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Thermodynamics of a small sessile droplet on a solid substrate is discussed with a focus on size dependence of its
contact angle. An interface displacement (ID) model is employed to calculate profiles and contact angles of sessile
droplets representing, in particular, critical droplets in nucleation on a partially wettable solid substrate. Line-tension
and adsorption-related corrections to the contact angle cosine are found within the ID model and illustrated with
numeric calculations for a short-range interface potential. The line tension and adsorption effects on the contact angle
are shown to be comparable even in the first order in the contact line curvature. For smaller droplets, an intrinsic
dependence of the line tension on the contact line curvature also becomes significant for the contact angle.
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1. INTRODUCTION

Heterogeneity of a system usually plays a key role in nucleation of new phase embryos in different systems, drastically
lowering the degree of metastability necessary for active nucleation process. Small heterogeneities (ions, micro-,
meso-, and macro-scopic solid particles, both soluble and insoluble, charged and uncharged, etc.) act as nucleation
centers, facilitating formation of critical droplets with an activation barrier lower than in a homogeneous mother
phase.

At complete wetting of a chemically homogeneous spherical solid particle by condensate, in the absence of
electric charges, a new phase embryo appearing in a supersaturated vapor is formed by a thin concentric liquid film∗

of the condensate around the particle surface (see Kuni et al., 2001, 1996).
At partial wetting of a solid surface, however, small sessile droplets of condensate are formed by nucleation on the

surface of solid particles or substrates (Checco et al., 2003; Derjaguin and Zorin, 1955). If specific properties of thin
liquid films are described with a disjoining pressure isotherm Π(h), the appearance of sessile droplets is associated
with loss of stability of a wetting film† in a thickness h range, where Π′(h) > 0 (Derjaguin et al., 1987) with forming
of “humps”. Being grown up, such local “humps” have spherical-segment shape, forming a contact angle with the
surface of the solid. The fact that bulk liquid can form a contact angle with a polymolecular (adsorption or wetting)
film is long known. Even though the disjoining pressure has been initially defined and measured for planar films, the
disjoining-pressure-based approach to describing non-uniform in thickness films (and, in particular, a transition zone
between a thin wetting film and a macroscopic meniscus/droplet) is widely used in theory of wetting.

∗A film of non-uniform thickness is formed, in particular, in a case of heterogeneity of the solid particle itself. It can be a local
chemical or structural heterogeneity/defect or a asymmetrically located (e.g., adsorbed) electric charge [see, e.g., Warshavsky
et al. (2013a,b)].
†See Ajaev (2013) for detailed consideration of various instabilities of thin liquid films on solid substrates.
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General thermodynamic approach to description of sessile drops is often extrapolated down to very small crit-
ical droplets at nucleation. Such a description can be exact within Gibbs’ method of dividing surfaces. However,
it generally implies dependences of surface excesses (including surface tensions/energies) on chemical potentials
of components’ molecules of the system and curvatures of the dividing surfaces. It also takes into account line ex-
cesses, including the line tension/energy and its dependence on the chemical potentials and the contact line curvature
(Rusanov, 2005; Rusanov et al., 2004). Most of the mentioned dependences are generally unknown.

Making simplifying assumptions, it is possible to find, within such a general thermodynamic approach, the work
of droplet formation as a function of the radius of the droplet’s free surface and/or contact line, the contact angle, the
chemical potential(s) with taking into account the surface and, generally, the line tension. Thermodynamic theory of
nucleation on flat and spherical solid surfaces was formulated within assumption of constant surface tensions without
the line tension (Fletcher, 1958; Volmer, 1939) as well as with account of [constant] line tension (Gretz, 1966a,b;
Iwamatsu, 2015a,b; Navascués and Tarazona, 1981; Radoev et al., 1986; Scheludko, 1980, 1983, 1985; Singha et al.,
2015). The effect of the line tension on the contact angle and work of formation of very small (nanosized) droplets in
the latter theories tends to appear a maximum on the dependence of the condensate molecules’ chemical potential on
the droplet size and, therefore, existence of a threshold vapor supersaturation above which the activation barrier to
nucleation vanishes. Note that this maximum appears even in nucleation on a flat partially wettable substrate due to
size dependence of the contact angle as a result of the line-tension effect. Existence of such a maximum is a hallmark
of heterogeneous nucleation.

Since critical droplets in nucleation on a partially wettable surface are extremely small, applicability of such
simplified descriptions is doubtful. Contact angles and even profiles of sub-micrometer sessile droplets can be mea-
sured using not only optical but also modern scanning-microscopy techniques, including atomic-force microscopy
(Herminghaus et al., 2000; Seemann et al., 2001). Such measurements not only reveal the structure of the three-phase
contact area but also demonstrate a non-linear dependence of the contact angle cosine on the contact line curvature
(for nucleated nanosized alkane droplets on silanized silicon wafers, see Checco et al., 2003) in contrast to linear
dependence used in simplified theories down to almost nanosized drops.

In the present work, we employ a local interface displacement (ID) model based on use of an effective interface
potential (related to disjoining pressure isotherm) to find the profiles of sessile droplets—critical droplets at nucleation
in a one-component supersaturated vapor on a flat partially wettable solid substrate. Such droplets are formed on top
of a precursor film representing the equilibrium state of the solid surface in contact with the vapor. That is one
of the possible nucleation scenarios near a wall/substrate (see Dash, 1977) and was directly observed and studied,
e.g., for polar fluids (water and alcohols) on glass (Derjaguin and Zorin, 1955). Within the ID model, we calculate
dependences of the solid–vapor surface tension on the chemical potential of molecules of the fluid (vapor/condensate)
due to adsorption. We also calculate the size-dependent line tension of small droplets. Since the droplets profiles
are known, we compare different size-related corrections to the contact angle cosine and demonstrate that they are
comparable for small droplets. Moreover, the line-tension and adsorption effects on the contact angle give comparable
corrections even in the first order in the contact line curvature. We present thermodynamic arguments and confirm
them within the model, illustrating with numeric calculations for a representative interface potential.

The work has the following structure. In Section 2, a general thermodynamic description of a sessile droplet is
given with a focus on size dependence of the contact angle. In Section 3, a local ID model is introduced, stationary
profiles (corresponding to metastable state of the surface and a critical droplet) are discussed, including the context
of nucleation; an expression for the adsorption-related correction to the contact angle cosine is derived. In Section 4,
correspondence between general thermodynamic and ID descriptions of a sessile droplet is used to find an expression
for the size-dependent line tension. Results of numeric calculations for three separate corrections to the contact angle
cosine are presented in Section 5 and then discussed in Section 6.

2. THERMODYNAMICS OF A SESSILE DROPLET

Let us consider a materially open system of a fixed volume, including a solid substrate (phase γ), vapor (phase β)
and a sessile droplet of the condensate (the bulk condensate phase will be referred to as α), forming a contact angle
θ with the substrate surface. To simplify our consideration, let the fluid part of the system be one-component. Then,
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within the general thermodynamic approach, the grand thermodynamic potential of the system decomposes into bulk,
surface, and line contributions:

Ω = Ωγ − pβV β − pαV α + σαβAαβ + σαγAαγ + σβγAβγ + κLαβγ, (1)

where V is the volume occupied by the corresponding phase,A is the area of the interface surface, p is the pressure in
the corresponding bulk phase, σ is the thermodynamic surface tension, also known as the surface energy—the specific
(i.e., per unit area) surface excess of the grand thermodynamic potential‡; single Greek superscripts mark the phase,
double Greek superscripts mark the interfaces; Ωγ is the grand thermodynamic potential of the bulk solid phase (see
Rusanov et al., 2009), Lαβγ is the length of the three-phase contact line—the perimeter of the sessile droplet, κ is
the thermodynamic line tension—the specific (i.e., per unit length) line excess of the grand thermodynamic potential.

Supposing the equilibrium droplet to have the shape of a spherical segment with the curvature radius R, the
radius of the contact line r and the contact angle θ (see Fig. 1), one can easily write the expressions for the volume
V α, the areas Aαβ and Aαγ, the length Lαβγ:

V α =
1
3
πR3(2 + cos θ)(1− cos θ)2, (2)

Aαβ = 2πR2(1− cos θ), Aαγ = πR2 sin2 θ, (3)

Lαβγ = 2πr = 2πR sin θ, since r = R sin θ. (4)

For the quantities V β and Aβγ, one can write

V β = Vt − V α, Aβγ = At −Aαγ, (5)

where Vt is the total volume of the fluid (liquid–vapor) part of the system, At is the total substrate area (the joint area
of the substrate/liquid, αγ, and substrate/vapor, βγ, surfaces).

The excess quantities σ and κ standing in Eq. (1) are defined for chosen Gibbs dividing surfaces (spherical for
αβ surface and planar for αγ and βγ surfaces. Putting Eqs. (2)–(5) into the right-hand side of Eq. (1) yields an
expression for Ω in terms of R and θ:

Ω(R, θ) =− 1
3
πR3(pα − pβ)(2 + cos θ)(1− cos θ)2 + 2πσαβR2(1− cos θ)

− (σβγ − σαγ)πR2 sin2 θ + 2πκR sin θ− pβVt + σβγAt + Ωγ.
(6)
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FIG. 1: Solid line: Schematic representation of a sessile droplet on a solid substrate. Circled Greek symbols mark phases: α is
the liquid (colored), β is the vapor, γ is the solid substrate (striped). R is the curvature radius of αβ surface, θ is the contact
angle, r is the radius of the three-phase-contact line. Dashed line schematically represents an interface displacement profile l(x)
corresponding to the sessile droplet (see Section 3), m(x) then denotes the reference profile (28).

‡See (Rusanov et al., 2009, 2010) for exact meaning of the quantity σ for solids and its difference from the mechanical surface
tension, also known as the surface stress.
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If the surface of tension is chosen as the αβ dividing surface, equilibrium conditions

∂Ω/∂R = 0, ∂Ω/∂θ = 0 (7)

will give (Rusanov et al., 2004) the Laplace formula

pα − pβ = 2σαβ/R (8)

and the generalized Young equation

σαβ cos θ = σβγ − σαγ − κ/r − ∂κ/∂r (9)

as equations for equilibrium contact angle θ and radii R and r.
Note that Ω in Eqs. (1) and (6), as well as the quantities pα, pβ, σαβ, σαγ, σβγ, κ and ∂κ/∂r are taken at given

values of the temperature T and the chemical potential µ (of molecules of the vapor/condensate)§. In this work, the
system is supposed to be isothermal.

For a large (in the limit of infinite) droplet corresponding to the bulk liquid–vapor phase coexistence, i.e., the
binodal, the generalized Young equation turns into the “classical” Young relation

σαβ
0 cos θ0 = σβγ

0 − σαγ
0 , (10)

where the subscript “0” refers to the thermodynamic state µ = µ0 at the binodal.
Subtracting Eq. (9) from the Young relation (10) we arrive at

σαβ
0 cos θ0 − σαβ cos θ = δ∆σγ + κ/r + ∂κ/∂r, (11)

where we have introduced

δ∆σγ ≡ ∆σγ −∆σγ
0 , ∆σγ ≡ σαγ − σβγ, ∆σγ

0 ≡ σαγ
0 − σβγ

0 . (12)

Here and further, δ denotes the difference of the value of a quantity with its value at the binodal (at µ = µ0).
Equation (11) is exact, however, it includes quantities with dependences on the chemical potential µ; the line

tension κ also depends on the equilibrium contact line radius r. Usually, these dependences are neglected (or just
silently ignored) and Eq. (9) is used in a simplified form often referred to as the modified or sometimes extended
Young equation

σαβ
0 cos θ = σβγ

0 − σαγ
0 − κ0/r. (13)

Being subtracted from the “classical” Young relation (10), it gives a simplified form of Eq. (11):

σαβ
0 (cos θ0 − cos θ) = κ0/r. (14)

We used here the subscripts “0” to refer to the values of σ and κ at the binodal as corresponding to large droplets.
Equation (14) has been widely used in measurements of the line tension from the slope of cos θ vs. 1/r (see,

e.g., Amirfazli et al., 1998, a recent review of Law et al., 2017 and references therein). Since the curvature radius R
of the αβ surface is usually much larger than the Tolman length, we will also suppose σαβ = σαβ

0 (see discussion in
Section 6; for estimations of the Tolman length see, e.g., Bykov and Shchekin, 1999a,b).

To estimate the term δ∆σγ in Eq. (11), let us employ the generalized Gibbs adsorption equation for βγ and αγ
surfaces—the solid-surface counterpart of the conventional Gibbs adsorption equation. Following Rusanov (1978,
1996, 2005), one can write for each of the flat solid–fluid surfaces

dσ = −s̄ dT +
(
γ̂− σ1̂

)
:
(
dê− dN̂(j)/N(j)

)
−
∑
i

Γ(i) dµ(i), (15)

§The thermodynamic state of the solid is considered to be fixed in all our considerations: its temperature always equals T , and the
change of the chemical potential(s) of the component(s) of the solid is neglected. Thus, we will not consider the possible effects
of excess stress in solid substrate underneath the droplet on the droplet’s thermodynamics.
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where s̄ is the specific (per unit area) surface excess of entropy, γ̂ is the mechanical surface tension (surface stress)
tensor, ê is the surface strain tensor, N̂(j) is the mass displacement tensor of the immobile component j of solid,
N(j) ≡ Tr N̂(j) is the amount of matter (the number of atoms/molecules) of the immobile component j in the solid
phase, Γ(i) is the adsorption of a mobile component i at the interface, µ(i) is the chemical potential of the molecules
of this component; colon denotes a biscalar product of tensors.

For a non-deformable solid (or solid at a fixed strain) of a constant mass (within the boundaries defined by the
dividing surfaces) dê = 0, dN̂(j) = 0, and Eq. (15) yields the conventional form (as for a fluid–fluid interface) of the
Gibbs adsorption equation (Rusanov, 1996, 2005):

dσ = −s̄ dT −
∑
i

Γ(i) dµ(i). (16)

Assuming the solid to contain no mobile components, neglecting deformation of the solid substrate by the sessile
droplet (assuming the strain of the solid to be independent of the droplet size and the chemical potential(s) of the
fluid) and setting the βγ and αγ dividing surfaces as equimolecular with respect to the immobile component j of the
solid,¶ we apply Eq. (16) to both σβγ and σαγ in our system. At T = const, for a one-component fluid this yields

d∆σγ =
(
Γβγ − Γαγ

)
dµ. (17)

Integration of this equation from the binodal to the current thermodynamic state gives

δ∆σγ =

∫ µ

µ0

(
Γβγ − Γαγ

)
dµ′ '

(
Γβγ

0 − Γαγ
0

)
δµ, where δµ ≡ µ− µ0. (18)

The latter is the asymptotic expression for large droplets. The subscript “0”, as usual, refers to the thermodynamic
state µ = µ0 at the binodal.

To compare this result for δ∆σγ with κ/r, let us consider the Gibbs–Duhem equation

dp = s dT + n dµ (19)

at a constant temperature for our one-component fluid for both α and β phases. Here s is the entropy density, n is the
number density of molecules. Far from the critical point, the liquid (phase α) is almost incompressible and nβ � nα,
and one can easily obtain by integration of Eq. (19) for α and β phases

pα − pβ ≈ nαδµ. (20)

Comparing this with the Laplace formula (8) and the geometric relation r = R sin θ, one can obtain

r ≈ 2σαβ sin θ

nαδµ
' 2σαβ

0 sin θ0

nαδµ
, (21)

which yields
κ

r
≈ κnαδµ

2σαβ sin θ
' κ0n

αδµ

2σαβ
0 sin θ0

. (22)

The last expressions in Eqs. (21) and (22) are the asymptotic ones for large droplets.
Now one can see that the terms δ∆σγ and κ/r on the right-hand side of the Eq. (11) are of the same order in δµ.

As for the term ∂κ/∂r, it can be estimated as O
(
r−2
)
, i.e., O

(
(δµ)2

)
, [see Rusanov (2005); Rusanov et al. (2004)].

Thus the simplified equation (14) is not correct. It can be technically considered as an asymptotic form of the exact
equation (11) at r →∞, but with the coefficient

κ0 + 2σαβ
0 sin θ0

(
Γβγ

0 − Γαγ
0

)
/nα (23)

¶This practically means the dividing surface located at the boundary of the solid substrate as it can be reasonably defined.
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on its right-hand side instead of κ0. The slope of cos θ vs. 1/r measured in many experiments, therefore, equals

−κ0/σ
αβ
0 − 2 sin θ0

(
Γβγ

0 − Γαγ
0

)
/nα, (24)

not −κ0/σ
αβ
0 , as it is usually believed.

To compare the absolute values of δ∆σγ and κ/r and/or the terms in the sum (23), one has to measure them
(or, one of them and the slope of cos θ vs. 1/r) independently or calculate them within a model. Since the simplified
Eq. (14) is widely used to describe even nanoscale sessile droplets, it is also interesting to examine if all the three
terms on the right-hand side of Eq. (11) are important for very small droplet sizes, where the first order (in δµ or 1/r)
approximation is not accurate enough.

As an example, we will consider critical droplets at nucleation on a partially wettable substrate. Such droplets are
very small; however, the approximate Eq. (14) had been used to incorporate the line tension effect into the “classical”
nucleation theory in the past (Gretz, 1966a,b; Navascués and Tarazona, 1981; Radoev et al., 1986; Scheludko, 1980,
1983, 1985) and still used in recent publications (e.g., Iwamatsu, 2015a,b; Singha et al., 2015).

In the next sections, we describe a local interface displacement model of a sessile droplet on a flat solid substrate
and apply it to calculate δ∆σγ, κ/r and ∂κ/∂r. Since the term δ∆σγ is determined by the adsorptions [see Eq. (18)],
we will refer to its effect on the contact angle as the effect of adsorption, while the effect of the term κ/r is usually
referred to as the line-tension effect. The smaller (for large enough droplets) effect of the term ∂κ/∂r should also be
included in the effect of the line tension, but can be called by itself, e.g., the size-dependence effect of the line tension.

3. INTERFACE DISPLACEMENT MODEL OF THE SYSTEM

Equations (8) and (9) of macroscopic capillarity and wetting contain quantities pα,β(T,µ), σαγ,βγ,αβ(T,µ) and
κ(T,µ, r) that must be known functions of their variables. To find the line and surface tensions as functions of
corresponding variables, we employ a local interface displacement model widely used in the theory of wetting. Within
the model, the liquid is represented with a film of varying thickness covering the surface of the substrate in the
presence of another fluid (the vapor phase in our case). The solid substrate is assumed to be a rigid impenetrable wall
interacting with the liquid–vapor interface with a known local interface potential.

The normal density distribution in the fluid phases is assumed to be sharp kink (see, e.g., Getta and Dietrich,
1998), i.e., the density is supposed to be constant within each fluid and equal to its bulk value at the same T and µ
and abruptly change at the interfaces. Both solid–liquid and liquid–vapor interfaces are supposed to posses interfa-
cial tensions. Due to the sharp-kink density distribution, there are no surface excesses of matter at the liquid–solid
and liquid–vapor interfaces. According to the Gibbs adsorption equation (16), it means that the corresponding in-
terfacial tensions will not depend on the chemical potentials. The values of the appropriate thermodynamic surface
tensions σαγ

0 and σαβ
0 at the bulk phase coexistence point µ = µ0 will be used‖. The value σαγ

0 corresponds to
the surface tension of the αγ surface with the dividing surface located just at the solid wall and, therefore, can be
considered as equimolecular with respect to the immobile component of the solid.

The state of the system is described by a liquid–vapor interface diplacement (i.e., variable film thickness) profile
l(x) with x the radius vector of a point on the substrate surface (see Fig. 1). The interface potential U(l) includes
all thin-film-specific contributions to the free energy (de Gennes, 1985; Dietrich, 1988; Dobbs and Indekeu, 1993;
Indekeu, 1992) and can be expressed in terms of the disjoining pressure (Derjaguin et al., 1987) isotherm Π(l) as
U(l) =

∫∞
l

Π(h) dh. Under assumption of incompressibility of the liquid, the grand thermodynamic potential of the
system takes form (Dobbs and Indekeu, 1993)

Ω(ID)[l(x);T,µ] = Ωγ − pβVt +

∫ [
σαγ

0 + σαβ
0

√
1 + (∇l)2 + U(l(x))− nαδµ l(x)

]
d2x, (25)

‖We intentionally make terminological difference: the interfacial tensions are surface excesses of the grand thermodynamic poten-
tial referred to the interfaces of the film within the model, while the surface tensions are the surface excesses referred to dividing
surfaces between macroscopic phases. The former are parameters of the model, the latter appear in thermodynamic description
(see Section 2) and can vary depending on choice of dividing surfaces, even being applied to the same model system.
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integration is to be done over the whole substrate surface. This expression defines Ω(ID) as a functional with respect
to the ID profile l(x) and a function with respect to thermodynamic variables T and µ.

Assuming axial symmetry, one can rewrite the functional Eq. (25) in polar coordinates:

Ω(ID)[l(x);T,µ] = Ωγ−pβVt +σβγπx2
max + 2π

∫ xmax

0

[
∆σγ + σαβ

0

√
1 + l2x + U(l(x))− nαδµ l(x)

]
x dx, (26)

where x is the radial coordinate, ∆σγ = σαγ
0 − σβγ [as defined in Eq. (12) with account of σαγ = σαγ

0 within the
ID model]. Here we have chosen a circle of a large enough radius xmax as the domain of integration, meaning that the
system is contained in a cylinder with radius xmax, normal to the substrate surface. We can rewrite the thermodynamic
expression (1) for Ω in a similar form as

Ω[m(x);T,µ] = Ωγ − pβVt + σβγπx2
max + 2π

∫ r

0

[
∆σγ + σαβ

√
1 +m2

x − nαδµm(x)
]
x dx+ 2πκr, (27)

where

m(x) ≡
{√

R2 − x2 −R cos θ, x < r (while m(x) > 0),

0, x ≥ r
(28)

is the “macroscopic” spherical-segment-shaped profile of the sessile droplet forming a contact angle cos θ with the
substrate surface (see Fig. 1). Expression (27) can be considered as a functional of m(x) which stationary profile (28)
can be obtained together with Eqs. (8) and (9) [taking into account Eq. (20)], using a transversal boundary condition
at m(x) = 0 (see Marmur, 1998; Rusanov, 1977, 1996).

The Euler–Lagrange equation of the functional Eq. (26) is

−σαβ
0

(
d

dx
+

1
x

)
lx√

1 + l2x
−Π(l(x)) = nαδµ. (29)

The first term on the left-hand side of this equation is the local capillary pressure [the local mean curvature of
the l(x) interface multiplied by−σαβ

0 ]. The second term is the local disjoining pressure taken with the opposite sign.
Since it has been initially defined, measured and calculated for planar films uniform in thickness, using it within this
model implies at least smooth non-uniformity, i.e., lx � 1. For large interface displacements (film thicknesses), Π(l)
becomes negligible and Eq. (29) turns into equation of a constant mean curvature.

Typical shapes of the interface potential isotherm U(l) are represented in Figs. 2(a) and 2(b). The local minimum
(and a zero of the disjoining pressure) at f0 corresponds to the equilibrium film thickness at bulk phase coexistence.

We have numerically calculated stationary profiles [solutions of Eq. (29)] for several different interface potentials
of typical shapes (see an example in Section 5). We have applied boundary conditions

lx(0) = 0, lx −−−−→
x→∞

0 (30)

by realizing a Runge–Kutta shooting method. We chose an initial interface displacement l(0), solved numerically an
initial value problem with lx(0) = 0 and searched for appropriate value(s) of δµ to satisfy the boundary condition at
x→∞ (technically, at a finite, sufficiently large value xmax, in order to regularize the problem).

In all the cases, we have found two solutions at 0 < δµ < −Π(fus)/n
α (see Fig. 2 for notations and schematic

representation of the solutions) and no solutions at larger δµ. The first, trivial, solution is a film of a constant thickness
f that can be easily found by setting to zero the first (curvature) term on the left-hand side of Eq. (29):

−Π(f) = nαδµ. (31)

This is a non-linear algebraic equation. We need to choose solution(s) corresponding to [meta]stable film(s), i.e.,
delivering a weak minimum to the functional Eq. (26). Using direct analysis of the second variation (Mechkov et al.,
2007) or appropriate conditions of variational calculus (Churaev et al., 1982), it can be shown, that this requires

Π′(f) ≡ dΠ(f)/ df < 0. (32)
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Ũ

f0

fus

S̃0

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

f

f
l(x)

(a) (b) (c)

FIG. 2: (a) and (b) Schematic representation of typical shapes of disjoining pressure isotherms Π(h) and corresponding
interface potentials U(h) =

∫∞
h

Π(h′) dh′ for a partially wettable substrate. The graphs are labeled with “reduced” quantities
Π̃ ≡ Π/σαβ

0 , Ũ ≡ U/σαβ
0 , S̃0 ≡ S0/σ

αβ
0 , µ̃ ≡ δµ/(nασαβ

0 ) and corresponding µ̃us ≡ δµus/(nασαβ
0 ) that will be used

later in the text. (c) Two solutions [trivial, corresponding to Eq. (31), and non-trivial] of the boundary problem (30) for the
Eurler–Lagrange Eq. (29).

For supersaturated vapor (δµ > 0), this condition is fulfilled in a limited range of film thicknesses f0 < f < fus,
usually lying within ∼ 10−1–101 nm. The lower limit corresponds to δµ → +0, i.e., the binodal. The upper limit
corresponds to the (negative) minimum of Π(f) and sets the upper limit δµus of existence of metastable films. The set
of such limiting states at different T and µ is often referred to as the upper surface spinodal (see Indekeu and Bonn,
1995, 1997; Nakanishi and Pincus, 1983) which is indicated with “us” subscripts in our notation.

The second, non-trivial, solution is a “hump” on top of the film of thickness f . The smaller the value of (positive)
δµ, the higher the “hump” is. At small values of δµ, the “hump” clearly represents the sessile droplet with a large
top part lying out of the range of surface forces and, therefore, with spherical-segment-shaped surface with curvature
radius R = 2σαβ

0

(
nαδµ

)−1
= 2σαβ

0

(
pα − pβ

)−1
in accordance with the Laplace formula (8). At higher values of

δµ, the height of the “hump” decreases and, finally, l(0) → fus + 0 together with f → fus − 0 at δµ → δµus − 0.
This means that the first and the second solutions merge at the upper surface spinodal. Using direct analysis of the
second variation (Mechkov et al., 2007, see also Blossey and Bausch, 1994), it can be shown, that the second solution
delivers a “saddle point” to the functional (26) with the only unstable growth–evaporation mode, i.e., represents the
critical droplet at nucleation.

The underlying film of thickness f , therefore, shows that the first, trivial, solution gives us a precursor metastable
film which is initially formed on the surface of the substrate in the presence of vapor and represents the equilibrium
(strictly speaking, metastable) state of the surface. Later, liquid phase embryos nucleate and grow on this precursor
film. This corresponds to direct observations (see, e.g., Derjaguin et al., 1987; Derjaguin and Zorin, 1955). The grand
thermodynamic potential of our system with this equilibrium βγ surface in absence of droplets can be expressed
within general thermodynamic description (27) and within the ID model (26), giving the same result:

Ωγ − pβVt + σβγAt = Ωγ − pβVt +
(
σαγ

0 + σαβ
0 + U(f)− nαδµf

)
At. (33)

This gives us the following relation between the equilibrium values of thermodynamic surface tensions:

∆σγ ≡ σαγ − σβγ = σαγ
0 − σβγ = nαδµf − U(f)− σαβ

0 . (34)

In the limit δµ→ +0, Eq. (34) gives

∆σγ
0 ≡ σαγ

0 − σβγ
0 = −U(f0)− σαβ

0 . (35)
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This, in particular, leads to an expression for the spreading coefficient within the ID model

S0 ≡ σβγ
0 − σαγ

0 − σαβ
0 = σαβ

0 (cos θ0 − 1) = U(f0) (36)

and an expression for δ∆σγ:

δ∆σγ ≡ ∆σγ −∆σγ
0 = nαδµf + U(f0)− U(f). (37)

For large enough sessile droplets (small values of δµ), the thickness f of the underlying film can be approximately
expressed from Eq. (31) applied at the current value of δµ and at δµ = 0:

nαδµ = Π(f0)−Π(f) ' −Π′(f0)(f − f0). (38)

Therefore, f − f0 ' −nαδµ/Π′(f0) [note, that Π′(f0) < 0, cf. Eq. (32)] and, since U ′(f0) = −Π(f0) = 0, one
can obtain U(f)− U(f0) ' 1/2U ′′(f0)(f − f0)2 = −1/2 (nαδµ)2/Π′(f0). Substituting the latter into Eq. (37), we
arrive at

δ∆σγ ' nαδµf +
1
2

(nαδµ)2/Π′(f0) ' nαδµf0. (39)

Since, within the ID model and at chosen solid–fluid dividing surfaces, Γαγ = 0 and Γβγ = nαf , Eq. (39)
exactly reproduces Eq. (18). As a consequence, Eq. (24) for the slope of cos θ vs. 1/r takes form

−κ0/σ
αβ
0 − 2f0 sin θ0. (40)

The activation barrier to nucleation of sessile droplets then equals

δΩ(ID)(T,µ) = Ω(ID)[l(x);T,µ]− Ω(ID)[f ;T,µ], (41)

and the nucleation rate J is

J ∝ exp

(
−δΩ(ID)

kBT

)
. (42)

Expectedly, δΩ(ID) → 0 at δµ→ δµus − 0, i.e., the activation barrier to nucleation vanishes at the upper surface
spinodal, and nucleation becomes barrierless (turning into what can be called “surface spinodal decomposition” at
δµ > δµus).

4. THREE-PHASE CONTACT LINE RADIUS, CONTACT ANGLE AND LINE TENSION

To find the contact angle θ, the radius r of the three-phase contact line and to calculate the line tension κ for a given
interface displacement profile l(x) found at specific values of T and µ, one should define a corresponding reference
“macroscopic” profile m(x) [see Eq. (28)]. The correspondence is set by the Laplace formula (8), which gives the
value of R, and another condition to be specified by measurement procedure. Bearing in mind such methods as
atomic force microscopy (AFM) that can give droplet profiles similar to l(x) in our model, we consider the condition
m(0) = l(0) of profiles touching at their top (see Fig. 1) as the most natural. Then

m(x) ≡
{√

R2 − x2 −R+ l(0), x < r (while m(x) > 0),

0, x ≥ r,
(43)

r and θ can be found from
r =

√(
2R− l(0)

)
l(0), cos θ = 1− l(0)/R. (44)

Then, the line tension κ can be calculated from the equation

Ω(ID)[l(x);T,µ] = Ω[m(x);T,µ], (45)
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where the functionals are defined by Eqs. (26) and (27). This gives, with use of relation (34),

κ =
1
r

{∫ ∞
0

[
σαβ

0

(√
1 + l2x − 1

)
+ U(l(x))− U(f)− nαδµ

(
l(x)− f

)]
x dx

−
∫ r

0

[
σαβ

0

(√
1 +m2

x − 1
)
− U(f)− nαδµ

(
m(x)− f

)]
x dx

}
. (46)

Here we have replaced a formal upper limit of integration xmax with∞ in the first of the integrals, since this integral
already converge [in contrast to the integral in expression (26)]. Introducing a function

m1(x) ≡
{
m(x), x < r,

f, x ≥ r, (47)

we can rewrite expression (46) in a more compact form

κ =
1
r

∫ ∞
0

[
σαβ

0

(√
1 + l2x −

√
1 +m2

1x

)
+ U(l(x))− U(f)− nαδµ

(
l(x)−m1(x)

)]
x dx+

r

2
U(f). (48)

Even thought the non-integral term rU(f)/2 diverges at δµ → +0, it is compensated by (1/r)
∫∞

0

[
U(l(x)) −

U(f)
]
x dx, since for the most part of a large enough droplet, U(l(x)) is very small. The other terms under the

integral substantially differ from zero at δµ → +0 only in the three-phase contact region. Therefore, they will give
an integral contribution proportional to r, i.e., hopefully, a convergent contribution to κ.

To calculate the thermodynamic line tension κ0 of an infinite droplet (i.e., of a straight contact line), one can
calculate the expression (46) or (48) in the limit δµ → +0. It can be done numerically, but the same result can
be obtained analytically for a straight contact line (Dobbs and Indekeu, 1993). In Cartesian coordinates, the Euler–
Lagrange equation for a stationary interface displacement profile takes the form [cf. Eq. (29)]

σαβ
0 lxx

(
1 + l2x

)−3/2
+ Π(l(x)) = 0, (49)

with x the Cartesian coordinate along the change of the interface displacement (perpendicular to the contact line).
The first integral of this equation is

σαβ
0

(
1 + l2x

)−1/2
= 1− U(l(x)) + U(f0) = 1− U(l(x)) + S0. (50)

We used a boundary condition at a flat film asymptote l(x) → f0, lx → 0 (let it be at x → −∞). At the other
limit x → ∞, the profile forms a wedge with a slope lx = tan θ0. Then, using the “classical” Young relation (10),
we obtain the latter of the equalities (50), reproducing the relation (36) in this geometry.

Substituting lx from (50) into appropriate expression for Ω(ID)[l(x)] and switching to interface displacement as
an independent variable (Indekeu, 1992), one can obtain (Dobbs and Indekeu, 1993)

κ̃0 = −f0

√
−S̃0

(
2 + S̃0

)
+

∫ ∞
f0

[√(
Ũ(h)− S̃0

) (
2− Ũ(h) + S̃0

)
−
√
−S̃0

(
2 + S̃0

) ]
dh. (51)

Here we used κ̃0 ≡ κ0/σ
αβ
0 , Ũ ≡ U/σαβ

0 , S̃0 ≡ S0/σ
αβ
0 . Note, that S̃0 = cos θ0 − 1 < 0. For small contact

angles, Ũ(h)� 1, and expression (51) turns into a simpler one (Indekeu, 1992):

κ̃0 ' −f0

√
−2S̃0 +

∫ ∞
f0

[√
2
(
Ũ(h)− S̃0

)
−
√
−2S̃0

]
dh. (52)

The first, non-integral term in expressions (51) and (52) is absent in [Dobbs and Indekeu (1993) and Indekeu
(1992)]. It is a contribution from a small fragment of the reference profile m(x) located between the substrate surface
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and the distance f0 (underlying film thickness) from it. It does not appear in appropriate expressions in the above
mentioned works, since the dividing plane between the solid substrate and the fluid phases has been set there at the
distance f0 from the substrate (i.e., on top of the underlying film). Such a consideration does make sense, especially
in the vicinity of the upper surface spinodal (µ → µus − 0), where nucleation actually occurs, and the height of
[critical] droplets is comparable with the thickness f of the precursor/underlying film. However, consistent use of
such dividing surfaces with solid bodies requires a more detailed analysis, in particular, of Eq. (15).

Since
√
−S̃0

(
2 + S̃0

)
= sin θ0, the first, non-integral term in expression (51) equals−f0 sin θ0. Then, the slope

(40) of the curve cos θ vs. 1/r equals

f0

√
−S̃0

(
2 + S̃0

)
+

∫ ∞
f0

[√(
Ũ(h)− S̃0

) (
2− Ũ(h) + S̃0

)
−
√
−S̃0

(
2 + S̃0

) ]
dh. (53)

5. CALCULATIONS FOR A MODEL INTERFACE POTENTIAL

To illustrate our theoretical results and to compare the effects of line tension and adsorption on the contact angle, we
took a simple short-range potential, used by Dobbs (1999):

Ũ(h) ≡ U(h)/σαβ
0 = Ae−(h−1) +Be−2(h−1) + Ce−3(h−1) (54)

with A = 3.3, B = −7.0, C = 3.5 (see Fig. 3). With these parameters, S̃0 = −0.203, θ0 = 0.65 rad, f0 = 0.97, the
upper surface spinodal is at µ̃us = 0.970, fus = 1.29. It is convenient to use other “reduced” quantities as well:

κ̃ ≡ κ/σαβ
0 , ∆σ̃γ ≡ ∆σγ/σαβ

0 , µ̃ ≡ δµ/
(
nασαβ

0

)
. (55)

The line tension of a straight line for this potential, calculated from expression (51), equals κ̃0 = 0.22. It is not
only comparable with 2f0 sin θ0 = 1.17, but notably less than it. This means that, for this particular potential, the
effect of adsorption on the contact angle of [not very] small droplets is even more pronounced than the line tension
effect. Figure 4 shows cos θ vs. 1/r, computed from Eq. (44), in wide range of droplet sizes, as well as asymptotic
dependences according to the “simplified” modified Young equation (14) and similar asymptotic form with the correct
slope (53). The slope of the curve cos θ vs. 1/r clearly equals the quantity (53), a form of expressions (40) and (24)
within the ID model, at 1/r → 0. However, it notably deviates from this asymptotic behavior at smaller droplets.
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FIG. 3: Left: Model short-range “reduced” interface potential (54) with A = 3.3, B = −7.0, C = 3.5. Right: Calculated
interface displacement profile l(x) of the sessile droplet (dashed line) at µ̃ = 0.060 and corresponding “macroscopic” reference
profile m(x) (cf. schematic representation in Fig. 1). Interface displacement profile l(x) lies below m(x) due to presence of the
positive disjoining pressure Π(h) = −U ′(h) branch at large values of film thickness h [see Eq. (29)].
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FIG. 4: Left: Calculated cos θ vs. 1/r and corresponding asymptotic dependences according to the “simplified” modified Young
Eq. (14) and similar asymptotic form with the correct slope (53), a form of expressions (40) and (24). Right: Calculated difference
(cos θ0 − cos θ) and appropriate corrections to cos θ0 according to both asymptotes, all multiplied by r, vs. 1/r, close-up of the
large-droplet range. Here it is clear that −κ̃0 − 2f0 sin θ0 indeed gives the correct slope of cos θ vs. 1/r in r →∞ limit. Results
from the ID model with the interface potential (54).

To compare the corrections to the contact angle cosine at different values of δµ (different droplet sizes), we have
calculated κ/r using expression (48), δ∆σγ using expression (37), and ∂κ/∂r expressing it with use of Eqs. (11),
(36) and (37) as

∂κ/∂r = σαβ
0 (1− cos θ) + U(f)− nαδµf − κ/r, (56)

or, for “reduced” quantities (54) and (55),

∂κ̃/∂r = 1− cos θ + Ũ(f)− µ̃f − κ̃/r. (57)

Results are presented in Fig. 5. It can be seen that all three corrections are comparable for small enough droplets.
Even it is not clear from the main graph, κ̃/r and δ∆σ̃γ are indeed O

(
1/r
)
, while ∂κ̃/∂r = O

(
1/r2

)
. It can be

seen on the close-up graph of the large-droplet range, where the corrections are multiplied by r. Another curious
observation: relatively small (at r → ∞) line-tension correction term κ̃/r decreases with decrease of r and even
changes its sign from positive to negative at smaller droplet sizes. That is, of course, not the common case.

6. DISCUSSION

As one can see, our results demonstrate that the line-tension effect on the contact angle is not the only significant
effect even in the first order in the contact line curvature 1/r (or, the chemical potential shift δµ from the binodal).
Thermodynamic arguments give that the adsorption-related correction to cos θ0 is of the same order in 1/r (or δµ),
and calculations within the interface displacement model support it, showing that they can be of the same order in
magnitude (and, the adsorption effect can be even more pronounced).

Within the interface displacement model, the line tension κ0 of a straight line can be calculated analytically
[see Eqs. (51) and (52) representing results of Dobbs and Indekeu (1993); Indekeu (1992)]. Its typical value can be
estimated as κ0 ∼ σαβ

0 ξ, with ξ the interface potential range, a typical length lying within the thickness range where
the interface potential is substantially non-zero. As we saw at the end of Section 3, κ̃0 = κ0/σ

αβ
0 ∼ ξ is to be

compared with the adsorption-related contribution 2f0 sin θ0. The latter also lies within the same thickness range if
the macroscopic contact angle θ0 is not very small.
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)
, while ∂κ̃/∂r = O

(
1/r2). The interface potential (54) is used.

The role of solid–fluid adsorptions in size dependence of the contact angle for small sessile droplets was pointed
out earlier by Ward and Wu (2008). They have shown that the adsorption effect can be large enough to explain the
size dependence of the contact angle even without the line tension. However, both contributions exist in real systems,
and the model we have employed illustrates that they are inseparable and have joint effect.

For smaller droplets, the third correction to cos θ0 becomes also significant—the term ∂κ/∂r appearing in the
generalized Young Eq. (9) due to intrinsic contact-line-curvature dependence of the line tension. It also cannot be
separated from other corrections in real system. This partial derivative should not be confused with full derivative
dκ/ dr along the equilibrium/critical droplet sizes. While the partial derivative ∂κ/∂r is taken at fixed values of T
and µ, the full derivative dκ/ dr corresponds to change of equilibrium values of r and κ at changing T and/or µ.
In the isothermal case, e.g., it would correspond to calculation of changes dκ and dr of corresponding equilibrium
values at a variation dµ of the chemical potential. See Rusanov et al. (2004) for a more detailed explanation.

Ignoring size dependence of the line tension for very small droplets can give interesting predictions concerning
small droplet morphology and wetting behavior (see, e.g., Lv et al., 2008; Widom, 1995) and thermodynamics of
their nucleation (see, e.g., Gretz, 1966a,b; Iwamatsu, 2015a,b; Navascués and Tarazona, 1981; Scheludko, 1980,
1983, 1985; Singha et al., 2015). However, many of them may be “theoretical artifacts” due to extrapolation of simple
macroscopic equations down to submicrometer and nanosized droplets.

In our consideration, we have neglected dependence of the liquid–vapor surface tension σαβ on the chemical
potential. Constancy of σαβ is a part of the employed ID model; however, within general thermodynamic treatment
it can be taken into account by using the most general equation (11), which can be rewritten as

σαβ
0 (cos θ0 − cos θ) = δ∆σγ + δσαβ cos θ + κ/r + ∂κ/∂r with δσαβ ≡ σαβ − σαβ

0 , (58)

extracting δσαβ cos θ ' δσαβ cos θ0 as an additional correction term. Since Eqs. (8), (9) and, therefore, (11) are
obtained using the surface of tension as the αβ dividing surface, ∂σαβ/∂R = 0, and the Gibbs adsorption equation
takes the form dσαβ = −Γαβ dµ. Then, δσαβ ' −Γαβ

0 δµ, and, for the slope of the curve cos θ vs. 1/r, with
account of correction due to adsorption at αβ interface, we obtain

−κ0/σ
αβ
0 − 2 sin θ0

(
Γβγ

0 − Γαγ
0 − Γαβ

0 cos θ0
)
/nα (59)

instead of (24). While, in general, an additional correction 2Γαβ
0 sin θ0 cos θ0/n

α may be significant for very small
sessile droplets, in the considered case of nucleation with initial formation of a polymolecular precursor film, it is not
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significant, since f0 is usually much larger than the Tolman length. In any case, it seems reasonable to consider this
effect together with higher-order corrections, such as droplet-size dependence of δ∆σγ, κ and ∂κ/∂r.

In a recent work of Kanduč (2017), size-dependence of the contact angle was studied by molecular-dynamics
simulations for nanosized cylindrical (ridge-shaped) sessile water droplets. In such geometry, the term κ/r is absent
in the generalized Young Eq. (9) and in Eq. (11), while the term ∂κ/∂r persists and thus its effect on the contact
angle can be studied separately.∗∗ Kanduč (2017) has attributed this effect to the contact-angle dependence of the line
tension, using the “line-tension stiffness” ∂κ/∂θ that can be understood as (∂κ/∂r)(∂r/∂θ)R = (∂κ/∂r)R cos θ.
Its effect was studied together with effect of curvature-dependence σαβ(R) of the liquid–vapor surface tension taking
into account a linear in 1/R correction with use of the Tolman length. The solid–fluid-adsorption-related change of
∆σγ was not considered. It was found that the line-tension-stiffness correction to the contact angle is significant or
even predominant for polar substrates and negligible for non-polar ones. In contrast to our results, dependences of
cos θ vs. 1/R (and, therefore 1/r) have been found linear even for very small values ofR (such as a few nanometers).
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