large deviations with a deviation function I such that the level set
{μ : I(μ) ≤ r} is compact for each r ≥ 0. Then, E|Xj|m < ∞ at all m > 0.

An interesting nonstandard approach to the almost sure limit theorems was proposed in
A. I. Martkainen’s work [143].

8. CONCLUSIONS

Thus, the Leningrad–St. Petersburg school of probability and statistics has made a significant contri-
bution to the theory of summation of independent random variables. The achievements of its representa-
tives in other fields of probability and statistics will be outlined in subsequent articles of this series.
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