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In this work we study the problem of diffraction of an acoustic plane wave by a semi-infinite angular
sector with impedance boundary conditions on its surface. It is studied by means of incomplete separation
of variables. With the aid of Watson–Bessel integral representation the problem is reduced to a boundary
value problem on the unit sphere with an operator-impedance boundary condition on a cut of the sphere.
The latter problem is further studied by means of the traditional methods of extensions of sectorial
sesquilinear forms. The Sommerfeld integral representation is obtained from that of Watson–Bessel
with the aim to develop the far-field asymptotics. Analytic properties of the corresponding Sommerfeld
transformant are also discussed. For a narrow impedance sector, an asymptotic formula for the diffraction
coefficient of the spherical wave propagating from the vertex is derived.

Keywords: diffraction by an impedance sector; integral representations; narrow cone; diffraction
coefficient.

1. Introduction

1.1. Motivation and some comments on the literature

To our knowledge, until present time the problem of diffraction by an impedance sector has not been
discussed in the literature. It seems that the reason is in the analytic difficulties arising in the study of
the problem in spite of the fact that the impedance boundary conditions are more realistic in practice in
comparison with those ideal ones. We modify and adapt the approach recently developed by Lyalinov
(2013), for the case of the sector with Dirichlet boundary conditions, in order to describe the far-field
asymptotics in the problem of diffraction by a plane angular sector with impedance boundary conditions
on its surface.

Consider the unit sphere with the centre at the sector’s vertex then the sector and the sphere are
intersected across a segment (‘cut’) AB of a big circle, Fig. 1. We assume that the angular measure 2a
of the corresponding arc satisfies the restrictions 0 < 2a < π . One of the most interesting cases is the
quarter-plane corresponding to 2a = π /2.

In many aspects our approach has common features with those used for the problems of diffraction
by cones with ideal (see e.g. Bowman et al., 1987; Felsen & Marcuvitz, 1973; Borovikov, 1966; Jones,
1964; Jones, 1997; Cheeger & Taylor, 1982; Smyshlyaev, 1991; Smyshlyaev, 1990; Babich et al.,
2000; Bonner et al., 2005) or impedance boundary conditions. Diffraction by an impedance cone
is studied in the papers of Bernard (1997), Bernard & Lyalinov (2001), and Bernard et al. (2008).
Some additional results and references can be found in Lyalinov et al. (2010) and Lyalinov & Zhu
(2012). As regards papers on diffraction by a sector with the ideal boundary conditions reader might
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Fig. 1. Diffraction by an impedance sector.

be forwarded to discussion of the literature in our work (Lyalinov, 2013, see also Kraus & Levine,
1961; Hansen, 1991; Meister & Speck, 1988; Radlow, 1961; Albani, 2007; Valyaev & Shanin, 2012;
Abawi et al., 1997; Assier & Peake, 2012a; Assier & Peake, 2012b; Budaev & Bogy, 2005).

It is worth noting that the far-field asymptotics is of basic importance in numerous applications
of such canonical problem like diffraction by an impedance sector. However, in order to develop the
corresponding asymptotic expressions it is necessary to obtain the corresponding analytic tools, integral
representations, to justify them and give a constructive way to obtain a solution and then to develop
efficient numerical procedures. In this work we pay much attention to such tools implying that a detailed
study of the far-field asymptotics will be discussed in a forthcoming publication. Nevertheless, we
demonstrate the efficiency of the developed formulae by deducing a practically useful expression for
the diffraction coefficient of the spherical wave from the vertex of a narrow impedance sector.

In the modern interpretation a diffraction problem might be considered satisfactorily solved provided
the following conditions are fulfilled. First, it is demonstrated that it has a unique solution and all
necessary representations (integral or others) for the solution are established. Second, the far-field
asymptotics, including those in the transition zones, are derived from such representations and the
expressions for the diffraction coefficients are obtained. Finally, the numerical elaboration of the solution
is given and the numerical results for the far field are represented. From this point of view, for instance,
the problem of diffraction by a right-circular cone with ideal boundary conditions can be considered
solved. As regard the problem of diffraction by an impedance sector, the study represented in this work
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basically deals with the first step of the solution in the above-mentioned sense. On the other hand, a
formula for the diffraction coefficient in the so-called oasis (defined below) is derived and its asymptotic
expression for a narrow impedance sector is given.

1.2. Description of the approach

In the following sections we formulate the problem of diffraction by an impedance sector, Fig. 1. The
wave field satisfies the Helmholtz equation, the impedance boundary conditions, Meixner’s conditions
at the edges and at the vertex. Provided the scattered wave satisfies the radiation condition at infinity,
the classical solution of the problem is unique. However, in the case of incidence of a plane wave the
scattered field does not satisfy the radiation condition and we then discuss asymptotic behaviour of the
wave field at infinity. We introduce a set of characteristic domains of the unit sphere centred at the vertex
of the sector. Each point of such a domain on the sphere is attributed to some direction of observation.
In different characteristic domains the far-field asymptotics consists of different wave field components.

In order to separate the radial variable we make use of the Watson–Bessel integral representation
for the solution and formulate a problem for the unknown ‘spectral’ function on the unit sphere with
the cut AB. An elliptic (Helmholtz type) equation for the spectral function depends on the variable of
separation ν, whereas the boundary condition on the sides of the cut AB is nonlocal with respect to ν

and has a form of the mixed boundary condition with an operator-impedance in it. We then carefully
study such a problem attributing an m-sectorial operator to it. This operator is introduced by means of
the corresponding sesquilinear form admitting a closed extension.1 Then the meromorphic continuation
for spectral function w.r.t. ν is discussed. The latter exploits the corresponding Green’s theorem on the
unit sphere with the cut and leads to an integral equation of the second kind for the spectral function
on the cut. The Sommerfeld integral representation for the wave field is derived from that of Watson–
Bessel and the properties of the Sommerfeld transformant (an analytic function in the integrand) are
discussed. In particular, domain of regularity of the transformant is described, which enables one to
point out domains on the complex plane, where singularities of the Sommerfeld transformant are located.
The singularities of the integrand give rise to different far-field components provided the Sommerfeld
integral is evaluated by means of the saddle point technique. Indeed, some of these singularities may
be captured in the process of deformation of the Sommerfeld double loop contour into the steepest
descent paths (Lyalinov, 2013). The contribution of the saddle points is responsible for the spherical
wave from the vertex. Remark that, provided the observation point is in the space region, where only
the spherical wave from the vertex is observed in the scattered far field (in the so-called ‘oasis’), these
singularities are not intersected. For a narrow sector (2a � 1) an approximate asymptotic expression for
the diffraction coefficient of the spherical wave from the vertex in the oasis is deduced by means of the
above-mentioned results.

2. Formulation of the problem

Let us use the spherical coordinates (r, ϑ , ϕ) attributed to the Cartesian ones by the correlations

X1 = r cos ϕ sin ϑ , X2 = r sin ϕ sin ϑ , X3 = r cos ϑ .

1 It is worth remarking that in our study the use of closable sectorial forms and m-sectorial operators looks natural for the
problem on the unit sphere with the cut. It has been partly inspired by a very useful work by Assier et al. (2016), where similar
but simpler spectral problems for the Laplace–Beltrami operator with ideal boundary conditions on the cut have been considered.
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We consider a plane wave2 which is incident from the direction specified by ω0 = (ϑ0, ϕ0) (Fig. 1)

Ui(r, ϑ , ϕ) = exp {−ikr cos θi(ω, ω0)} , (2.1)

where ω = (ϑ , ϕ) corresponds to the direction of observation and

cos θi(ω, ω0) = cos ϑ cos ϑ0 + sin ϑ sin ϑ0 cos[ϕ − ϕ0],

θ i(ω, ω0) coincides with the geodesic distance between two points ω and ω0 denoted also θ (ω, ω0),
θ (ω, ω0) = θ i(ω, ω0).

The wave field U(r, ϑ , ϕ) + Ui(r, ϑ , ϕ) is the sum of the scattered and incident fields, U fulfils the
Helmholtz equation

(� + k2)U(r, ϑ , ϕ) = 0, (2.2)

k > 0 is the wave number. Let Σ = S2 \ AB be the exterior of the cut on S2 and σ = ∂Σ , σ = S ∩ S2 its
boundary, σ = σ+ ∪ σ− and σ± are two sides of the cut AB. The impedance boundary condition

1

r

∂(Ui + U)

∂N±

∣
∣
∣
∣
S±

− ikη± (Ui + U)|S± = 0, (2.3)

is satisfied on the sector S, S± are two faces of the sector S = {(r, ω) : r � 0, ω ∈ AB} corresponding to
σ± on S2. The vectors N± are in the tangent plane to S2 at the points of σ±, are orthogonal to σ± and
point out to the ‘exterior’ of Σ . The surface impedances η± = ε± + iχ± do not depend on k, ε± > 0,
which means absorption of the wave energy on the sector’s faces.3 The case of reactive faces (ε± = 0)
can be considered as a limiting one.

The Meixner’s edge conditions are assumed near the edges ∂Si, i = 1, 2 (and outside some close
vicinity of the vertex)

U ∼ C0
1,2(z) + C1,2(z, φ)ρ1/2 + . . . , ρ → 0 (2.4)

uniformly bounded with respect to z, φ, assuming that ρ, φ, z are natural local cylindrical coordinates
attributed to the edges ∂Si, i = 1, 2, where the index i is omitted for the coordinates. We connect notations
A and B with the edges ∂S1 and ∂S2 correspondingly. The conditions at the vertex of the sector take
the form

|U| � C r−1/2+ε , |∇U| � C r−3/2+ε , r → 0 (2.5)

which are valid uniformly with respect to the angular variables for some positive ε, see Section 5.7 in
Van Bladel (1991).

2 The harmonic time-dependence e−iω̂t is assumed and suppressed throughout the paper.
3 The sign of χ± is not fixed; however, in the case χ± < 0, ε± = 0 surface waves are excited on the impedance surfaces of the

sector and propagate to infinity without attenuation.

Downloaded from https://academic.oup.com/imamat/article-abstract/83/1/53/4796912
by guest
on 25 January 2018



ACOUSTIC SCATTERING BY A SEMI-INFINITE ANGULAR SECTOR 57

We are looking for a classical solution of the problem, i.e. U ∈ C2
loc(R

3 \ S) and such that 1
r

∂U
N± and

U exist and are continuous on S±. Now we turn to the behaviour of the solution at infinity.

2.1. Uniqueness

Let us now assume that the scattered field satisfies the radiation condition (which is not the case for the
incidence of a plane wave)

∫

SR\S
|∂rU − ikU|2 ds → 0 , R → ∞ , ε± > 0 , (2.6)

where SR = {(r, ω) : r = R , ω ∈ S2 \ σ }, ω = (ϑ , ϕ).

Theorem 2.1 The classical solution of the homogeneous problem (2.2)–(2.6) (i.e. with Ui = 0) is
trivial, U ≡ 0.

Consider a ball Bδ of small radius δ centred at the vertex O with the boundary Sδ , ∂Bδ := Sδ , Fig. 2.
Also we introduce semi-infinite cylinders Ci

δ of the radius δ having the axis ∂Si, i = 1, 2. We denote dδ

the set Bδ ∪ C1
δ ∪ C2

δ with the external boundary ∂dδ , see Fig 2. The domain dδ is a δ −neighbourhood
of the edges ∂S1 ∪ ∂S2. Let BR be a ball of the large radius R, ∂BR := SR, then Dδ,R = BR \ (S ∪ dδ) is
a part of this ball being exterior to S and to dδ . Remark that the boundary of the domain Dδ,R is ∂Dδ,R
consisting of ∂dδ,R := ∂dδ ∩ BR, S±

δ,R := BR ∩ (S± \ dδ) and Sδ,R := SR \ (dδ ∪ S).

Fig. 2. Domains in the proof of uniqueness.
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We apply the Green’s identity

∫

Dδ,R

�U Udx =
∫

∂Dδ,R

∂nU U ds −
∫

Dδ,R

|∇U|2 dx

to U and U in Dδ,R, exploit the Helmholtz equation, boundary conditions and take the imaginary part.
Simple calculations lead to

k
∑

±
�(η±)

∫

S±
δ,R

|U|2 ds + 

(
∫

∂dδ,R

∂nU U ds

)

+ 

(
∫

Sδ,R

∂rU U ds

)

= 0,

where ∂n is the differentiation along the normal directed outward w.r.t. Dδ,R. Let δ → 0, we apply the
Meixner’s conditions at the edges and vertex. The integral over ∂dδ,R vanishes. We then verify the chain
of inequalities

0 � k
∑

±
ε±
∫

S±
0,R

|U|2 ds = −

(∫

SR\S
∂rU U ds

)

(2.7)

= −

(∫

SR\S
(∂rU − ikU) U ds

)

− k
∫

SR\S
|U|2 ds

�
(∫

SR\S
|∂rU − ikU| 2 ds

)1/2 (∫

SR\S
|U|2 ds

)1/2

− k
∫

SR\S
|U|2 ds.

The latter expression is non-negative and from the radiation condition we have

k

(∫

SR\S
|U|2 ds

)1/2

�
(∫

SR\S
|∂rU − ikU| 2 ds

)1/2

→ 0

as R → ∞. We find that

k lim
R→∞

∫

SR\S
|U|2 ds = 0

and from (2.7)
∫

S±
|U|2 ds = 0,

U|S± = 0.

Making use of the boundary conditions, we find

1

r

∂U

∂N±

∣
∣
∣
∣
S±

= 0.
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As a result, we deal with the homogeneous Cauchy problem for an elliptic (Helmholtz) equation satisfied
by U with the trivial initial conditions on the surface S±. Such a solution is known to be trivial, U ≡ 0.

As we have already mentioned the radiation condition (2.6) is not valid for the scattered field excited
by a plane incident wave. It must also be modified appropriately as ε+ = 0 or ε− = 0. In such cases
surface waves can be excited and propagate along the sector’s surface at infinity without attenuation.

2.2. The far-field asymptotics

In order to describe the asymptotic behaviour of the scattered field as r → ∞ it is useful to define some
sub-domains on the unit sphere S2 with the cut σ = AB. Let Ωδ0 be a close vicinity of the cut on the
unit sphere

Ωδ0 =
{

ω ∈ S2 : dist(ω, σ) < δ0

}

,

where δ0 is some small positive constant. In what follows we assume that ω0 ∈ S2 \Ωδ0 , i.e. the incident
plane wave arrives from the directions being not very close to AB.

Consider the geodesic distance θ (ω, ω0) between two points ω and ω0 on the sphere S2 (see,
Lyalinov, 2013, Section 2 for details). In the same manner, introduce the ‘broken’ geodesic θ r(ω, ω0).
This geodesic has simple geometrical meaning: this is a broken geodesic of the minimal length which
originates at the source ω0 then reflects on the boundary σ = AB in accordance with geometrical optics
laws and arrives at the point ω. The ‘incident’ parts of such broken geodesics fill in the spherical triangle
ω0AB, whereas the ‘reflected’ parts fill in the spherical triangle FrBA which is further denoted Ωr =:
Ωr(ω0), (see Figs 3–5).

Specify the spherical triangular domain Ω∗
r coinciding with the triangle ABFi in Fig. 3. The domain

Ω∗
r is the mirror image of Ωr with respect to the boundary σ for the same fixed position of ω0.

Fig. 3. The triangular domain Ωr with the vertexes ABFr on S2.
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Fig. 4. The triangular domain Ω∗
r with the vertexes ABFi on S2.

Fig. 5. The domain ΩA on S2.

We also make use of two other domains ΩA(ω0) (see Fig. 5) and ΩB(ω0). Consider the ray
(geodesic) ω0A which arrives at the edge point A and produces a set of ‘diffracted’ rays (geodesics)
outgoing from A in all direction. For each point ω there exists such a diffracted ray with length
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ψA(ω), (ψA(ω) < π ) that arrives at this point. We define ΩA(ω0) as a domain on the sphere such that
ΩA(ω0) = {ω ∈ S2 : 0 � θA(ω, ω0) := θi(A, ω0)+ψA(ω) < π}, see also Section 2 in Lyalinov (2013).

The domains ΩA and ΩB on S2 intersect with Ωr and Ω∗
r and with each other. The domain Ω∗

r
corresponds to directions in which geometrical shadow of the incident wave is observed. Ωr forms a
set of directions of propagation of the space rays reflected from the sector S. The domain ΩA (or ΩB)
corresponds to the directions for which the diffracted cylindrical wave from the edge A (or from B)
is present in the far-field asymptotics. These simple facts follow from the analysis also presented in
Lyalinov (2013).

Remark It is worth noting that we can also introduce domain ΩAB (and analogously ΩBA), see
Lyalinov (2013) as well as the domains ΩABA, ΩBAB, ΩABAB . . . , etc. which are defined and interpreted
analogously. They correspond to multiple diffractions.

We introduce the domain Ω0 = S2 \ (ΩA ∪ ΩB ∪ Ωr) on the sphere S2, which is called ‘oasis’. The
scattered far-field U (total minus incident) in this domain of directions consists of the spherical wave
propagating from the vertex of the sector

U(r, ϑ , ϕ) = D(ω, ω0)
exp(ikr)

−ikr

(

1 + O

(
1

kr

))

, kr → ∞. (2.8)

In the asymptotics (2.8), which is non-uniform with respect to ω ∈ Ω0, the diffraction coefficient D(ω,
ω0) is one of the most important characteristics of the scattered field.4

In the exterior of the oasis the structure of asymptotics is more complex and contains also other
wave components in the far field. Consider the directions from (S2 \ (Ω∗

r ∪ Ωr ∪ ΩB)) ∩ ΩA in which
the spherical wave, the cylindrical wave from the edge A as well as surface waves (possibly also other
multiply diffracted) are observed in the far field

U(r, ϑ , ϕ) = D(ω, ω0)
exp(ikr)

−ikr

(

1 + O

(
1

kr

))

+ dA(ω, ω0)
exp (−ikr cos θA(ω, ω0))√−ikr sin ψA

(

1 + O

(
1

kr sin ψA

))

+ Vs(r, ϑ , ϕ) + . . . , (2.9)

where dots denote the waves multiply diffracted from the edges, provided the corresponding directions
belong also to ΩBA, ΩABA, . . . .5 The yet unknown function dA(ω, ω0) in (2.9) is connected with the
diffraction coefficient of the cylindrical wave from the edge A. The summand Vs(r, ϑ , ϕ) is the sum of

4 The asymptotics (2.8) fails provided the observation point approaches the boundary of Ω0, near the boundaries of the
domains Ωi, i = 0, r, A, B, . . . some special transition functions apply to match the local asymptotics.

5 Usually these waves are neglected in comparison with the first two terms because they have higher order with respect to
(kr)−1.
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the surface waves generated by the interaction of the incident waves with the vertex or edges. It is only
essential provided the observation point is in the close vicinity of the sector, ω ∈ Ωδ0 and as ε± = 0,
χ± < 0,

Vs(r, ϑ , ϕ) = Ds(ω, ω0)
exp(−ikr cos θs(ω, ω0))√−ikr

(

1 + O

(
1

kr

))

+ DA
s (ω, ω0) exp

(

−ikrcos θA
s (ω, ω0)

)

+ DB
s (ω, ω0) exp

(

−ikrcos θB
s (ω, ω0)

)

+ . . .

(2.10)

with complex valued eikonals θs(ω, ω0), θA,B
s (ω, ω0). These eikonals solve the equations

(∇ωθs)
2 = 1,

(

∇ωθA,B
s

)2 = 1, (2.11)

satisfying the conditions


(θs)|σ = 0, 
(θs) > 0, 0 � �(θs) < π,


(θA,B
s )|σ = 0, 
(θA,B

s ) > 0 0 � �(θA,B
s ) < π

as ε± = 0, χ± < 0.
In the domain (S2 \ (Ω∗

r ∪ Ωr ∪ ΩA)) ∩ ΩB the asymptotics has the same form as in (2.9) with the
change of the subscript A on to B in the second summand which describes the cylindrical wave from the
edge B.

In the directions ω from Ωr ∩ (ΩB ∪ΩA) the leading terms consist of the reflected, spherical and
diffracted (from the edges A and B) waves (as well as surfaces ones)

U(r, ϑ , ϕ) = R(ω, ω0) exp (−ikr cos θr(ω, ω0)) + D(ω, ω0)
exp(ikr)

−ikr

(

1 + O

(
1

kr

))

+ dA(ω, ω0)
exp (−ikr cos θA(ω, ω0))√−ikr sin ψA

(

1 + O

(
1

kr sin ψA

))

(2.12)

+ dB(ω, ω0)
exp (−ikr cos θB(ω, ω0))√−ikr sin ψB

(

1 + O

(
1

kr sin ψB

))

+ Vs(r, ϑ , ϕ) + . . . ,

where R(ω, ω0) is the reflection coefficient in the first summand Ur(ω, ω0) = R exp(−ikr cos θr(ω, ω0))

of (2.12) which is the reflected wave. The summand Vs(r, ϑ , ϕ) has the same meaning as in the
formula (2.9).
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The wave field U + Ui in the shadow of the incident wave, i.e. as ω ∈ Ω∗
r ∩ (ΩB ∪ ΩA), reads

U(r, ϑ , ϕ) + Ui(r, ϑ , ϕ) = D(ω, ω0)
exp(ikr)

−ikr

(

1 + O

(
1

kr

))

+ dA(ω, ω0)
exp (−ikr cos θA(ω, ω0))√−ikr sin ψA

(

1 + O

(
1

kr sin ψA

))

+ dB(ω, ω0)
exp (−ikr cos θB(ω, ω0))√−ikr sin ψB

(

1 + O

(
1

kr sin ψB

))

+ Vs(r, ϑ , ϕ) + . . . , (2.13)

kr → ∞.
We do not describe the asymptotics of the far field in the transition domains, where the expressions

depend on special transition functions, see e.g. Lyalinov (2013), Sections 6 and 7. It is worth mentioning
the work of Shanin (2011), where similar asymptotics for diffraction by an ideal circular cone were
established.

3. Watson–Bessel integral representation of the solution and reduction to the problem for the
spectral function

We turn to the separation of the radial variable of the solution which exploits the Watson–Bessel integral
representation. We begin with that for the incident wave.

3.1. Watson–Bessel integral representation for the incident wave

We make use of the known Watson–Bessel integral representation for the incident wave (2.1)

Ui(r, ϑ , ϕ) = 4i

√

π

2

∫

Cφ

ν e−iνπ/2ui
ν(ω, ω0)

Jν(kr)√−ikr
dν, (3.1)

where ui
ν(ω, ω0) = −Pν−1/2(− cos θi(ω,ω0))

4 cos πν
,

(

�ω + (ν2 − 1/4)
)

ui
ν(ω, ω0) = δ(ω − ω0), (3.2)

Pν−1/2(x) is the Legendre function and Cφ with φ ∈ [0, π /2) is shown in Fig. 6. The contour Cφ is
traditionally taken for φ = 0; however, for some reductions it is possible also to use Cφ with φ ∈ (0,
π /2). The ‘spectral’ function ui

ν(ω, ω0) corresponding to the incident plane wave admits the estimate

∣
∣
∣ui

ν(ω, ω0)

∣
∣
∣ < C

1√|ν| exp {−|ν| | sin φ| θ(ω, ω0)}, (3.3)
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Fig. 6. The contours C0 and Cφ .

as |ν| → ∞ and ν ∈ Cφ . Remark that Jν(kr) ∼ [kr/2]ν

Γ (ν+1)
, � ν → +∞, | arg ν| < π/2. The estimate of

the integrand in (3.1) on Cφ as |ν| → ∞, ν = |ν|eiφ , 0 � φ < π/2 is given by6

∣
∣
∣ν e−iνπ/2ui

ν(ω, ω0)Jν(kr)
∣
∣
∣ < C exp {−|ν|(log |ν| − 1) cos φ − |ν|(sin φ[arg(kr/2) − π/2 − φ]

+ | sin φ|θ(ω, ω0) − cos φ log |kr/2|)} . (3.4)

It is assumed in (3.4) that k may be complex with |argk| < π /2 although we consider argk = 0 in this
work. Actually the constants in the estimates (3.4) and (3.3) are different; however, for convenience we
take the maximal one and denote it by C. It is also useful to have these estimates not only for real k > 0
but for | arg k| < π/2 as well. The integral in (3.1) then rapidly converges. It is worth noting that the
function ui

ν(ω, ω0) is even with respect to ν and is holomorphic in the strip Π1/2,

Πδ = {ν ∈ C : |
(ν)| < δ}.
Its simple poles are located at zeros of cos πν.

3.2. Watson–Bessel integral representation for the scattered field and separation of the radial variable

In order to separate the radial variable for the problem at hand we look for the solution in the integral
form

U(r, ϑ , ϕ) = 4i

√

π

2

∫

C0

ν e−iνπ/2 uν(ω, ω0)
Jν(kr)√−ikr

dν (3.5)

with unknown ‘spectral’ function uν(ω, ω0).

6 The Stirling asymptotics for the complex argument of the gamma-function is also exploited.
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Fig. 7. Integration contour Cb
0 and its deformation.

We begin with some formal reductions enabling us to motivate our approach and to make reasonable
assumptions about the basic properties of the spectral function to be constructed. Let uν(ω, ω0) satisfy
the equation

(

�ω + (ν2 − 1/4)
)

uν(ω, ω0) = 0 (3.6)

in the classical sense, i.e. uν(·, ω0) ∈ C2(Σ), Σ = S2 \ σ then, as is well known (see e.g. Smyshlyaev,
1991 and others), the scattered field U(r, ϑ , ϕ) in (3.5) solves the Helmholtz equation (2.2).

Now we turn to the boundary condition (2.3)

1

r

∂(Ui + U)

∂N±

∣
∣
∣
∣
ω∈σ±

− ikη± (Ui + U)|ω∈σ±

= 4i

√

π

2

∫

Cb
0

ν e−iνπ/2

(

∂ ûν(ω, ω0)

∂N±

∣
∣
∣
∣
σ±

(−i)Jν(kr)

(−ikr)3/2
− iη± ûν(ω, ω0)|σ±

Jν(kr)

(−ikr)1/2

)

dν = 0,

where Cb
0 is shown in Fig. 7, ûν(ω, ω0) = uν(ω, ω0) + ui

ν(ω, ω0). We assumed that uν is holomorphic7

and even w.r.t. ν in some vicinity of the imaginary axis, meromorphic in C and some of its possible
sigularities are located inside the contour Cb

0.

7 More accurate formulations will be given in the following section.
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We take into account the identity zJν−1(z) + zJν+1(z) = 2νJν(z). After some reductions one has

4

√

π

2

∫

Cb
0

dν e−iνπ/2

(

∂ ûν(ω, ω0)

∂N±

∣
∣
∣
∣
σ±

i(Jν−1(kr) + Jν+1(kr))

2
√−ikr

+ η± ν ûν(ω, ω0)

∣
∣
∣
∣
σ±

Jν(kr)√−ikr

)

= 0,

then appropriately change the variables of integration so that

2i

√

π

2

⎛

⎜
⎜
⎝

∫

Cb
0−1

dν e−i(ν+1)π/2 ∂ ûν+1(ω, ω0)

∂N±

∣
∣
∣
∣
σ±

Jν(kr)√−ikr
+
∫

Cb
0+1

dν e−i(ν−1)π/2 ∂ ûν−1(ω, ω0)

∂N±

∣
∣
∣
∣
σ±

Jν(kr)√−ikr

− 2iη±
∫

Cb
0

dν ν e−iνπ/2̂uν(ω, ω0)

∣
∣
∣
∣
σ±

Jν(kr)√−ikr

⎞

⎟
⎟
⎠

= 0,

where the contours of integration Cb
0 + 1 and Cb

0 − 1 are those in Fig. 7 obtained by shifting Cb
0 along

the real axis to the right- or left-hand side accordingly and Cb
0 consists of the parts (∞ − ib, −ib],

[−ib, ib] and [ib, ∞ + ib). The contours Cb
0 + 1 and Cb

0 − 1 are explicitly described by {Cb
0 + 1} =

(∞ − ib + 1, −ib + 1] ∪ [−ib + 1, ib + 1] ∪ [ib + 1, ∞ + ib + 1) and {Cb
0 − 1} = (∞ − ib − 1, −ib −

1] ∪ [−ib − 1, ib − 1] ∪ [ib − 1, ∞ + ib − 1).
Let us now assume that uν(ω, ω0) is taken meromorphic w.r.t. ν ∈ C with the poles inside some strip

|I(ν)| < b, holomorphic in Πδ for some small δ > 0 and such that ∂ ûν (ω,ω0)
∂N±

∣
∣
∣
σ±

is regular (holomorphic)

in the strip Πδ+1. We are now able to deform the contours Cb
0 + 1 and Cb

0 − 1 into that Cb
0 in Fig. 7 thus

having

2

√

π

2

∫

Cb
0

dν e−iνπ/2

(

∂ ûν+1(ω, ω0)

∂N±

∣
∣
∣
∣
σ±

− ∂ ûν−1(ω, ω0)

∂N±

∣
∣
∣
∣
σ±

+ 2η±ν ûν(ω, ω0)|σ±

)

Jν(kr)√−ikr
= 0.

We conclude that, provided ûν(ω, ω0) = uν(ω, ω0) + ui
ν(ω, ω0) satisfies the boundary condition

on σ = σ+ ∪ σ−

∂ ûν+1(ω, ω0)

∂N±

∣
∣
∣
∣
σ±

− ∂ ûν−1(ω, ω0)

∂N±

∣
∣
∣
∣
σ±

+ 2ν η± ûν(ω, ω0)|σ± = 0, (3.7)

the wave field U + Ui fulfils the boundary condition (2.3).

Remark The condition (3.7) is nonlocal with respect to the spectral variable ν, which means that,
contrary to the Helmholtz equation, the radial variable in the mixed boundary condition (2.3) is not
separable in a traditional meaning.
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In order to transform the boundary condition to an alternative form we take into account a simple
Lemma which actually follows from the known technique developed for a class of functional equations,
Babic et al. (2008), Chapter 7.

Lemma 3.1 Let H(ν) be holomorphic as ν ∈ Πδ and |H(ν)| � Ce−κ|ν| , |ν| → ∞ , κ > 0 in this strip,
H(ν) = −H(−ν). Then an even solution s(ν) of the equation

s(ν + 1) − s(ν − 1) = −2iH(ν),

which is regular (holomorphic) in the strip ν ∈Π1+δ and exponentially vanishes as |ν| → ∞ there, is
given by

s(ν) = 1

4

i∞∫

−i∞
dτ H(τ )

(
sin(πτ/2)

cos(πτ/2) − sin(πν/2)
+ sin(πτ/2)

cos(πτ/2) + sin(πν/2)

)

= 1

4

i∞∫

−i∞
dτ H(τ )

sin πτ

cos πτ + cos πν
, ν ∈ Π1+δ .

Assuming exponential decreasing of ûν as |ν| → ∞, ν ∈ Πδ and making use of this Lemma, we
arrive at a new form of the boundary condition (3.7)

∂ ûν(ω, ω0)

∂N±

∣
∣
∣
∣
σ±

= η±
2i

i∞∫

−i∞
dτ

τ sin πτ ûτ (ω, ω0)|σ±
cos πτ + cos πν

, ν ∈ Πδ . (3.8)

Remark Provided ûν(ω, ω0)|σ± is holomorphic as ν ∈ Πδ , then from the Lemma and condition (3.8)
∂ ûν (ω,ω0)

∂N±

∣
∣
∣
σ±

is holomorphic as ν ∈ Π1+δ .

In order to formulate a basic statement of this Section we first postulate a set of conditions specifying
a desired class for solution of the problem (3.6), (3.8).

3.3. Conditions specifying a class of solutions for spectral function uν(ω, ω0)

We make use of some known definitions (Dieudonne, 1960; Chapter 7) dealing with a meromorphic in
the complex plane C (or holomorphic in a domain D ⊂ C) mapping f ν from C (or from D) into a Banach
space B, i.e. with such meromorphic (or holomorphic) function of ν that f ν : ν �→f ν(·), where f ν(·) ∈ B.

Let the spectral function uν(ω, ω0) satisfy the conditions

1. The spectral function is such a mapping that uν : ν �→uν(·, ω0) , (uν(·, ω0) ∈ C2
loc(Σ) ) is

meromorphic in the complex plane C for all ω0 /∈ Ωδ0 , where ω0 is a parameter. For all
regular ν it admits the estimate (Meixner’s condition on the unit sphere) uν(ω, ω0) = c0 +
c1(χA) ψ

1/2
A + . . . , ψA → 0, where ψA is the geodesic distance from A to ω = (ψA, χA).

A similar condition is valid for the point B.

2. The trace of the spectral function on σ is holomorphic in Πδ , i.e. the mapping uν |σ : ν �→uν(·|σ ,
ω0) is holomorphic in ν ∈ Πδuν(·|σ , ω0) ∈ C(σ ) for all ω0 /∈ Ωδ0 .
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3. The set Q of poles of the meromorphic function uν is contained in the strip |I(ν)| < b for
some b > 0.

4. The spectral function is even with respect to ν, uν(ω, ω0) = u−ν(ω, ω0).

5. There exist the traces ∂ ûν (ω,ω0)
∂N±

∣
∣
∣
σ±

on σ which are holomorphic functions of ν ∈ Π1+δ with

the values in C(σ ), ω0 /∈ Ωδ0 . Notice that, in view of the boundary conditions (3.7), (3.8), these
traces admit meromorphic continuation on the complex plane.

6. The spectral function satisfies the estimate (|ν| → ∞, ν = |ν|eiφ , − π /2 < φ < π /2)

|uν(ω, ω0)| � C
1√|ν| exp {−|ν| (| sin φ| τ0(ω, ω0) − cos φ |τ1(ω, ω0)| } (3.9)

for some τ 0, τ 1, where τ 0 > 0. This estimate is valid on the contour Cφ in Fig. 6.

Remark that analogous properties may be verified for ui
ν(ω, ω0). It is worth commenting on the

origin of the estimate (3.9). The equation (3.6) has high-frequency (or quasi-classical) structure as
ν → ∞. The solution of the equation in this case may be determined as a sum of the ‘ray’ expansions

uν(ω) �
∑

j

U j(ν, ω) ,

U j(ν, ω) = eiντj(ω)
∞
∑

m=1

vm(ω)/ν1/2+m.

The boundary condition for uν(ω) also depends on the large parameter and is not self-adjoint because,
in particular, it depends on complex η±. As a result, amongst solutions τ j(ω) of the eikonal equations

(∇ωτ j(ω))2 = 1 there are those complex valued having the structure τj(ω) = τ
j
0(ω) + iτ j

1(ω) with the

real valued τ
j
0(ω) > 0 and τ

j
1(ω). Assuming that the ray solutions admit continuation to ν = |ν|eiφ ,

|ν| → ∞, 0 < φ < π /2, we may expect

|uν(ω)| � Const |ν|−1/2
∣
∣
∣eiν(τ0(ω)+iτ1(ω))

∣
∣
∣ ,

where τ0(ω) = minj(τ
j
0(ω)) and |τ1(ω)| = maxj(|τ j

1(ω)|). This accounts for the condition 6.
It is worth noting that rapid convergence of the Watson–Bessel integral representation (3.5) follows

from the estimate (see also (3.4)) given by

∣
∣
∣ν e−iνπ/2uν(ω, ω0)Jν(kr)

∣
∣
∣ < C exp {−|ν|(log |ν| − 1) cos φ − −|ν|(sin φ[arg(kr/2) − π/2 − φ]

+ | sin φ|τ0(ω, ω0)) + |ν| cos φ[|τ1(ω, ω0)| + log |kr/2|]}
(3.10)

on Cφ as |ν| → ∞, ν = |ν|eiφ , − π /2 < φ < π /2.
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Taking into account the discussion in this section, we arrive at

Theorem 3.1 Let uν(ω, ω0) be a solution of the problem (3.6), (3.8) from the class of functions
described by the conditions 1–6. Then Watson–Bessel integral representation (3.5) for U(r, θ , ϕ) is
the desired classical solution of the problem .

We mentioned that the radiation condition (2.6) is not valid for the solution in the case of the plane
wave incidence. On the other hand, we should emphasize that description of the far-field asymptotics
for the diffraction problem at hand will not be exhaustively considered in this work, however, we
shall discuss the far-field expression in the oasis Ω0. Nevertheless, we shall develop an efficient
formalism based on the Sommerfeld integral representation which is well adapted for such a description
(Lyalinov, 2013).

In the following section we shall consider an approach that enables one to show a way of construction
of the spectral function solving the problem (3.6), (3.8).

4. Study of the problem for the spectral function

In this section we consider the problem (3.6), (3.8) and restrict it on ν ∈ [0, i∞) exploiting also that
uν(ω, ω0) is even. Then it is useful to study the inhomogeneous equation instead of (3.6) and, vice versa,
homogeneous boundary condition so that

(

�ω + (ν2 − 1/4)
)

wν(ω) = F(ν, ω) , ω ∈ Σ

∂wν(ω)

∂N±

∣
∣
∣
∣
σ±

= η±
i

i∞∫

0

dτ
τ sin πτ wτ (ω)|σ±
cos πτ + cos πν

. (4.1)

This problem is not traditional because of the non-local dependence on the parameter of separation ν. It
should be noticed that the problems (3.6), (3.8) and (4.1) are actually connected by a simple change of
the unknown function uν(ω, ω0) = wν(ω, ω0) + v(ν, ω, ω0), where v is uniquely defined. We shall write
wν(ω) instead of wν(ω, ω0) omitting dependence on the parameter ω0.

We are looking for solution wν(ω) of (4.1) which is from C([0, i∞), C2(Σ)), having also continuous
value of ∂wν (ω)

∂N± on σ such that the boundary condition in (4.1) is satisfied. Having such a solution, we
shall continue it appropriately onto the whole complex plane w.r.t ν and also ensure the conditions 1–6.
for the spectral function uν(ω, ω0). It is convenient to make use of the variable x instead of ν and the
new unknown function U (x, ω) defined by the expressions

x = 1/ cos πν , ν = id(x), d(x) := 1

π
arccosh(1/x) = 1

π
log

(

1

x
+
√

1

x2 − 1

)

, x ∈ [0, 1] ,

U (x, ω) =
√

d(x) cos (iπd(x)) wid(x)(ω).

Remark that

0 � 1

π
log(1/x) � d(x) � d0(x)

with d0(x) = 1
π

log(2/x).
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As a result, we write the problem (4.1) in the form

(

−�ω + d2(x) + 1/4
)

U (x, ω) = f (x, ω) , ω ∈ Σ

∂U (x, ω)

∂N±

∣
∣
∣
∣
σ±

+ η± A U (x, ω|σ±) = 0, (4.2)

where f (x, ω) = −√
d(x) cosh(πd(x)F(id(x), ω) and the operator-impedance A is given by

A U (x, ω|σ±) = 1

π

1∫

0

√
d(x)d(y)

x + y
U (y, ω|σ±) dy. (4.3)

The operator A in (4.3) is formally symmetric.
It is worth commenting on the reduction of the problem (4.1) to that (4.2). We are looking for the

solution of the problem (4.1) which meromorphically depends on the variable ν. However, the study of
the meromorphic operator-function

Mν =
{

�ω + (ν2 − 1/4) ,

(
∂

∂ N±
− η± A0

)∣
∣
∣
∣
σ±

}

,

and of the equation

Mν wν(ω) = Fν(ω)

is not a simple task. In the latter problem the operator A0 is defined by the right-hand side of the
boundary condition in (4.1) and Fν(ω) = {Fν(ω), 0}.

Instead, we consider the reduced problem (4.2). The solution of the latter problem U (x, ω) is defined
on the segment x ∈ (0, 1) and is then analytically continued as a meromorphic function wν(ω) onto the
complex plane ν ∈ C taking into account the change of the variable x �→ν and of U (x, ω) �→ wν(ω).

Our further goal is to study unique solvability of the problem (4.2) in an appropriate functional space.
To this end, we introduce a Hilbert space and attribute an operator, acting in this space, with the problem
(4.2). It is performed by use of the traditional technique based on a sesquilinear form connected with
the problem (4.2). The corresponding sectorial form is taken densely defined and proved to be closable,
see Kato (1972), Chapter 6. The latter circumstance enables one to define an m-sectorial operator A
attributed to (4.2), see also Assier et al. (2016). It turns out that this operator is boundedly invertible,
A−1 = (A−Λ)−1|Λ=0 is correctly defined because Λ = 0 belongs to the resolvent set of the operator A,
where Λ is the spectral parameter.
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4.1. Definition of the sectorial form attributed to the problem (4.2)

Consider the Hilbert space H = L2((0, 1);L2(Σ)) of such functions u of x ∈ (0, 1) with the values
in L2(Σ) denoting them u = u(x, ω). The Hilbert norm ‖v‖H = √

< v, v > is specified by the scalar
product

< u, v >=
1∫

0

d x

⎛

⎝

∫

Σ

u(x, ω)v(x, ω) d ω

⎞

⎠ .

In order to give a motivated expression for the sesquilinear form tA attributed to the problem (4.2)
we apply the Green’s identity to the differential operator and make use of the boundary condition for u

< (−�ω + d2 + 1/4)u, v >=
1∫

0

d x

⎛

⎝

∫

Σ

(−�ω + d2(x) + 1/4)u(x, ω)v(x, ω)d ω

⎞

⎠

=
1∫

0

d x

⎛

⎝

∫

Σ

(∇ωu(x, ω) · ∇ωv(x, ω) + (d2(x) + 1/4)u(x, ω)v(x, ω))d ω

⎞

⎠−

−
1∫

0

d x
∫

σ+

dσ
∂u(x, σ)

∂N+
v(x, σ) −

1∫

0

d x
∫

σ−

dσ
∂u(x, σ)

∂N−
v(x, σ)

=
1∫

0

d x

⎛

⎝

∫

Σ

dω(∇ωu(x, ω) · ∇ωv(x, ω) + (d2(x) + 1/4)u(x, ω)v(x, ω))

⎞

⎠

+ η+
π

1∫

0

d x
∫

σ+

dσ

1∫

0

dy

√
d(x)d(y)

x + y
u(y, σ)v(x, σ)

+ η−
π

1∫

0

d x
∫

σ−

dσ

1∫

0

dy

√
d(x)d(y)

x + y
u(y, σ)v(x, σ) ,

where u and v are taken such that the reductions above are justified.
Let us now define a sesquilinear form

tA[u, v] = t1A[u, v] + t2A[u, v] + t3A[u, v] , (4.4)
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where

t1A[u, v] =
1∫

0

d x

(∫

Σ

(

∇ωu(x, ω) · ∇ωv(x, ω) + 1

4
u(x, ω)v(x, ω)

)

dω

)

,

t2A[u, v] =
1∫

0

d x

⎛

⎝

∫

Σ

d2(x)u(x, ω)v(x, ω)d ω

⎞

⎠,

t3A[u, v] =
∑

±

η±
π

1∫

0

d x
∫

σ±

dσ

1∫

0

dy

√
d(x)d(y)

x + y
u(y, σ)v(x, σ),

with the domains

D
(

t1A

)

=
{

v : v ∈ L2

(

(0, 1); H1(Σ)
)

⊂ H
}

,

D
(

t2A

)

= {

v : v ∈ H = L2((0, 1); L2(Σ)) such that d v ∈ L2((0, 1); L2(Σ))
}

,

D
(

t3A

)

=
{

w : w ∈ H, w|σ ∈ L2((0, 1); L2(σ )) such that
√

d w|σ ∈ L2((0, 1); L2(σ ))
}

correspondingly. Then the domain of tA is

D(tA) =
3
⋂

i=1

D
(

tiA

)

(4.5)

and tA is densely defined. It is worth mentioning that H1(Σ) is the usual Sobolev space and is boundedly
embedded into L2(σ ). The norm in L2((0, 1);H1(Σ)) is given by

‖v‖2
1 =

1∫

0

d x

⎛

⎝

∫

Σ

(|∇ωu(x, ω)|2 + |u(x, ω)|2d ω

⎞

⎠

and this space is boundedly embedded into L2((0, 1);L2(σ )).
The form t3A may be also written as

t3A[u, v] =
∑

±
η±

1∫

0

d x
∫

σ±

dσ (A u)(x, σ)v(x, σ) =
∑

±
η±(A u, v)±,

where the operator-impedance A � 0 is an integral operator, has the kernel
√

d(x)d(y)
x+y and is formally

symmetric.
We aim to show that the form tA is sectorial (Kato, 1972, Chapter 6) with the vertex Γ which is

a real number and with the half-angle �. We verify that the range R(tA) of the form, which is the set
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of values of the quadratic form tA[u, u] provided u ∈ D(tA) and ‖u‖H = 1, is located in the sector
|arg(Λ − Γ )| � �,0 � � < π/2 on the complex plane of the variable Λ. To that end, we represent the
form as

tA = �(tA) + i
(tA),

where (see Kato, 1972, Chapter 6) real part �(tA) of the form is defined by

�(tA)[u, v] = tA[u, v] + tA[v, u]

2

and similarly the imaginary part


(tA)[u, v] = tA[u, v] − tA[v, u]

2i

for any u, v ∈ D(tA). Simple calculations lead to the expressions

�(tA)[u, v] =
1∫

0

d x

⎛

⎝

∫

Σ

∇ωu(x, ω) · ∇ωv(x, ω) +
(

d2(x) + 1

4

)

u(x, ω)v(x, ω)dω

⎞

⎠

+
∑

±
ε±(A u, v)±, 
(tA)[u, v] =

∑

±
χ±(A u, v)±

recalling that η± = ε± + iχ±,

(A u, v)± = 1

π

1∫

0

d x
∫

σ±

dσ

1∫

0

dy

√
d(x)d(y)

x + y
u(y, σ)v(x, σ) .

It is obvious that

�(tA)[u, u] � 1

4
‖u‖2

H

so that the vertex Γ � 1
4 and the form �(tA) is positive definite. For the imaginary part we find

|
(tA)[u, u]| �
∑

±
|χ±|(A u, u)± �

∑

±

|χ±|
ε±

(

ε±(A u, u)± + ‖∇ωu‖2
H + ‖d u‖2

H

)

�
( |χ+|

ε+
+ |χ−|

ε−

) (

�(tA)[u, u] − 1

4
‖u‖2

H

)
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for any u ∈ D(tA). As a result, we have the estimate for the half-angle � of the sectorial form tA

0 � tan � �
( |χ+|

ε+
+ |χ−|

ε−

)

.

It is crucial to prove that the sesquilinear sectorial form tA is closable, i.e. admits a closed extension,
which is equivalent to that for �(tA).

4.2. The form tA is closable

In order to prove that tA admits a closure it is sufficient to show that its summands tiA, i = 1, 2, 3 are
closable (i.e. admit closed extensions, see Theorem 1.31 in Chapter 6 of Kato, 1972).

To do this we shall use the following simple statement (see, Birman & Solomyak, 1987,
Section 10.1(4))

Lemma 4.1 Let h be a densely defined sesquilinear form and G be an h −dense in D(h) set. Also let the
conditions h[un − um, un − um] → 0 and ‖un‖H → 0 (as n, m → ∞) be followed by

h[un, g] → 0 , n → ∞

for any g ∈ G then the form h is closable.

Introduce the set G by

G =
{

g ∈ D(tA) : d2
0g ∈ H = L2((0, 1); L2(Σ)), d2

0g
∣
∣
σ

∈ L2((0, 1); L2(σ ))
}

,

d0(x) = 1
π

log(2/x).
Remark that the form t1A is closable because it is directly connected with the form

τ 1[u, v] =
∫

Σ

(

∇ωu(ω) · ∇ωv(ω) + 1

4
u(ω)v(ω)

)

dω

which is known to be closable in H1(Σ), see e.g. Assier et al. (2016). That the form t1A is closable
implies the following: from ‖un‖→ 0 and t1A[un − um, un − um] → 0 (n, m → ∞) it follows that (see
Theorem 1.17 in Chapter 6, Kato, 1972)

t1A[un, un] → 0 , as n → ∞. (4.6)
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The form t2A is closable because

∣
∣
∣t2A[un, g]

∣
∣
∣ �

1∫

0

d x

⎛

⎝

∫

Σ

∣
∣d2(x)u(x, ω)

∣
∣ |g(x, ω)|d ω

⎞

⎠

�
1∫

0

d x

⎛

⎝

∫

Σ

|u(x, ω)|
∣
∣
∣d2

0(x)g(x, ω)

∣
∣
∣ d ω

⎞

⎠ � ‖un‖H ‖d2
0g‖H → 0 ,

as ‖un‖H , → 0 , n → ∞ for any g ∈ G.
The corresponding estimate for t3A requires a bit more work

∣
∣
∣t3A[un, g]

∣
∣
∣ �

∑

±

|η±|
π

1∫

0

d x
∫

σ±

dσ

1∫

0

dy

√
d(x)d(y)

d2
0(x)(x + y)

|un(y, σ)|
∣
∣
∣d2

0(x)g(x, σ)

∣
∣
∣

�
∑

±

|η±|
π

⎧

⎪⎨

⎪⎩

1∫

0

d x
∫

σ±

dσ

⎡

⎣

1∫

0

dy

√
d(y)

√
d0(x)

3
(x + y)

|un(y, σ)|
⎤

⎦

2
⎫

⎪⎬

⎪⎭

1/2

⎧

⎨

⎩

1∫

0

d x
∫

σ±

dσ |d2
0(x)g(x, σ)|2

⎫

⎬

⎭

1/2

�
∑

±
C

|η±|
π

⎧

⎨

⎩

1∫

0

d x

1∫

0

dy
d(y)

d0(x)3(x + y)2

⎫

⎬

⎭

1/2

×
⎧

⎨

⎩

1∫

0

d x
∫

σ±

dσ |un(x, σ)|2
⎫

⎬

⎭

1/2 ⎧
⎨

⎩

1∫

0

d x
∫

σ±

dσ

∣
∣
∣d2

0(x)g(x, σ)

∣
∣
∣

2

⎫

⎬

⎭

1/2

,

where we have multiply used the Cauchy–Schwarz inequality. From (4.6) and that L2((0, 1), H1(Σ)) is
boundedly embedded into L2((0, 1), L2(σ )) (un ∈ L2((0, 1), H1(Σ)) we have

⎧

⎨

⎩

1∫

0

d x
∫

σ±

dσ |un(x, σ)|2
⎫

⎬

⎭

1/2

� C‖un‖1 � C1 t1A[un, un] → 0 , as n → ∞.
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It remains to verify that

1∫

0

d x

1∫

0

dy
d(y)

d0(x)3(x + y)2 � Const,

i.e. it is bounded. The latter double integral over the square S = (0, 1) × (0, 1) is represented as a sum of
two integrals, one is over S1 = {(x, y) :

√

x2 + y2 < 1}∩S and that over S \ S1. The integral over S \ S1
is obviously bounded because the integrand is continuous in this domain. The integral over the sector
S1 is estimated by making use of the polar coordinates ρ, φ in its evaluation and is estimated, which is
a simple exercise, by a constant C1,

π/2∫

0

dφ

1∫

0

dρ

ρ

|log ρ + log(sin φ)|
|log(2/ρ) − log(cos φ)| 3(cos φ + sin φ)2

� C1.

Taking into account the estimates above we find that |t3A[un, g]| → 0 as ‖un‖H → 0 , n → ∞ for
any g ∈ G. As a result, we can assert that the form tA is closable.

4.3. An m-sectorial operator A corresponding to the problem (4.2). Solvability of the problem

Let us denote TA the closure of tA with D(tA) ⊂ D(TA).8 In accordance with the theorem on representa-
tion for the closed sectorial forms (see Kato, 1972, Section 2, Chapter 6, Theorem 2.1) we obtain

Theorem 4.1 There exists a unique m-sectorial operator A such that Dom(A) ⊂ D(TA) and

< Au, v >= TA[u, v]

with u ∈ Dom(A), v ∈ D(TA).

It is important to notice that this operator is the desired operator attributed to the problem (4.2). Let
u ∈ D(TA) and for any v ∈ D(TA)

TA[u, v] =< f , v > , f ∈ H,

then u is called weak solution of the equation

Au = f . (4.7)

This solution is also a weak solution of the problem (4.2) by definition. From the theorem on
representation it also follows that, provided u ∈ D(TA), f ∈ H and the equality

TA[u, v] =< f , v >

is valid for any v from the core of the form TA (i.e. from Dom(A)) then u ∈ Dom(A) and u is a solution
of the equation (4.7).

8 It is possible to describe the domain of TA more efficiently.
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The range �(A) of the m-sectorial operator A is a dense subset of the range �(TA), which implies
that Λ = 0 belongs to the resolvent set of the operator A. The inverse operator A−1 = (A−Λ)−1|Λ=0 is
bounded and the problem (4.2) has a weak solution U .

Recall that

F(ν, ω)|x=1/ cos πν = − f (x, ω)√
d(x) cosh (πd(x))

in (4.1) and, provided f is from C([0, 1];C(σ )) ⊂ H the function F(ν, ω) is continuous with respect to ν

and is from C(σ ) w.r.t. ω, exponentially vanishing as ν → i∞.
Similar simple arguments enable us to conclude that solution of the problem (3.6), (3.8) exists and

is unique, uν(ω, ω0) is from C([0, i∞); C2(Σ)) which admits an estimate

|uν(ω, ω0)| � C

∣
∣
∣
∣

eiντ∗
√

ν

∣
∣
∣
∣

, ν → i∞,

0 < τ∗ � π/2 as dist(ω0, σ ) > π /2. This estimate follows from the fact that U ∈ L2((0.1); H1(Σ)).
Remark that Ui(x, ω) = √

d(x) cos(iπd(x)) ui
id(x)(ω, ω0) is from H = L2((0, 1);L2(Σ)) provided

dist(ω0, σ ) > π /2, which is implied.

5. Meromorphic continuation of uν(ω, ω0)

In order to continue uν(ω, ω0) specified on ν ∈ [0, i∞), as demonstrated in the previous section, onto
the complex plane we need to develop some technical tools. First, we continue uν(ω, ω0) from [0, i∞)

onto iR making use of evenness w.r.t. ν.
Then, consider gν(ω, ω′) the Green’s function of the operator �ω + (ν2 − 1/4) on the unit sphere

gν(ω, ω′) = −Pν−1/2
(− cos θ(ω, ω′)

)

4 cos πν
,

satisfying

(

�ω + (ν2 − 1/4)
)

gν(ω, ω′) = δ(ω − ω′).

We apply Green’s identity to uν(ω, ω0) and gν(ω, ω′) and, omitting some technical details, obtain

∫

Σ

dω′ (�ω′gν(ω, ω′) uν(ω
′, ω0)

) − gν(ω, ω′)�ω′uν(ω
′, ω0))

=
∑

±

∫

σ±

dσ

(
∂gν(ω, σ)

∂N±
uν(σ , ω0) − ∂uν(σ , ω0)

∂N±
gν(ω, σ)

)

.
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Making use of the equations for gν(ω, ω′) and uν(ω, ω′) and the boundary condition (see (3.8)), we
arrive at the representation

uν(ω, ω0) =
∑

±

∫

σ±

dσ

(
∂gν(ω, σ)

∂N±
uν(σ , ω0) − η± A0uν(σ , ω0) gν(ω, σ)

)

+ Ψν(ω, ω0), (5.1)

where

A0uν(σ , ω0) : = 1

2i

i∞∫

−i∞
dτ

τ sin πτ uτ (σ , ω0)

cos πτ + cos πν
,

Ψν(ω, ω0) =
∑

±

∫

σ±

dσ

(
∂ui

ν(ω, σ)

∂N±
gν(σ , ω0) − η± A0ui

ν(σ , ω0) gν(ω, σ)

)

.

The integral equation for uν(s, ω0) as s belongs to the boundary σ+ ∪ σ− is then derived and takes
the form

αsuν(s, ω0) =
∑

±

∫

σ±

dσ

(
∂gν(s, σ)

∂N±
uν(σ , ω0) − η± A0uν(σ , ω0) gν(s, σ)

)

+ Ψν(s, ω0), (5.2)

where αs = 1
2 as s ∈ (σ+ ∪ σ−), s /∈ {A, B} and αs = 1 as s ∈ {A, B}. The properties of the single and

double layer potentials have been used in (5.2). It is not difficult to show that Ψ ν(ω, ω0) in (5.2), (5.1)
admits meromorphic continuation as ν ∈ C such that it is holomorphic as ν ∈ Πδ for some δ > 0.

Remark that the integral equation really has solution, because it is derived from the uniquely solvable
problem (3.6), (3.8). It is easily verified that Ψ ν is a holomorphic mapping ν �→ L2(σ ) as ν ∈ Πδ ,
Ψ ν(·, ω0) ∈ L2(σ ).

Now we explain that the solution uν(s, ω0) of the equation (5.2) obeys the same property. To that
end, we write the equation (5.2) in an equivalent form

(I − K0)uν = 2χν,0, (5.3)

where

K0uν(s, ω0) =
∑

±

∫

σ±

dσ
∂gν(s, σ)

∂N±
uν(σ , ω0) , s ∈ σ \ {A, B}

2χν,0(s, ω0) = 2
∑

±
η±

∫

σ±

dσ gν(s, σ)A0uν(σ , ω0) + 2Ψν(s, ω0),

so that the operator (I − K0) is boundedly invertible for any ν ∈ Πδ and (I − K0)
−1 is holomorphic

with respect to ν ∈ Πδ . Because the right-hand side χν,0 in (5.3) is a holomorphic mapping ν �→ L2(σ )
as ν ∈ Πδ , χν,0(·, ω0) ∈ L2(σ ), we conclude that the solution uν of the equation (5.2) is a holomorphic
mapping ν �→ L2(σ ) as ν ∈ Πδ , uν(·, ω0)|σ ∈ L2(σ ) (see condition 2 in Section 3.3).
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The representation (5.1) enables one to assert that uν is also a holomorphic mapping ν �→ L2(Σ)
as ν ∈ Πδ , uν(·, ω0) ∈ L2(Σ). Indeed, the integrand in the right-hand side of (5.1) is holomorphic as
ν ∈ Πδ for all ω ∈ Σ because gν(ω, ·)|σ obeys this property as well as uν(·, ω0)|σ in the integrand,
gν(ω, ·) is continuous w.r.t. ω ∈ Σ . uν(s, ω0)|σ is continuous w.r.t. s assuming that ω0 /∈ Ωδ0 . The
same regularity is valid for A0uν(σ , ω0), which follows from the explicit formula for A0uν(σ , ω0).
After integration w.r.t. σ we obtain the desired, where we also make use of the regularity of Ψ ν(ω, ω0)
declared above.

Making use of the regularity of the mapping (uν+ui
ν)|σ as ν ∈ Πδ , from the boundary condition (3.8)

we have that ∂ ûν (ω,ω0)
∂N±

∣
∣
∣
σ±

specifies a holomorphic mapping as ν ∈ Π1+δ . The latter directly follows

from the fact that the denominator cos πτ + cos πν �= 0 as τ ∈iR and ν ∈ Π1 in the integrand of (3.8),
whereas (uν + ui

ν)|σ is holomorphic as ν ∈ Πδ .
Further use of the integral equation (5.2) enables one to continue analytically uν onto the strip ν ∈

Π1+δ as a meromorphic mapping with the poles located in the strip |Iν| < b, b > 0. Indeed, we make use
of the same argumentation, exploiting the equation written in the form (5.3) and the fact that (I −K0) is
boundedly invertible, in order to verify that uν(s, ω0)|σ has only polar singularities as ν ∈ Π1+δ because
A0uν(σ , ω0) is regular and gν(s, σ ), Ψ ν(s, ω0) are meromorphic in this strip with the poles located on
the real axis.

The condition (3.7) shows that having the meromorphic functions in the strip Π1+δ one can continue
∂ ûν (ω,ω0)

∂N±

∣
∣
∣
σ±

from this strip onto a neighbouring strip on the left- or right-hand sides. Because the

shift of the argument ν is performed along the real axis, the corresponding poles appear only in some

strip |Iν| < b, b > 0. On this way we obtain that ∂ ûν (ω,ω0)
∂N±

∣
∣
∣
σ±

and uν(s, ω0)|σ are meromorphic in the

strip Π2+δ .
The corresponding procedure can be iterated and one can prove meromorphic continuation of the

mapping uν (as well as of ∂ ûν

∂N±

∣
∣
∣
σ±

) from the strip Π2+δ onto the complex plane with the singularities

located in some strip |Iν| < b, b > 0. The representation (5.1) enables one to assert that uν(s, ω0)|σ is a
meromorphic mapping ν �→ L2(Σ) as ν ∈ C , with the values uν(·, ω0) ∈ L2(Σ).

6. Sommerfeld integral representation for the wave field

In order to study the far-field asymptotics of the scattered wave field U(r, ϕ) it is profitable to reduce the
Watson-Bessel representation to the Sommerfeld integral because, contrary to that of the Watson-Bessel,
it is well adapted to this goal.

6.1. Sommerfeld representation for the incident wave

We transform the Watson–Bessel representation (3.1) for the incident plane wave making use of the
Sommerfeld formula for the Bessel function

Jν(kr) = 1

2π

∫

γ−

e−ikr cos α eiνπ/2−iνα dα,

where γ− is the lower part of the double-loop Sommerfeld contour (Fig. 8).
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Fig. 8. Sommerfeld double-loop contour, γ = γ+ ∪ γ−.

Substitute the latter into (3.1) and change the orders of integration, which is justified,

Ui(r, ω, ω0) = 4i

√

π

2

∫

C0

dν ui
ν(ω, ω0)

ν e−iνπ/2

√−ikr

⎛

⎝
1

2π

∫

γ−

e−ikr cos α eiνπ/2−iνα dα

⎞

⎠

= 1

2π i

∫

γ−

dα
e−ikr cos α

√−ikr

⎛

⎜
⎝−2

√
2π

∫

C0

ν e−iναui
ν(ω, ω0) dν

⎞

⎟
⎠

= 1

2π i

∫

γ−

e−ikr cos α

√−ikr
Ψi(α, ω, ω0) dα, (6.1)

where we introduced notation

Ψi(α, ω, ω0) = −2
√

2π

∫

C0

ν e−iναui
ν(ω, ω0) dν,

Ψ i(α, ω, ω0) is regular in D− = {α ∈ C : Iα < 0} because ui
ν(ω, ω0) is bounded on C0 for any ω ∈ S2.
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In view of the estimate (3.3) on the contour Cφ one can verify that Ψ i(·, ω, ω0) is regular in the
domain

Dφ
θ = {α ∈ C : sin φ �α + cos φ 
α < θ | sin φ|} ∩ {α ∈ C : − sin φ �α + cos φ 
α < θ | sin φ|}

because
∣
∣
∣ν e−iναui

ν(ω, ω0)

∣
∣
∣ < C |ν|1/2 exp

{|ν|(| sin φ| �(α) + cos φ 
(α) − θ | sin φ|)},

θ = θ (ω, ω0). It is useful to notice that the regularity domain varies from the halfplane D0
θ to the strip

Dπ/2
θ (see also Fig. 7 in Lyalinov, 2013).

Consider Ψ i(·, ω, ω0) in Dπ/2
θ and introduce a regular function Φ i(·, ω, ω0) by the equality

Φi(α, ω, ω0) := 1

2
Ψi(α, ω, ω0) = i

√
2π

i∞∫

−i∞
ν sin(να)ui

ν(ω, ω0) dν,

which is obviously odd in α, Φ i(α, ω, ω0) = −Φ i(−α, ω, ω0). We easily verify that Φ i(·, ω, ω0) is
analytically continued as a holomorphic function into C\l±, l± ={α ∈ C : ±�(α) � θ(ω, ω0), 
(α) =
0}, i.e. it is regular in the complex plane with the cuts along the lines l±. Remark that Φ i(α, ω, ω0) can
be computed in a closed form Lyalinov (2013)

Φi(α, ω, ω0) = ∂Φ̃i(α, ω, ω0)

∂α

with

Φ̃i(α, ω, ω0) = −
√

π

2

[

cos α − cos θ(ω, ω0)
]−1/2,

the branch is fixed by the condition
√

cos α − cos θ(ω, ω0) > 0 as − θ < α < θ . This expression is
obtained by means of the formula (see Gradstein & Ryzhik, 1980, 7.216)

1√
2

[cos α − cos θ ]−1/2 =
∞∫

0

dτ
Piτ−1/2

(

cos[π − θ ]
)

cos iπτ
cos iατ , (iα > 0) .

The Sommerfeld representation for the incident wave takes the form

Ui(r, ϑ , ϕ) = 1

2π i

∫

γ

e−ikr cos α

√−ikr
Φi(α, ω, ω0) dα, (6.2)

and also

Ui(r, ϑ , ϕ) =
√−ikr

2π i

∫

γ

e−ikr cos α sin α Φ̃i(α, ω, ω0) dα, (6.3)

where γ = γ+ ∪ γ− is shown in Fig. 8.
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6.2. Sommerfeld representation for the scattered field

The derivations given in the previous section motivate appearance of the analogous representations for
the scattered field. We have

U(r, ϑ , ϕ) = 4i

√

π

2

∫

C0

dν uν(ω, ω0)
ν e−iνπ/2

√−ikr

⎛

⎝
1

2π

∫

γ−

e−ikr cos α eiνπ/2−iνα dα

⎞

⎠

= 1

2π i

∫

γ−

dα
e−ikr cos α

√−ikr

⎛

⎜
⎝−2

√
2π

∫

C0

ν e−iναuν(ω, ω0) dν

⎞

⎟
⎠

= 1

2π i

∫

γ−

e−ikr cos α

√−ikr
Ψ (α, ω, ω0) dα, (6.4)

where we introduced

Ψ (α, ω, ω0) = −2
√

2π

∫

C0

ν e−iναuν(ω, ω0) dν,

Ψ (·, ω, ω0) is regular in Dτ1 = {α ∈ C : 
(α) < −|τ1(ω, ω0)|} because uν(ω, ω0) satisfies the estimate
(3.9) on C0 (see Fig. 7) for any ω ∈ S2. We take into account the estimate

∣
∣
∣ν e−iναuν(ω, ω0)

∣
∣
∣ < C |ν|1/2 exp {|ν| (| sin φ|�(α) + cos φ(
α)

− τ0(ω, ω0)| sin φ| + sign(φ) cos φ|τ1(ω, ω0)|},

and conclude that the regularity domain for Ψ (·, ω, ω0) is

Dφ
τ0τ1

= {α ∈ C : sin φ�(α) + cos φ
(α) < τ0| sin φ| − cos φ τ1} ∩
{α ∈ C : − sin φ�(α) + cos φ
(α) < τ0| sin φ| + cos φ τ1},

which is verified from

Ψ (α, ω, ω0) = −2
√

2π

∫

Cφ

ν e−iναuν(ω, ω0) dν,

where φ ∈ (0, π /2).

Remark Provided the contour Cφ varies from C0 into Cπ/2 the domain of regularity Dφ
τ0τ1 of Ψ (·, ω,

ω0) deforms from the halfplane I(α) < −|τ 1(ω, ω0)| onto the strip |I(α)| < τ 0(ω, ω0).
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Fig. 9. Domain of regularity D, singularities are in C \ D.

We consider Ψ (·, ω, ω0) in the strip Dπ/2
τ0τ1 and introduce there a regular function

Φ(α, ω, ω0) := 1

2
Ψ (α, ω, ω0) = i

√
2π

i∞∫

−i∞
ν sin(να)uν(ω, ω0) dν,

which is odd in α, Φ(α, ω, ω0) = −Φ(−α, ω, ω0).
Simple analysis enables us to conclude that Φ(·, ω, ω0) is continued as a regular function into the

domain

D = Dπ/2
τ0τ1

∪ D0
τ0τ1

∪
(

Dπ/2
τ0τ1

)∗
,

where
(

Dπ/2
τ0τ1

)∗
is symmetric to Dπ/2

τ0τ1 with respect to the origin, (Fig. 9). In other words, we can assert

that all singularities of Φ(·, ω, ω0) are located in C \ D. For the diffraction by a sector with Dirichlet
boundary conditions such singularities are symmetrically distributed on the real axis Lyalinov, 2013.
For the sector with the impedance boundary conditions there are some additional complex singularities
which are responsible for the surface waves propagating along the surface of the sector.

The Sommerfeld representations for the scattered field take the form

U(r, ϑ , ϕ) = 1

2π i

∫

γ

e−ikr cos α

√−ikr
Φ(α, ω, ω0) dα, (6.5)
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or

U(r, ϑ , ϕ) =
√−ikr

2π i
1
∫

γ

e−ikr cos α sin α Φ̃(α, ω, ω0) dα (6.6)

with

Φ(α, ω, ω0) = ∂Φ̃(α, ω, ω0)

∂α
.

As we remarked the singularities of Φ(α, ω, ω0), Φ̃(α, ω, ω0) play a crucial role in studying the far-field
asymptotics by use of the Sommerfeld integral representations. In order to describe the singularities
of the Sommerfeld transformants Φ(α, ω, ω0), Φ̃(α, ω, ω0) we turn to formulation of the problems for
them, although the singularities themselves will be studied elsewhere.

6.3. Problems for the Sommerfeld transformants Φ(α, ω, ω0), Φ̃(α, ω, ω0)

It is obvious that the Fourier transform of (3.6) with integration along the imaginary axis, enables us to
write down the equation for the Sommerfeld transformant (Lyalinov, 2013),

(

�ω − ∂2
α − 1/4

)

Φ(α, ω, ω0) = 0 (6.7)

as ω ∈ S2 \ σ .
Let us turn to the boundary conditions

r−1 ∂
(

U + Ui
)

∂N±

∣
∣
∣
∣
∣
σ±

= 1√−ikr

1

2iπ

∫

γ

e−ikr cos α(−ik sin α)
∂

∂N±

(

Φ̃ + Φ̃i
)

(α, ω, ω0)

∣
∣
∣
∣
σ±

dα

= ikη±
(

U + Ui
)∣
∣
∣
S

= ikη±√−ikr

1

2iπ

∫

γ

e−ikr cos α ∂

∂α

(

Φ̃ + Φ̃i
)

(α, ω, ω0)

∣
∣
∣
∣
σ±

dα,

(6.8)

then, exploiting the Malyuzhinets theorem (see Lyalinov & Zhu, 2012, Chapter 1), we obtain

sin α
∂
(

Φ̃ + Φ̃i
)

∂N±
(α, ω, ω0)

∣
∣
∣
∣
∣
σ±

= −η±
∂
(

Φ̃ + Φ̃i
)

∂α
(α, ω, ω0)

∣
∣
∣
∣
∣
σ±

,

which is followed by

∂(Φ + Φi)

∂N±
(α, ω, ω0)

∣
∣
∣
∣
σ±

= −η±
∂

∂α

(Φ + Φi)(α, ω, ω0)

sin α

∣
∣
∣
∣
σ±

, (6.9)

where

Φi(α, ω, ω0) = ∂

∂α
Φ̃i(α, ω, ω0).
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The equation (6.7) and the condition (6.9) are proved to be valid in the domain D by means of the
analytic continuation. For real α from this strip the equation (6.7) is of hyperbolic type. In order to have
a correct problem for this equation on S2 \ σ with the boundary condition (6.9) as α > 0 we should add
initial conditions at α = 0.

For any α ∈ [0, τ 0) we have

Φ(α, ω, ω0) + Φi(α, ω, ω0) = i
√

2π

∫

iR

ν sin(να)uν(ω, ω0) dν −
√

π

4

sin α

(cos α − cos θ(ω, ω0))
3/2

(6.10)

which is a regular function. Therefore, assuming that uν(ω, ω0) is known in the integrand, we arrive at
the initial conditions

Φ(0, ω, ω0) = 0,
∂Φ(α, ω, ω0)

∂α

∣
∣
∣
∣
α=0

= i
√

2π

∫

iR

ν2 uν(ω, ω0) dν. (6.11)

The Cauchy boundary value problem (6.7), (6.9), (6.11) can be used in order to determine singularities
of Φ(α, ω, ω0) as α ∈ C \ D. However, instead of the conditions (6.11) one can exploit the equality
(6.10) for any point α ∈ [0, τ 0) together with (6.7), (6.9).

The analogous problem is valid for Φ̃(α, ω, ω0)

(

�ω − ∂2
α − 1/4

)

Φ̃(α, ω, ω0) = 0 (6.12)

as ω ∈ S2 \ σ and

sin α
∂
(

Φ̃ + Φ̃i
)

∂N±

∣
∣
∣
∣
∣
σ±

= −η±
∂
(

Φ̃ + Φ̃i
)

∂α

∣
∣
∣
∣
∣
σ±

, (6.13)

and

Φ̃(0, ω, ω0) = −i
√

2π

∫

iR

uν(ω, ω0) dν,
∂Φ̃(α, ω, ω0)

∂α

∣
∣
∣
∣
α=0

= 0. (6.14)

The discussion above enables us to prove

Theorem 6.1 There exists an analytic function Φ(α, ω, ω0) which is holomorphic in the domain D. For
real α ∈ [0, τ 0) this function solves the problem (6.7), (6.9), (6.11). For the strip |�(α)| < τ0(ω, ω0) it
is specified by the equality (see (6.10))

Φ(α, ω, ω0) = i
√

2π

i∞∫

−i∞
ν sin(να)uν(ω, ω0) dν.

A similar statement is valid for Φ̃(α, ω, ω0).
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Fig. 10. Deformation of the Sommerfeld contour into the steepest descent paths γ + ∪ γ −: (left) singularities are not captured,
ω ∈ Ω0; (right) singularities are captured ω ∈ S2 \ Ω0.

7. Comments on the derivations of the far-field asymptotics. Diffraction coefficient for narrow
sector in ‘oasis’

In this section we give some comments dealing with the derivations of the far-field asymptotics described
in Section 2.2 although the detailed exposition of the results will appear in a future work.

Solution Φ(α, ω, ω0) of the problems for the hyperbolic equation (6.7) as α ∈ [0, τ 0) is unique.
This solution is represented by the Fourier type integral (see, Theorem 6.1) as |�(α)| < τ0(ω, ω0).
However, one needs to have analytic continuation of the Sommerfeld transformant into C \ D, in
particular, into vicinities of the singularities9 located in C \ D. As we mentioned, these singularities
are of crucial importance for studying the far-field asymptotics (Lyalinov, 2013). Indeed, in order to
evaluate the Sommerfeld integral representation (6.5) asymptotically as kr → ∞ we ought to deform the
Sommerfeld double-loop contour γ into the steepest descent paths γ±π (Fig. 10). In the process of such
deformation some singularities of the transformant can be captured. Contributions of these singularities
(Fig. 10, right) give rise to the corresponding components of the far field such as reflected wave, edge
waves (see Lyalinov, 2013 for the Dirichlet boundary conditions) as well as the surface waves which
may be excited near the impedance surface of the sector (2.9), (2.10). These surface waves are governed
by complex singularities which do not exist in the case of the ideal boundary conditions. It is worth
mentioning that the singularities migrate (Fig. 10) when the observation point varies its position. The
saddle point ±π are responsible for the spherical wave from the vertex of the sector. The diffraction
coefficient of this wave is easily calculated by use of the direct application of the saddle point technique
provided the observation point (r, ω) is located in the oasis, ω ∈ Ω0. In this case the singularities are
not captured (Fig. 10, left) and the asymptotics of the scattered far-field is given by (see also (2.8))

U(r, ϑ , ϕ) = D(ω, ω0)
exp(ikr)

−ikr

(

1 + O

(
1

kr

))

, kr → ∞.

9 These singularities are of the branch point type, see also Lyalinov (2013).
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with

D(ω, ω0) = −
√

2

π
Φ(π , ω, ω0) = 2

i

∫

iR

ν sin(πν)uν(ω, ω0) dν (7.1)

or10

D(ω, ω0) = 2
∫

iR

ν exp(−iπν)uν(ω, ω0) dν,

where the integrals converge exponentially as ω ∈ Ω0. It is obvious that the numerical determination of
the spectral function uν(ω, ω0) is necessary for the calculation of the diffraction coefficient.

In order to demonstrate also some practical issues from the results developed above we consider
derivation of the closed form of the asymptotic expression for the diffraction coefficient in the case of a
narrow impedance sector, β = 2a � 1. In this case a closed asymptotic formula for the spectral function
uν(ω, ω0) can be given and the integral for the diffraction coefficient (7.1) can be computed explicitly
leading to a simple expression in the high order approximation as β � 1.

7.1. Expression for D(ω, ω0) as β = 2a � 1

There are, at least, two ways to determine such an expression. The first one is in asymptotic solution of
the boundary value problem (3.6), (3.8) for the spectral function uν(ω, ω0). It is based on matching local
asymptotic expansions (see e.g. Babich, 1997; Lyalinov & Zhu, 2012, pp. 122–124) for the problem on
the unit sphere S2 with the narrow cut σ = σ+ ∪ σ−, mes(σ ) = 2mes(σ±) = 2β � 1.

In this work we exploit an alternative approach, based on approximate solution of the integral
equation (5.2) for uν(σ , ω0) as mes(σ±) = β � 1, Bernard & Lyalinov (2001). It leads to the same
desired result and also makes use of the integral representation (5.1) of the solution uν(ω, ω0), ω ∈ Ω0.

Simple analysis of the integral equation (5.2) enables us to assert that uν(ω|σ± , ω0) is of O(β),
therefore, taking into account that mes(σ+) = β and mes(σ−) = β, from the integral representation
(5.1) we find

uν(ω, ω0) = Ψν(ω, ω0)(1 + O(β log β)

= − 1

2i

∑

±
η±
∫

σ±

dσ gν(ω, σ)

⎛

⎝

i∞∫

−i∞
dτ

τ sin πτ ui
τ (σ , ω0)

cos πτ + cos πν

⎞

⎠ (1 + O(β log β)), ω ∈ Ω0,

(7.2)

where we took into account the estimate

∑

±

∫

σ±

dσ gν(ω, σ)
∂ui

ν

∂N±

∣
∣
∣
∣
σ

= O(β2 log β).

10 For the first time this kind of formulae for the ideal circular cones has been obtained by Smyshlyaev, see e.g.
Smyshlyaev (1990).
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Substituting the integral expression from (7.2) into the formula for the diffraction coefficient (7.1) in
oasis, in the leading approximation we arrive at

D(ω, ω0) =
∑

±

η±
16

∫

σ±

dσ

⎛

⎝

i∞∫

−i∞
dτ

i∞∫

−i∞
dν

τ tan πτ ν tan πν

cos πτ + cos πν
Pν−1/2(cos θ(ω, σ))Pτ−1/2(− cos θ(σ , ω0))

⎞

⎠

The iterated integral in the brackets was computed in the work (Bernard & Lyalinov (1999) so that
one has

D(ω, ω0) = −
∑

±

η±
4π

∫

σ±

dσ

[cos θ(ω, σ) + cos θ (σ , ω0)]2 (1 + O(β log β))

as θ (ω, σ ) + θ (σ , ω0) > π .
Integration in the latter formula is conducted along asymptotically small arcs σ± then asymptotically

equivalent version of this formula takes the form

D(ω, ω0) = − η+ + η−
2π

2a

[cos θ(ω, M) + cos θ (M, ω0)]2 (1 + O(β log β)),

θ (ω, M) + θ (M, ω0) > π and ω ∈ Ω0, M is the middle point of the arc AB. The advantage of the latter
formula is that it is quite elementary and can be easily used in the engineering applications.11

It is instructive to compare this result with that obtained by Babich (1997), where he made use of
matching asymptotic series in the case of Dirichlet boundary condition on the surface of a cone,

Dd(ω, ω0) = −4π

∞∫

−∞
dτ τ eπτ gτ (ω, M) gτ (M, ω0)

Wβ − �ψ(iτ − 1/2) − C − log 2
(1 + O(β log β)) ,

θ (ω, M) + θ (M, ω0) > π , where Wβ = − log(a/2) = O(log β), Wβ is the Wiener capacity, an integral

characteristic of the segment of the length 2a, C is Euler constant, gτ (ω, M) = −Piτ−1/2(− cos θ(ω,M))

4 cosh πτ
.

As mentioned in Babich (1997) the latter expression for the diffraction coefficient Dd(ω, ω0) integral
may be simplified by formally neglecting −�ψ(iτ − 1/2) − C − log 2 in comparison with Wβ then
computed, which leads to

Dd(ω, ω0) = − 1

2 log a
2

1

[cos θ(ω, M) + cos θ(M, ω0))]
(1 + O(1/ log β)),

as θ (ω, M) + θ (M, ω0) > π .

11 It is worth remarking that the identical result can be obtained by use of the matching the local asymptotic series, which is
shown in Lyalinov & Zhu (2012), Chapter 5, for a convex impedance cone.
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It is obvious that the diffraction coefficient Dd(ω, ω0) for the Dirichlet case is of O(1/ log(a)) in
the leading approximation, whereas D(ω, ω0) = O(a) as a → 0 for a narrow sector with the impedance
boundary conditions.

8. Conclusion

In this work we developed a motivated procedure to study the problem of diffraction by a semi-infinite
sector with impedance boundary conditions. Such kind of the boundary conditions thwarts complete
separation of variables. The separation of the radial variable in the boundary conditions leads to a
condition which is non-local with respect to the parameter of separation. Nevertheless, after separation
of the radial variable the problem on the unit sphere with the non-local condition on the cut AB admits
an efficient study. To that end, the traditional theory of extension of sectorial sesquilinear forms has been
exploited. The Watson–Bessel integral representation for the solution is not efficient for the derivation
of the far-field asymptotics that is why reduction to the Sommerfeld integral representations was used.
Analytic properties of the Sommerfeld transformants were considered. In particular, domains, where
singularities of the transformants are localized, were indicated. Although a complete study of the
singularities and of their contributions to the far-field asymptotics is postponed to a future work, we
obtained a practically useful simple formula for the diffraction coefficient of the spherical wave from
the vertex in ‘oasis’ in the case of scattering by a narrow impedance sector.

One of the goals for the further studies is to develop a reliable numerical procedure in order to
compute the spectral function uν(ω, ω0). Such a development could be based on our study of the problem
for the spectral function given in this work. The situation with the impedance boundary conditions is
more complex than that for the ideal ones. In particular, there is no reason to assert that the spectrum of
the operator A from the Section 4.3 is discrete. Contrary to the case of the Laplace–Beltrami operator on
the unit sphere with usual mixed (Robin) boundary conditions with complex impedance parameter (see
Assier et al., 2016, Theorem 4.10) on the cut the argumentation based on the compact resolvent does not
work in our spectral problem. However, there are some hopes that the study of the spectral properties of
the non-local operator A in the boundary condition of the problem (4.2) may be exploited in order to
create an efficient numerical procedure to compute the spectral function uν(ω, ω0). This might be used
in order to reduce the spectral problem with non-local operator in the boundary condition to that with
simpler conditions like those complex Robin in Assier et al. (2016).

It is also important to give a complete description of the far-field asymptotics. Some natural
extensions of the ideas proposed in Lyalinov (2013) might be useful in this case.
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