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ABSTRACT
We study the inverse shadowing property for actions of some finitely
generated groups. A tube condition for such actions is introduced
and analysed. We prove a reductive inverse shadowing theorem for
actions of virtually nilpotent groups.

1. Introduction

The theory of shadowing of pseudotrajectories (approximate trajectories) is now a well-
developed branch of the theory of dynamical systems (see, for example, the monographs
[1,2] and the recent survey [3]).

A classical dynamical system can be considered as an action of the group Z. The first
shadowing results for actions of groups more general than Z were obtained in [4] (we
describe these results and their generalizations in Section 2).

The main shadowing result obtained in [4] for actions of the group Z
p, p > 1, was a

kind of reductive shadowing theorem (RST) – it was shown that if the action of a one-
dimensional subgroup of Z

p is topologically Anosov (i.e. it has the shadowing property
and is expansive), then the action of Z

p is topologically Anosov as well.
In parallel with the theory of shadowing, the theory of inverse shadowing was developed

(the corresponding definitions first appeared in [5,6]). The difference between the two the-
ories is as follows. The shadowing propertymeans that, given an approximate trajectory, we
can find an exact trajectory close to it. The inverse shadowing property means that, given a
family of approximate trajectories (generated by a so-called approximate method), we can
find a member of this family that is close to any chosen exact trajectory.

In this paper, we study the property of inverse shadowing for actions of some finitely
generated groups. Our main result is the so-called reductive inverse shadowing theorem
(RIST); it gives sufficient conditions underwhich an action of a virtually nilpotent grouphas
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the inverse shadowing property. This result is motivated by a similar result for shadowing
proved in [7] (and its proof uses an approach close to the approach of [7]).

The main novelty of our approach compared to that of [4,7] is the introduction of the
so-called tube condition (TC) which replaces the notion of a topologically Anosov action.

In a sense, the TCmeans that near any exact trajectory there is a narrow ‘tube’ formed by
approximate trajectories that are close to the exact one and, in addition, any approximate
trajectory that belongs to a neighbourhood of a fixed size of the exact trajectory belongs to
the narrow tube.

We show that the TC is natural in the theory of inverse shadowing (it allows us to prove
the RIST, Theorem 2.1).

At the same time, the TC indicates the essential difference between the shadowing and
inverse shadowing properties.We show this in Section 3, where we treat the simplest case of
a hyperbolic linear automorphism. Such a system is topologically Anosov, it has the shad-
owing property, and (in the case of a small enough one step error) the shadowing trajectory
is unique. We construct an example which shows that for the case of inverse shadowing,
where the TC is satisfied, the situation may be essentially different, and arbitrarily narrow
tubes around an exact trajectory may contain infinite sets of different approximate trajec-
tories generated by an approximate method.

The structure of the paper is as follows. In Section 2, we define shadowing and inverse
shadowing for classical dynamical systems (actions of Z) and for actions of finitely gen-
erated groups. We describe results of [4,7]. The TC for group actions is introduced. In
Section 3, we analyse the TC in the case of a hyperbolic linear automorphism. Section 4
is devoted to the proof of the main result (RIST for a virtually nilpotent group).

2. Definitions andmain result

Let us first recall the definition of the standard shadowing property for homeomorphisms
of metric spaces.

Let f be a homeomorphism of a metric space (M, dist). Let d > 0. A sequence of points
{xn � M} is called a d-pseudotrajectory of f if

dist(xn+1, f (xn)) < d, n ∈ Z. (1)

We say that f has the (standard) shadowing property if for any ε > 0 there exists a d > 0
such that for any d-pseudotrajectory {xn} there exists an exact trajectory {fn(p)} satisfying
the inequalities

dist( f n(p), xn) < ε, n ∈ Z. (2)

Now, let us pass to a similar property for actions of finitely generated groups. Let� be an
action of a finitely generated groupG on (M, dist).We considerG inmultiplicative notation
with unit element e (unless otherwise explicitly stated; for example, it is more convenient
to treat a standard dynamical system with discrete time as an action of the group Z with
additive notation).

Let S be a finite symmetric generating set of G (everywhere below, the term ‘generating
set’ means a finite symmetric generating set).
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We say that a family {xg: g � G} is a d-pseudotrajectory of the action � with respect to
the generating set S if

dist(xsg, �(s, xg)) < d, g ∈ G, s ∈ S. (3)

Remark 2.1: Let us note that the exact analogue of condition (3) for a standard dynamical
system generated by a homeomorphism f (and considered as an action ofZwith symmetric
generating set S = { ± 1}) is not condition (1) but the condition

dist(xn±1, f ±1(xn)) < d, n ∈ Z. (4)

Let us assume that f−1 is uniformly continuous and find a function δ(d) → 0 as d → 0
such that the inequality

dist(x, y) < d, d > 0, (5)

implies the inequality

dist( f −1(x), f −1(y)) < δ(d).

Clearly, in this case, condition (1) implies the analogue of condition (4) with d replaced
by max (d, δ(d)).

We say that a group action � has the shadowing property with respect to a generating
set S if for any ε > 0 there exists a d > 0 such that for any d-pseudotrajectory {xg} with
respect to the generating set S there exists an exact trajectory {pg = �(g, pe): g � G} of �

satisfying the inequalities

dist(pg, xg) < ε, g ∈ G. (6)

Let us say that� is uniformly continuous if, for some generating set S, any�(s, .), s � S,
is uniformly continuous. Clearly, if� is a different generating set, then any�(σ , ·), σ � �,
is uniformly continuous as well (thus, we may speak about the uniform continuity of �).

Main technical assumption (MTA).Everywhere below, we assume that all the considered
actions � are uniformly continuous.

Remark 2.2: It is easy to show (see [7] and comparewith the proof of Lemma2.2 below) that
if S and � are two generating sets, then � has (or does not have) the shadowing property
with respect to S and � simultaneously (thus, the shadowing property does not depend on
the choice of S).

Generalizing the well-known property of discrete dynamical systems, we say that an
action � is expansive if there exists an a > 0 such that if

dist(�(g, x), �(g, y)) ≤ a, g ∈ G,

then x = y.
The following property is also an analogue of a known property: an action � is called

topologically Anosov if



DYNAMICAL SYSTEMS 201

� � has the shadowing property;
� � is expansive.
Let us call the next statement the RST for a groupG: if there exists an element g�G such

that the homeomorphism f( · ) = �(g, ·) is topologically Anosov, then � is topologically
Anosov (and hence, it has the shadowing property).

The first RST was proved in [4]: the RST is valid for G = Z
p, p > 1.

At present, the most general result known to the author is published in [7]: the RST
is valid for virtually nilpotent groups (we give a formal definition of a virtually nilpotent
group below, in Section 4).

At the same time, the RST is not valid for some solvable groups (see an example in [7]:
the RST is not valid for the Baumslag–Solitar group BS(1, n) = 〈a, b|ba = anb〉, n > 1).

Passing to inverse shadowing, we first note that this property depends not only on the
system but also on the family of approximate trajectories (usually, such families are gen-
erated by so-called (approximate) methods). In this paper, we select one class of methods
(similar to methods of class �s introduced in [8]).

Let f:M → M be a homeomorphism. We say that a family of continuous mappings

� = {γn ∈ C(M,M) : n ∈ Z}

is a d-method for f if

dist(γn±1(x), f ±1(γn(x))) < d, n ∈ Z, x ∈ M; (7)

we assume that γ 0 = Id.
A sequence ξ = {xn � M} is called a trajectory of a d-method � if

xn = γn(x0), n ∈ Z.

Clearly, a trajectory of a d-method is a d-pseudotrajectory of f in the sense of condition
(4).

We say that f has the inverse shadowing property if for any ε > 0 there exists a d > 0
such that for any x � M and any d-method � there exists a trajectory ξ = {xn � M} of �

satisfying the inequalities

dist( f n(x), xn) < ε, n ∈ Z.

Now, we define a similar property for group actions.
Let � be an action of a finitely generated group G; a d-method for � with respect to a

generating set S of G is a family

� = {γg ∈ C(M,M) : g ∈ G}

such that

dist(γsg(x), �(s, γg(x))) < d, g ∈ G, s ∈ S, x ∈ M; (8)

we assume that γ e = Id.
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A family

{xg = γg(xe) ∈ M : g ∈ G}

is called a trajectory of the method �.
We say that � has the inverse shadowing property with respect to the generating set S if

for any ε > 0 there exists a d> 0 such that for any p�M and any d-method � with respect
to the generating set S there exists a trajectory {xg} of � satisfying inequalities (6), where
pg = �(g, p).

Let us fix two generating sets of G, S and �. Clearly, there exists a constant C > 0 such
that any s � S can be represented as follows:

s = σ ′
1 · · · σ ′

c , σ ′
1, . . . , σ

′
c ∈ �, c ≤ C. (9)

Lemma 2.1: For any d0 > 0 there exists a d∗ = d∗(d0, C) such that if � = {γ g} is a d∗-method
with respect to �, then � is a d0-method with respect to S.
Proof: Fix a function δ(d) → 0 as d → 0 such that inequality (5) implies the inequalities

dist(�(σ, x), �(σ, y)) < δ(d), σ ∈ �.

Let � = {γ g} be a d∗-method with respect to �. Fix arbitrary g � G and x � M.
Since � is a d∗-method with respect to �,

dist(γσ ′
cg(x), �(σ ′

c , γg(x))) < d∗, (10)

where σ ′
c is from representation (9).

Now, we estimate

dist(γσ ′
c−1σ

′
cg(x), �(σ ′

c−1σ
′
c , γg(x)))

≤ dist(γσ ′
c−1σ

′
cg(x), �(σ ′

c−1, γσ ′
cg(x))) + dist(�(σ ′

c−1, γσ ′
cg(x)), �(σ ′

c−1, �(σ ′
c , γg(x))))

< d∗ + δ(dist(γσcg(x), �(σ ′
c , γg(x)))) ≤ d∗ + δ(d∗),

where we take into account inequality (10), its analogue with σ ′
c replaced by σ ′

c−1 and g
replaced by σ ′

c g, and the equality

�(σ ′
c−1σ

′
c , γg(x)) = �(σ ′

c−1, �(σ ′
c , γg(x))).

Similarly,

dist(γσ ′
c−2σ

′
c−1σ

′
cg(x), �(σ ′

c−2σ
′
c−1σ

′
c , γg(x))) < d∗ + δ(d∗ + δ(d∗)),

and so on.
This obviously proves our lemma since the number of steps of this process does not

exceed C. �
Lemma2.2: If S and� are two generating sets, then� has (or does not have) the inverse shad-
owing property with respect to S and � simultaneously (thus, the inverse shadowing property
does not depend on the choice of S).
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Proof: Let us assume that � has the inverse shadowing property with respect to S.
Take an ε > 0 and find the corresponding d= d0. Apply Lemma 2.1 to find a d∗ = d∗(d0,

C) such that if � = {γ g} is a d∗-method with respect to �, then � is a d0-method with
respect to S.

In this case, for any p � M there exists a trajectory {xg} of � satisfying inequalities (6).
Thus, d∗ corresponds to the chosen ε for the generating set �. �

In the study of inverse shadowing for group actions, we replace the condition ‘the action
is topologically Anosov’ by a different condition (TC below).

LetH be a finitely generated group, let S be a generating set ofH, and let � be an action
of H.

Let � = {γ h: h � H} be a d-method for � with respect to the generating set S.
Fix a number ε > 0 and a point p � M.
We define the ‘tube’ T (ε, p,H, �) as the set of families

Z = {zh ∈ M : h ∈ H}

such that

zh = γh(ze), h ∈ H

(i.e. Z is a trajectory of �), and

dist(zh, �(h, p)) < ε, h ∈ H.

We say that� satisfies the TC if there exists a constant a> 0with the following property:
for any ε � (0, a), there exists a constant d = d(ε) > 0 such that if � is a d-method for �

with respect to S, then

T (ε, p,H, �) 	= ∅

and

T (a, p,H, �) = T (ε, p,H, �)

for any p � M.

Remark 2.3: (1) In the definition of the TC, we do not indicate the dependence of this
property on the chosen generating set S of H (though S is mentioned in the definition of
the TC) since Lemma 2.1 implies that if� satisfies the TC for some generating set S, then it
satisfies the TC for any generating set� ofH (with the same a, but, possibly, with a different
d(ε)).

(2) Standard reasoning shows that if� is an action ofZ generated by a homeomorphism
h, both h and h−1 are uniformly continuous, k is a fixed natural number, and�k is the action
of hk, then � and �k satisfy the TC simultaneously.

The main result of this paper is the following statement (which we call the RIST).
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Theorem 2.1: If� is a uniformly continuous action of a virtually nilpotent group G and there
exists an element g � G such that �|〈g〉 satisfies the TC, where 〈g〉 is the subgroup generated
by g, then � has the inverse shadowing property.

We prove this theorem in Section 4.

3. Tubes for hyperbolic linear automorphisms

In this section, we prove that a dynamical system generated by a hyperbolic linear auto-
morphism satisfies the TC (of course, the reasoning used in the proofs of Lemmas 3.1 and
3.2 is more or less standard for the hyperbolic theory). We restrict ourselves to the linear
case because in this case, the reasoning is ‘transparent’; clearly, a similar reasoning can be
applied in a neighbourhood of a hyperbolic set of a diffeomorphism.

Consider a hyperbolic linear automorphism ofm-dimensional vector space X = R
m or

X = C
m,

f (x) = Ax, x ∈ X.

The reasoning in the cases X = R
m andX = C

m is similar, and we do not distinguish these
cases.

Since the matrix A is hyperbolic, we may assume that it has a block-diagonal form,

A = diag(B,C), (11)

and there exists a number λ � (0, 1) such that

‖B‖, ‖C−1‖ ≤ λ (12)

(see, for example, Lemma 4.1 of [9]).
Let us represent any x � X in the form x = (xs, xu) according to representation (11) of

the matrix A.
Let � = {γk, k ∈ Z} be a d-method for f.
Fix a point p � X and let pk = f k(p), k ∈ Z.

Lemma 3.1: For any d-method �, there exists its trajectory {zk} such that

|(zk − pk)s| ≤ d/(1 − λ), |(zk − pk)u| ≤ dλ/(1 − λ). (13)

Proof: We search for zk in the form

zk = pk + vk.

A sequence of that form is a trajectory of � if and only if

vk+1 = (
Bv s

k,Cvu
k

) + wk+1(v0), (14)

where

wk+1(v0) = γk+1(p0 + v0) − f (γk(p0 + v0)),
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so that

|ws
k+1(v0)|, |wu

k+1(v0)| < d. (15)

Consider the space H of sequences V = {vk � X} such that

|v s
k| ≤ d/(1 − λ), |vu

k | ≤ dλ/(1 − λ)

with the Tikhonov product topology. Then H is convex and compact.
Define an operator R on H as follows. A sequence V = {vk} is mapped to the sequence

T = {tk} such that

t sk =
k∑

i=−∞
Bk−iws

i (v0)

and

tuk = −
∞∑

i=k+1

Ck−iwu
i (v0).

The convergence of the series is obvious; the continuity of the operator R with respect to
the product topology is proved in Section 12.3 of [9].

It follows from (12) and (15) that

|t sk| ≤ d(1 + λ + · · ·) = d/(1 − λ)

and

|tuk | ≤ d(λ + λ2 + · · ·) = dλ/(1 − λ);

hence, Rmaps H into itself. By the Schauder fixed point theorem, R has a fixed point V in
H.

Easy calculation shows that V satisfies equalities (14). �
Lemma 3.2: If {zk} is a trajectory of a d-method � such that

sup
k∈Z

|zk − pk| < ∞, (16)

then this trajectory satisfies inequalities (13).

Proof: Fix a trajectory {zk} of a d-method � for which inequality (16) holds.
A sequenceV such that zk = pk + vk satisfies Equation (14). Fix an index k and write the

equality for the ‘unstable’ component in the representation zk = pk + vk:

vu
k+1 = Cvu

k + wu
k+1(v0).
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It follows from the equality

vu
k = C−1vu

k+1 −C−1wu
k+1(v0),

from the estimate of ‖C−1‖ in (12), and from (15) that

|vu
k+1| ≥ λ−1|vu

k | − d.

Iterating this inequality, we see that

|vu
k+2| ≥ λ−2|vu

k | − λ−1d − d = λ−2(|vu
k | − dλ − dλ2),

. . . ,

|vu
k+m| ≥ λ−m(|vu

k | − d(λ + λ2 + · · ·)) ≥ λ−m
(|vu

k | − dλ/(1 − λ)
)
, m > 0.

Since λ−m → � asm → �, it follows from inequality (16) that

|vu
k | − dλ/(1 − λ) ≤ 0,

which implies the second estimate in (13). The first estimate is proved similarly. �

Lemmas 3.1 and 3.2 imply that f satisfies the TC with any fixed a > 0 (for definiteness,
let us take a = 1); if � is a d-method for f, then

T (ε, p, Z, �) 	= ∅

and

T (1, p, Z, �) = T (ε, p, Z, �)

for any p � M and any

ε ∈
(
d
1 + λ

1 − λ
, 1

)

(of course, we assume that d(1 + λ) < ε(1 − λ)).

Example 3.1: Consider the hyperbolic mapping f(x)= 2x on X = R. Obviously, the results
similar to Lemmas 3.1 and 3.2 are valid in this case.

Fix a small δ > 0 and an index k � 1 and define a continuous function γ k(x) on R as
follows:

γk(x) = 2kx, x ∈ (−∞, 1) ∪ (2, ∞),

γk(x) ≡ 2k, x ∈ Iδ := [1, 1 + δ],

and γ k is linear on [1 + δ, 2]. Thus, γ k + 1(x) = 2γ k(x) for k � 1 and x ∈ R.
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Set γ k(x) = 2kx for k < 0 (and recall that γ 0(x) = x). Let us estimate the values

k,±1(x) := |γk±1(x) − f ±1(γk(x))|, x ∈ R.

Clearly, only the functions

0,1(x) = |γ1(x) − f (γ0(x))|

and

1,−1(x) = |γ0(x) − f −1(γ1(x))|

may take non-zero values.
It is easily seen that

0,1(x) ≤ 2δ and 1,−1(x) ≤ δ.

Hence, � = {γ k} is a 3δ-method for f.
Take p = p0 = 1, then pk = 2k. If z0 � Iδ , then

zk = γk(z0) = 2k = pk, k ≥ 0.

Otherwise, if z0�Iδ , then

|zk − pk| → ∞, k → ∞.

On the other hand, if we take any z0 � Iδ , then zk = 2kz0 for k< 0; this gives us a trajectory
of � that δ-shadows {pk} since |zk − pk| � 2kδ for k � 0.

Hence, for any ε > δ, the tube T (ε, p, �, f ) consists of all the sequences {zk} such that

zk = 2kz0, k ≤ 0, z0 ∈ Iδ,

and

zk = 2k, k > 0.

4. Inverse shadowing in actions of virtually nilpotent groups

In this section, we prove Theorem 2.1.
Let us give the definition of a virtually nilpotent group.
First, let us recall thatH is a normal subgroup of G (we writeH � G) if gH = Hg, g � G.
The commutator of g, h � G is defined as follows:

[g, h] = ghg−1h−1, g, h ∈ G.

If G1, G2 are subgroups, then [G1, G2] is generated by [g1, g2], where g1 � G1, g2 � G2.
We say that an Abelian group is nilpotent of class 1.
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We say that G is a nilpotent group of class n if there exist subgroups G1,… , Gn + 1 such
that

G = G1 � · · · � Gn+1 = e, Gn 	= e, Gi+1 = [Gi,G].

At last, a finitely generated group G is called virtually nilpotent if there exists a normal
nilpotent subgroup G′ of G having finite index (this means that the factor group G/G′ is
finite).
Remark 4.1: Let us note that virtually nilpotent groups play an important role in group
theory; Gromov showed in [10] that a group of polynomial growth is virtually nilpotent.

The main technical statement in this section is the following lemma.
Let � be an action of a finitely generated group G and let H be a finitely generated nor-

mal subgroup of G. Fix a symmetric generating set SH of H and extend it to a symmetric
generating set S = SG of G.

Lemma 4.1: If � satisfies the MTA (� is uniformly continuous) and �|H satisfies the TC,
then � satisfies the TC.

Proof: Let a> 0 be the constant from the TC for�|H. Apply theMTA to find an ε < a such
that

dist(�(s, x), �(s, y)) < a/2 for s ∈ S and x, y ∈ M with dist(x, y) < ε. (17)

Let d = d(ε) < a/2 for this ε from the TC for �|H. Let � be a d-method for �.
Fix an arbitrary point p � M and an element g � G. Inequalities (8) imply that the

inequalities

dist(γshg(x), �(s, γhg(x)) < d

are satisfied for any s � S and h � H, which means that the set

�|H (g) = {γhg : h ∈ H}

is a d-method for �|H (and let us note that the above inequalities are satisfied not only for
h � H and s � SH but also for h � H and s � S, which we apply below).

By the TC for �|H, there exists a non-empty set Z(g, p) � M such that

T (ε, �(g, p), �|H (g), �|H ) = {γhg(z) : h ∈ H, z ∈ Z(g, p)}

(we shadow the exact trajectory of �(g, p) with respect to the action of H), which means
that

dist(γhg(z), �(h, �(g, p))) < ε, h ∈ H, z ∈ Z(g, p). (18)

Now, we take an arbitrary s � S. Let us take h � H and z � Z(g, p) and estimate

dist(γhsg(z), �(hsg, p)).
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Since H is a normal subgroup of G, there is an element h′ � H such that

sh′ = hs.

Then,

dist(γhsg(z), �(hsg, p)) = dist(γsh′g(z), �(hsg, p)) ≤

≤ dist(γsh′g(z), �(s, γh′g(z))) + dist(�(s, γh′g(z))), �(s, �(h′g, p))) ≤

(we note that �(s, (h′g, p)) = �(sh′g, p) = �(hsg, p))

≤ d + a/2 < a.

The first term in the second line is estimated by d since γ hg is a d-method, and the second
term is estimated using (18) (with h = h′) and (17).

By the TC for �|H,

dist(γhsg(z), �(hsg, p)) < ε, h ∈ H.

This shows that Z(g, p) � Z(sg, p). But the above reasoning is symmetric, and we con-
clude that Z(sg, p)� Z(g, p). Hence, the set Z(g, p) is, in fact, independent of g (let us denote
this set by Z(p)).

Then, we can take h = e in (18) to conclude that

dist(γg(z), �(g, p)) < ε

for any g � G, which gives us the first part of the TC for �.
The second part is obvious. �

First, we prove the RIST in the case of a nilpotent group G of class n. In fact, we prove
the following auxiliary statement.

Lemma 4.2: If � is a uniformly continuous action of a nilpotent group G of class n, g � G,
and �|〈g〉 satisfies the TC, then � satisfies the TC as well (which obviously implies the inverse
shadowing property of �).
Proof: We use induction on n.

If n= 1, thenG is Abelian; in this case, 〈g〉 is a normal subgroup ofG, and our statement
follows from Lemma 4.1 (with H = 〈g〉).

Now let n > 1 and assume that we have proved our statement for nilpotent groups of
class not exceeding n − 1.

In what follows, we refer to an auxiliary statement proved in [7] (Lemma 4.3 below).
Let G be a nilpotent group of class n, let Q = [G, G], let g � G, and let P = 〈Q, g〉 (i.e. P

is the minimal subgroup of G containing Q and g). �
Lemma 4.3: The following statements hold.

(1) The group P is a normal subgroup of G.
(2) The group P is a nilpotent group of class not exceeding n − 1.
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Let us continue the proof of Lemma 4.2 for a nilpotent group G of class n.
Any normal subgroup of a finitely generated nilpotent group is finitely generated (see,

for example, [11]). Hence, P is a finitely generated nilpotent group of class not exceeding
n − 1, g � P, and �|〈g〉 satisfies the TC. Now our induction assumption implies that �P

satisfies the TC. Statement (1) of Lemmas 4.3 and 4.1 imply that � satisfies the TC.
Now let us complete the proof of the RIST in the case where G is a virtually nilpotent

group. The group G has a normal nilpotent subgroup H of finite index. Let g � G be an
element of G that satisfies the TC. SinceH is a subgroup of finite index, there exists a k > 0
such that gk � H. The action �|〈g〉 satisfies the TC; hence, the action �|〈gk〉 satisfies the TC
as well (see Remark 2.5).

By Lemma 4.2, �|H satisfies the TC. Thus, to complete the proof, it remains to apply
Lemma 4.1 to G and H.
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