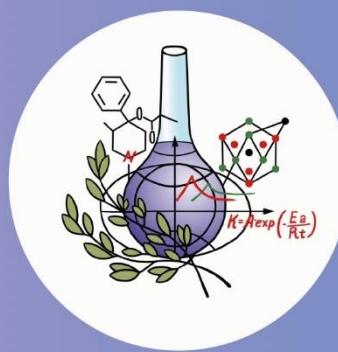


UD



RUDN
university

The Seventh International
Scientific Conference:

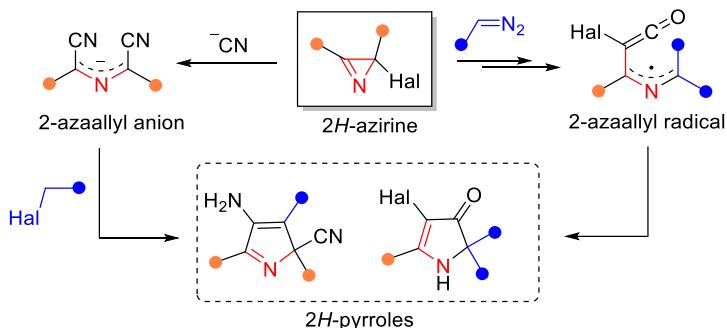
Advances in Synthesis and Complexing

Moscow, RUDN University
September 29 - October 03, 2025

BOOK OF ABSTRACTS

Organic Chemistry / Medicinal and Pharmaceutical Chemistry
Inorganic and Coordination Chemistry / Physical and Colloidal Chemistry

2-Azaallyl anions and 2-azaallyl radicals from 2*H*-azirines on the way to 2*H*-pyrroles


Novikov M.S., Agafonova A.V., Pavlenko J.I.

Saint Petersburg State University, Institute of Chemistry,

199034 Saint Petersburg, 7/9 Universitetskaya nab.

e-mail: m.novikov@spbu.ru

Intermolecular domino-reactions of 2*H*-azirines with carbon-centered nucleophiles and electrophiles, proceeding through the cleavage of one of three bonds of the ring, serve as a powerful tool for the construction of a variety of 5-membered heterocycles, including 1*H*- and 3*H*-pyrroles, 1*H*- and 2*H*-imidazoles, 2*H*-1,2,3-triazoles, oxazoles, thiazoles, and furan-2(5*H*)-ones [1, 2]. Another scenario for the two-atom azirine ring expansion, examples of which are still rare, involves a two-step procedure "azirine ring opening into a stable acyclic intermediate/heterocyclization". One of the advantages of this approach is the ability to fine tune the reaction conditions to achieve high regio- and stereoselectivity of the cyclization step. The report discusses the prospects of using this approach to the synthesis of new 2*H*-pyrrole derivatives. Two conceptually different solutions to this problem are proposed, one of which involves the pre-synthesis of 2-azallyl anion salts as stable acyclic intermediates, precursors of the final 4-amino-2*H*-pyrroles [3]. The second version of the 2*H*-pyrrole core formation is focused on the generation and "unfavorable" anti-Baldwin 5-*endo*-trig cyclization of 2-azaallyl radicals. The synthetic potential and limitations of both methods are discussed, as well as the results of experimental and quantum chemical studies of the reaction mechanisms.

This work was supported by the Russian Science Foundation (project № 23-13-00115) using the resources of the recourses of the Magnetic Resonance Research Centre, Chemical Analysis and Materials Research Centre, Computing Centre, and Centre for X-ray Diffraction Studies of St. Petersburg State University.

References

- [1] Charushin V.N., Verbitskiy E.V., Chupakhin O.N., Vorobyeva D.V., Gribanov P.S., Osipov S.N. et al. *Russ. Chem. Rev.* **2024**, 93, RCR5125.
- [2] Khlebnikov A.F., Novikov M.S., Rostovskii N.V. *Tetrahedron* **2019**, 75, 2555.
- [3] Pavlenko J.I., Agafonova A.V., Sakharov P.A., Smetanin I.A., Khlebnikov A.F., Kryukova M.A., Novikov M.S. *J. Org. Chem.* **2024**, 89, 6281.