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ASYMPTOTIC EFFICIENCY OF NEW
DISTRIBUTION-FREE TESTS OF SYMMETRY FOR
GENERALIZED SKEW ALTERNATIVES

G. T. Bookiya∗ and Ya. Yu. Nikitin∗ UDC 519.2

The Bahadur efficiency of new nonparametric tests of symmetry recently proposed by Nikitin and
Ahsanullah is calculated. In contrast to this result, where only location alternatives were discussed,
in the present paper generalized skew alternatives are of interest. It is shown that the new tests are
highly efficient for a large class of skew alternatives. The problem of most favorable alternatives
is also studied. Bibliography: 35 titles.

1. Introduction

A symmetry of the distribution of a random variable with continuous distribution function
(d.f.) F means that

F (x) = 1 − F (−x) for all x ∈ R
1. (1)

Assume that we are given a sample X1, . . . ,Xn with continuous d.f. F and a problem is to
test a hypothesis H that F is symmetric, i.e., relation (1) holds, against the alternative that this
relation is violated at least at one point. Testing the symmetry hypothesis is one of classical
problems of nonparametric statistics. There is a number of symmetry tests, e.g., the sign test
and the signed-rank Wilcoxon test, and more complicated tests based on very different ideas
(see [18, 20], [28, Chap. 4]). Among them only a few tests are based on characterizations of
symmetry and hence use internal features defining the properties of symmetry; in this regard,
we mention only papers [10,12,23].

In contrast to the criteria of symmetry, in recent years constructing and studying goodness-
of-fit tests based on characterization properties of the distributions is a rapidly evolving field.
Examples include papers [19,26,27,32–34] and several others.

In paper [1], Ahsanullah proves that symmetry is characterized by the identity of the dis-
tributions of absolute values for extremal order statistics.

Theorem 1. Let X1, . . . ,Xn be independent observations with common continuous d.f. F .
Consider the extreme order statistics

X1,n := min(X1, . . . ,Xn), Xn,n := max(X1, . . . ,Xn).

The distribution of Xi is symmetric, i.e., the d.f. F meets condition (1) if and only if |X1,n| d=
|Xn,n|.

This property forms a basis for a distribution-free test of symmetry developed by Nikitin
and Ahsanullah in [30].
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Fix an arbitrary integer k > 1 and consider V -empirical distribution functions of the vari-
ables |X1,n| and |Xn,n|:

G(k)
n (t) = n−k

∑

1≤i1,...,ik≤n

1{|min(Xi1 , . . . ,Xik)| < t}, t ∈ R,

H(k)
n (t) = n−k

∑

1≤i1,...,ik≤n

1{|max(Xi1 , . . . ,Xik)| < t}, t ∈ R.

By the Glivenko–Cantelli theorem for V -empirical distribution functions [17], the validity
of the hypothesis H implies that the functions G

(k)
n (t) and H

(k)
n (t) should be infinitely close

with increasing n, and this enables us to use their differences in order to construct statistics
for tests of symmetry.

We will consider two types of statistics proposed in [1]: the integral one

J (k)
n =

∫

R

[G(k)
n (t) − H(k)

n (t)] dFn(t), (2)

where Fn is the empirical distribution function of the sample |Xi|, and the Kolmogorov type
statistic

D(k)
n = sup

t
|G(k)

n (t) − H(k)
n (t)|. (3)

Thus for each value of the parameter k = 2, . . . , n − 1, we consider two criteria corresponding
to the integral and Kolmogorov statistics. The number in parenthesis appearing in superscript
corresponds to the degree of an appropriate kernel of U - or V -statistic.

In [30], Nikitin and Ahsanullah calculated the local Bahadur asymptotic efficiency of these
statistics for location alternatives. The Bahadur efficiency is chosen among other types of
efficiency, because it can be applied to statistics whose distribution under the null hypothesis
differs from normal. This is especially valuable for the Kolmogorov type statistics that have
nonnormal asymptotic distributions.

For most of the considered distributions, the specified effectiveness turns to be unusually
high. For example, for the sequence of the integral statistics {J (3)

n } its value is equal to 0.977
in the case of normal distribution, and is equal to 0.938 in the case of logistic distribution.
At the same time, the value for the Kolmogorov statistic D

(3)
n , which is usually somewhat less

effective, is equal to 0.764 and 0.750 for the above distributions.
It would be interesting to test whether the new tests are equally effective for more com-

plicated and practically important class of alternatives. Therefore in the present paper, we
continue to study the local Bahadur efficiency of the statistics in question for a broad class of
alternatives, which can be called generalized skew-symmetric alternatives. For these alterna-
tives, the density of observations is asymmetric and has the form

h(x, θ) := c(θ)G(w(x, θ))f(x), (4)

where the even function f is the density of distribution under the validity of the hypothesis
H, G is a smooth nonnegative function, c(θ) is a normalizing factor, and the function w(θ, x),
called the skew function, will be defined later. It is assumed that if the parameter θ equals
zero, then the density of the generalized skew distribution coincides with f(x). Therefore the
greatest interest is the case, where the values of the parameter are close to zero. Below these
alternatives are discussed in more detail.

Note that literature concerning the asymptotic behavior of symmetry tests for skew alter-
natives is pretty poor; in this regard, we can mention only paper [14] dedicated to ranking
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tests mainly. Also there are interesting papers [11] and [22], vaguely related to the topic of
our research, but they address other criteria, other alternatives, and other type of efficiency.

We calculate the values of local Bahadur efficiencies of statistics (2) and (3) for alter-
natives (4). Based on these calculations and using a technique developed in previous pa-
pers [14–16], we finally construct alternatives of the considered class that are the most effective
for these statistics in the Bahadur sense. For brevity, during calculations we omit unimportant
conditions of regularity that are easy to recover.

2. The structure of generalized skew-symmetric alternatives

As flexible and realistic models of alternatives, the skew-symmetric distributions are known
in Statistics for over a century. The first studies of the mechanisms of skew for the symmetric
distributions were carried out by De Helguero in [13], see also [21] and especially [7]. Skew-
symmetric distributions became popular after Azzalini’s famous paper [3] on skewed normal
distribution. In this paper, the density

ϕ(x, θ) = 2ϕ(x)Φ(xθ), −∞ < x < ∞, (5)

have been considered, where Φ and ϕ are the distribution function and density of the standard
normal law, respectively.

This paper has given rise to numerous studies and generalizations of skewed distributions.
Among many papers on this subject, we mention [2,4,6,24,35] and a generalizing monograph
of Azzalini and Capitanio [8].

A broad generalization of skew-symmetric distribution to multi-dimensional case was pro-
posed in [35]. For one-dimensional case, the densities considered there have the form

2G(x − θ) f(x − θ), (6)

where the skew function G satisfies the condition 0 ≤ G ≤ 1 and the symmetry condition
G(x) = 1 − G(−x), x ∈ R, f is the even density, and θ is an arbitrary real parameter.
The authors of [35] proved that every continuous density can be represented in form (6). In
other words, any distribution, in a certain sense, is skewed with respect to some symmetric
distribution. The same class of densities, but in the other notation, was considered in [5],
see [35, Proposition 2].

We use a slightly different, but similar, method of construction of generalized skew-symmet-
ric alternatives. Let us come back to density (4) and describe its components in more detail.
The normalizing multiplier c depends only on the parameter θ. For convenience, we introduce
the inverse value:

c̃(θ) = 1/c(θ) =

∞∫

−∞
G(w(x, θ)) f(x) dx.

Assume that the structure function G : R −→ R
+ and function of skew w(θ, x) : R×R −→ R

satisfy the following conditions:
(1) G is twice differentiable in a neighborhood of zero and G(0) > 0;

(2)
∞∫

−∞
G(w(x, θ)) f(x) dx < ∞ for all θ;

(3) w(x, θ) = −w(−x, θ) for any x;
(4) w is twice differentiable in θ in a neighborhood of zero;
(5) w(x, 0) = w(0, θ) = 0 for all x and θ;

(6)
∞∫

−∞
(w′

θ(x, 0))2f(x) dx < ∞.
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Denote by H(x, θ) the d.f. corresponding to the density h(x, θ), and set g(x) = G′(x).

Let us give some concrete examples of generalized skew-symmetric alternatives.
1) The classical skew-normal density (5) is at the same time a generalized skew-symmet-
ric density in our sense. In fact, if we set w(x, θ) := xθ, c(θ) := 2, and G(x) = Φ(x) in
formula (4), then conditions (1)–(6) are satisfied.
2) In general, the shift alternative is not a generalized skewed alternative. However, the
normal density with shift ϕ(x − θ) satisfies the conditions of a generalized (but not classic)
skew. Indeed,

ϕ(x − θ) =
e−(x−θ)2/2

√
2π

= e−θ2/2 · eθx · ϕ(x),

where the functions c(θ) = e−θ2/2, G(x) = ex, and w(x, θ) = xθ satisfy conditions (1)–(6).
3) A special case of the generalized skew normal density. Consider an alternative density

h(x, θ) = 2ϕ(x)Φ
(

xθ√
1 + x2θ2

)
, x ∈ R.

Here,

w(x, θ) =
xθ√

1 + x2θ2
,

and all required properties are fulfilled. This model was presented in [2] and then studied
many times, see [8, p. 48].
4) A flexible class of densities with cubic function of skew. The density

h(x, θ) = 2ϕ(x)Φ((x + x3) θ), x ∈ R,

was first considered in paper [24], and then in many publications (see [8, p. 49] for more
details).

The distribution function of an alternative can be expanded in series for small values of the
parameter θ if the skew alternative is close to symmetrical distribution. From the definition
of the functions w, it follows that

w′
θ(x, θ) = −w′

θ(−x, θ), w′′
θ (x, θ) = −w′′

θ (−x, θ).

The twice differentiable factor c(θ) has the corresponding derivatives in θ:

c′(θ) = −c̃′(θ)/c̃2(θ),

c′′(θ) = 2 (c̃′(θ))2/(c̃(θ))3 − (c̃(θ))′′/(c̃(θ))2,

where

c̃(θ) =

∞∫

−∞
G(w(x, θ)) f(x) dx,

(c̃(θ))′ =

∞∫

−∞
w′

θ(x, θ)g(w(x, θ)) f(x) dx,

(c̃(θ))′′ =

∞∫

−∞
w′′

θ (x, θ)g(w(x, θ)) f(x) dx +

∞∫

−∞
(w′

θ)
2(x, θ)g′(w(x, θ)) f(x) dx,
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which yields

c(0) = 1/G(0); c′(0) = 0; c′′(0) = −g′(0)/G2(0)

∞∫

−∞
(w′

θ(0, x))2 f(x) dx.

Clearly, if θ = 0, then H(x, 0) = F (x). Let us find the value of H ′
θ(x, 0). Since

H
′
θ(x, θ) =

x∫

−∞

(
c′(θ)G(w(u, θ) + c(θ)w′

θ(u, θ) g(w(u, θ))
)
f(u) du,

we get

H
′
θ(x, 0) =

g(0)
G(0)

x∫

−∞
w′

θ(u, 0) f(u) du =:
g(0)
G(0)

Fw(x),

where for brevity,

Fw(x) =

x∫

−∞
w′

θ(u, 0) f(u) du, x ∈ R.

The oddness of the function w(x, θ)f(x) implies that for all x ≥ 0,
x∫

−∞
w′

θ(u, 0) f(u) du = −
∞∫

x

w′
θ(u, 0) f(u) du.

In particular,
Fw(−∞) = Fw(∞) = 0, Fw(−x) = Fw(x).

Now we can find the main terms of the expansion in Taylor series of the distribution function
under the alternative hypothesis. Now, if θ → 0 and k > 1, then

Hk(x, θ) ∼ F k(x) + k
g(0)
G(0)

Fw(x)F k−1(x) · θ,

Hk(−x, θ) ∼ F k(−x) + k
g(0)
G(0)

Fw(x)F k−1(−x) · θ,

(1 − H(x, θ))k ∼ F k(−x) − k
g(0)
G(0)

Fw(x)F k−1(−x) · θ,

(1 − H(−x, θ))k ∼ F k(x) − k
g(0)
G(0)

Fw(x)F k−1(x) · θ.

(7)

3. The Kullback–Leibler information

Denote by F and H the d.f. of observations under the null hypothesis and under alternative,
respectively; the corresponding densities are f and h. As the “information distance” between
the distribution functions, we take the Kullback–Leibler information, which plays an important
role in the asymptotic theory of testing hypotheses, see for example [9]:

K(h, f) =

∞∫

−∞
h(x) ln

h(x)
f(x)

dx

(it is assumed that the d.f. H is absolutely continuous with respect to F ). In our case, for
the density of the symmetric distribution f and the skewed density for the alternative h given
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in (4), in testing a complex null-hypothesis H one may use the following upper bound for exact
slopes of test statistics (discussed below), see [28, Chap. 4]:

K(θ) =

∞∫

−∞
ln

2h(x, θ)
h(x, θ) + h(−x, θ)

h(x, θ) dx

=

∞∫

−∞
c(θ)G(w(θ, x)) ln {c(θ)G(w(θ, x))} f(x) dx.

(8)

Let us find the value of the main term of this expression as θ → 0 under given regularity
conditions for G and w. For this, we decompose the expression c(θ)G(w(θ, x)) in the Taylor
series in the neighborhood from θ = 0 up to θ2. Taking into account the above properties of
c(θ), w(x, θ), Fw(x), and G(x), we obtain the following asymptotics for the Kullback–Leibler
information:

K(θ) ∼ g2(0)
2G2(0)

∞∫

−∞
(w′

θ(x, 0))2 f(x) dx · θ2, θ → 0. (9)

In a special case for a classical model of the Azzalini skew (5), for w(x, θ) = xθ this relation
takes the form

K(θ) ∼ 2 g2(0) · EF X2
1 · θ2

that coincides with calculations in [15].

4. Calculation the Bahadur efficiency

We continue to calculate the local Bahadur efficiency for the statistics J
(k+1)
n and D

(k)
n , see

(2) and (3). A more detailed analysis of this technique is presented in [9] and [28]. Note also
that the key concept in the Bahadur theory is the notion of exact slope for a sequence of
test statistics {Tn}. This value shows the rate of exponential decrease of the reached level of
{Tn} under the alternative. As n → ∞, the sequence {Tn} should satisfy the following two
properties:

1. Tn → bT (θ) as n → ∞, in probability under the alternative;

2. n−1 lnP (Tn ≥ u) → −ζ(u) as n → ∞, for H,

where ζ(u) is a continuous function on the range of bT (θ). Then the exact Bahadur slope [9] is
defined as cT (θ) = 2 ζ(bT (θ)), and the absolute local Bahadur efficiency is expressed as follows:

eT = lim
θ→0+

cT (θ)
2K(θ)

, (10)

where K(θ) is as in (8).
When checking conditions 1 and 2, one should take into account that the first of them is, as

a rule, a simple consequence of the law of large numbers, whereas the second condition (a form
of logarithmic asymptotics of large deviations) is nontrivial. In our case, this asymptotics
has already been calculated in [30]. The following sections focus on the local efficiency of the
integral and Kolmogorov statistics.
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5. Efficiency of the integral statistics

Most of arguments required in the beginning of this section repeat those contained in [30].
Therefore we confine ourselves to a brief description.

Statistics (2) does not depend on the distribution. It can be represented in the form

J (k+1)
n =n−k−1

∑

1≤i1,...,ik+1≤n

(
1{|min(Xi1 , . . . ,Xik)|< |Xik+1

|}−1{|max(Xi1 , . . . ,Xik)|< |Xik+1
|}),

which reduces to V -statistics by using symmetrization. According to [31], the asymptotics of
large deviations for this statistic is expressed as follows:

ζk+1(t) ∼ t2

2(k + 1)2σ2
k+1

, t → 0,

where

σ2
k+1 =

1
22k−2(k + 1)2

1∫

0

(
(1 + s)k + (1 − s)k − 2

)2
ds > 0.

In a similar way, the expression

b
(k+1)
J (θ) = Pθ{|min(Y1, . . . , Yk)| < |X|} −Pθ{|max(Y1, . . . , Yk)| < |X|} (11)

can also be represented as a V -statistic.
Now we need to extract the main part of (11) as θ → 0 under alternative (4). Note that

Pθ{|min(Y1, . . . , Yk)| < |Z|} =

∞∫

0

(
(1 − H(−x, θ))k − (1 − H(x, θ))k

)
d(H(x, θ) − H(−x, θ)).

For brevity, set H(x, θ) := 1−H(x, θ) and H0(x, θ) := H(x, θ)−H(−x, θ). Then using the
obtained representations, we get

b
(k+1)
J (θ) =

∞∫

0

(
H

k(−x, θ) − H
k(x, θ) − Hk(x, θ) + Hk(−x, θ)

)
dH0(x, θ).

From (7), it follows that

H0(x, θ) ∼ F (x) − F (−x), θ → 0,

and hence,

dH0(x, θ) ∼ 2 f(x) dx.

Now with the help of (7), we obtain on asymptotic for b
(k+1)
J (θ):

b
(k+1)
J (θ) ∼ 4 k θ

g(0)
G(0)

∞∫

0

Fw(x) (F k−1(−x) − F k−1(x)) f(x) dx.

Taking into account that

d/dx
(
F k(x) + F k(−x)

)
= k f(x)

(
F k−1(x) − F k−1(−x)

)
,
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we can integrate by parts. Consequently, using (2) one can get

b
(k+1)
J (θ) ∼ 4 k θ

g(0)
G(0)

∞∫

0

Fw(x)(F k−1(−x) − F k−1(x)) f(x) dx

∼ −4 θ
g(0)
G(0)

∞∫

0

Fw(x) d(F k(−x) + F k(x))

= 4 θ
g(0)
G(0)

(
1

2k−1
Fw(0) +

∞∫

0

(F k(−x) + F k(x))w′
θ(x, 0) f(x) dx

)

= 4 θ
g(0)
G(0)

( ∞∫

0

(
F k(−x) + F k(x) − 1

2k−1

)
w′

θ(x, 0) f(x) dx

)
.

Now, taking into account asymptotics (5), we find that as θ → 0,

c
(k+1)
J (θ) ∼

16 g2(0)
( ∞∫

0

(
F k(−x) + F k(x) − 1/2k−1

)
w′

θ(0, x) f(x) dx
)2

G2(0)(k + 1)2σ2
k+1

θ2.

Finally, taking into account asymptotics (9) for the Kullback–Leibler information, one can
write down the local exact absolute Bahadur efficiency (10) of the sequence of the integral
statistics {J (k+1)

n } as follows:

eJ(k+1) =
22k+1

(∞∫
0

(
F k(−x) + F k(x) − 1/2k−1

)
w′

θ(0, x) f(x) dx

)2

∞∫
0

(w′
θ(0, x))2 f(x) dx

1∫
0

((1 + s)k + (1 − s)k − 2)2 ds

. (12)

6. The efficiency of the Kolmogorov statistics

Now we calculate the efficiency of sequence (3) of the Kolmogorov statistics D
(k)
n . As in

the first case, they are distribution-free under H, and the asymptotics of large deviations was
obtained in [30] with the help of a result in [29]. It was proved there that

ζk+1(t) ∼ t2

2k2s2k
, t → 0,

where
s2k = sup

0<s<1
(1 − s)

(
(1 + s)k−1/2k−1 − (1 − s)k−1/2k−1

)2
.

Calculating the limit under the alternative, the authors of [30] proved that

b
(k)
D (θ) = lim

n→∞D(k+1)
n = sup

x≥0

∣∣∣Pθ{|min(Y1, . . . , Yk)| < x} −Pθ{|max(Y1, . . . , Yk)| < x}
∣∣∣.

Similar to arguments in the previous section and using (7), one can find that for skew
alternatives,

b
(k)
D (θ) = sup

x≥0

∣∣∣Hk(x, θ) + Hk
0 (x, θ) − Hk(−x, θ) − Hk

0 (−x, θ)
∣∣∣

∼ θ · 2k g(0)
G(0)

sup
x≥0

|(F k−1(x) − F k−1(−x))Fw(x))|.
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Then the exact slope for the Kolmogorov statistics admits the asymptotics

cD(k)(θ) ∼ 4 g2(0) | supx≥0 |(F k−1(x) − F k−1(−x))Fw(x))|2
G2(0) s2k

.

Finally, its local absolute Bahadur efficiency is equal to

eD(k) =
4 supx≥0 |(F k−1(−x) − F k−1(x))

x∫
−∞

w′
θ(0, u) f(u)du|2

s2k

∞∫
0

(w′
θ(0, x))2 dF

. (13)

7. A discussion of the found efficiencies

Although the generalized skew-symmetric distributions form a quite wide class of alterna-
tives, the asymptotic efficiency of both integral and Kolmogorov criteria depends only on the
derivative at zero of the function of skew w′

θ(0, x) and does not depend on the “structural”
function G completely.

In order to obtain another useful result associated with the efficiency criteria, we introduce
an auxiliary function R(x) = 2F (x) − 1. Then

F (x) =
1 + R(x)

2
, F (−x) =

1 − R(x)
2

, dF (x) =
1
2
dR(x), R(0) = 0, R(∞) = 1.

Now the efficiencies (12) and (13) are represented as follows:

eJ(k+1) =

(∞∫
0

(
(1 + R(x))k + (1 − R(x))k − 2

)
w′

θ(0, x) dR(x)
)2

∞∫
0

(w′
θ(0, x))2 dR(x)

∞∫
0

((1 + s)k + (1 − s)k − 2)2 ds

,

eD(k) =
sup
x>0

|((1 + R(x))k−1 − (1 − R(x))k−1)
x∫

−∞
w′

θ(0, u) dR(u)|2

s2k

∞∫
0

(w′
θ(0, x))2 dR(x)

.

Finally, after some simplifications we get

eJ(k+1) =

( ∞∫
0

(
2
�k/2	∑
l=1

(
k

2l

)
R(x)2l

)
w′

θ(x, 0) dR(x)
)2

∞∫
0

(w′
θ(x, 0))2 dR(x)

∞∫
0

(
2
�k/2	∑
l=1

(
k

2l

)
R2l(x)

)2
dR(x)

, (14)

eD(k) =
sup
x>0

∣∣∣
(
2
�k/2	∑
l=1

(
k

2l − 1

)
R(x)2l−1

) x∫
−∞

w′
θ(u, 0) dR(u)

∣∣∣
2

∞∫
0

(w′
θ(x, 0))2 dR(x) sup

x>0
(1 − x)

(
2
�k/2	∑
l=1

(
k

2l − 1

)
x2l−1

)2
. (15)

From (14)–(15), it follows that if k = 2 and k = 3, then the values of the efficiencies are the
same for the integral and Kolmogorov criteria. This is consistent with the results for these
criteria obtained in [23] and [30] for location alternatives.

Now we calculate the local Bahadur efficiency for several standard distributions. Consider
the following symmetric densities of the original sample:

(1) Normal: f1(x) = (2π)−1/2e−x2/2;
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(2) Logistic: f2(x) = ex/(1 + ex)2;
(3) Arcsine on [−1, 1]: f3(x) = (π

√
1 − x2)−11{−1 < x < 1};

(4) Uniform on [−1, 1]: f4(x) = 1
21{−1 < x < 1};

(5) Student-3: f5(x) = 2/(π(1 + x2)2).
These distributions were considered in [14, 15]. For each of the selected densities of f , we

consider the corresponding skew-symmetric distribution (4) with arbitrary function G and a
deviation function w such that w′(x, 0) = x; note that the latter condition corresponds to the
most common case w(x, θ) = xθ. The values of the efficiencies are obtained according to the
corresponding formulas (12) and (13) with the help of the Matlab package.

Let us present a table for k = 2, 3, 4. In parentheses, we write down (if known) the efficiency
of relevant tests obtained by Nikitin and Ahsanullah in [30] for location alternatives.

Table 1. Local efficiency of the integral and Kolmogorov tests.

Test integral Kolmogorov
Distribution k = 2, 3 k = 4 k = 2, 3 k = 4

Normal 0,977 0,975 0,764 0,733
(0,977) (0,975) (0,764) (0,733)

Logistic 0,962 0,964 0,747 0,725
(0,938) (0,925) (0,750) (0,696)

Arcsine 0,868 0,848 0,698 0,635
Uniform 0,938 0,923 0,750 0,697
Student-3 0,766 0,777 0,585 0,306

First, we note that the tests showed a rather high efficiency even for relatively rare distribu-
tions. Therefore we can confidently recommend them for checking the hypothesis of symmetry
for generalized skew-symmetric alternatives. More effective integral criterion requires more
computational costs. It has already been used in applied problems. It should be noted that
sometimes the integral test for k = 4 shows better efficiency than for k = 2 and 3.

An analysis of this table and Table 2 in paper [30] shows that the values of efficiencies for
different criteria for alternative and skewed alternative almost coincide. This is convenient for
applications: in practice, the structure of the distribution of alternative is rarely known, and
this property allows to use the best criteria regardless of the alternatives. Another interesting
observation is that for the normal distribution, the values of the Bahadur efficiencies for shift
and skewed alternatives coincide. This property of the normal distribution was observed in
paper [15].

For several distributions, we also calculate the local efficiencies for skew-symmetric alterna-
tives with a cubic function of the skew (see example 4 in Sec. 2). As one can see from Table 2,
the results are quite comparable.

8. The most favorable alternative

The following question was put by Bahadur and developed in [28, Chap. 6]. What is the
distribution at the alternative that leads to local asymptotic optimality (LAO) of new Bahadur
statistics? In other words, which alternative is the most favorable and provides a local efficiency
equal to one, i.e., eJ(k+1) = 1 or eD(k) = 1 for some k > 1.
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Table 2. Efficiencies for skewed alternatives with a cubic function of skew.

Test Integral Kolmogorov
Distribution k = 2, 3 k = 4 k = 2, 3 k = 4

Normal 0.670 0.689 0.548 0.575
Arcsine 0.943 0.928 0.778 0.721
Uniform 0.991 0.985 0.803 0.767

Coming back to representing the efficiencies in the form (14)–(15), one can see that the
numerator and denominator are connected by Cauchy’s inequality. Indeed,

( ∞∫

0

(
2
�k/2	∑

l=1

(
k

2l

)
R2l(x)

)
w′

θ(x, 0) dR(x)
)2

≤
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0

(w′
θ(x, 0))2 dR(x)
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0
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.

Thus, the distribution is asymptotically optimal in the sense of Bahadur if in the corre-
sponding Cauchy inequality the equality is attained, and this is possible if the integrands are
proportional. But for the Kolmogorov statistics, the optimality means that

1{u > x} = C(x) · w′
θ(u, 0),

which is impossible, because of the properties of the function w. A similar result was obtained
in [15] for the classical Kolmogorov test for skew alternatives. Thus, the domain of LAO is
empty.

For integral tests, the optimality is achieved if and only if
�k/2	∑

l=1

(
k

2l

)
R2l(u) = C · w′

θ(u, 0), (16)

for a certain positive constant C. Here is an example of the optimum (most favorable) alter-
natives for k = 2 and k = 3. The density of such distributions has the form

f2,3(x) = C · |w′
θ(x, 0)|−1/2, −b ≤ x ≤ b, b > 0.
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If w′
θ(x, 0) = x, which corresponds to the classical case of w(x, θ) = xθ, then the most

favorable alternative is a simple symmetric distribution with density

f2,3(x) = 1/4
√

b|x|, −b ≤ x ≤ b,

which had never before appeared in similar problems. From equality (16), one can also obtain
more complicated examples.

Conclusion

We found theoretical values of the local Bahadur efficiency for sequence of statistics (2)
and (3) proposed in [30], to check the symmetry of a distribution against the generalized
skew-symmetric alternatives. Also we calculated the values for some of the most common
cases. The efficiency values were very high, and the same criteria showed the best results for
both shift alternatives and skew alternatives. All of this shows that the new criteria are quite
successful and can be applied in practice. In addition, we also discuss a question of the most
favorable alternatives from a given class.

The work of the second author was supported by the RFBR grant No. 16-01-00258 and by
the grant SPbU-DFG No. 6.38.65.2017.

Translated by I. Ponomarenko.
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