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diffusion along their growing axes, where the average nanowire length either increases infinitely 

with time or saturates to a constant. We have obtained the exact solution to the discrete rate 
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nanowires. The obtained results can be used to model various growth systems with size-linear 

forward and backward rate constants.  
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Аннотация. Распределения по длинам нитевидных нанокристаллов 

полупроводниковых соединений III – V групп представляют интерес с фундаментальной 
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точки зрения и для приборных приложений. В работе исследованы кинетические уравнения 

роста нитевидных нанокристаллов с положительной и отрицательной диффузией вдоль оси 

роста, с бесконечным ростом средней длины или ее насыщением на больших временных 

интервалах. Получено точное решение задачи в виде распределения Пойа, изучена 

континуальная форма данного распределения и проанализированы экспериментальные 

распределения по длине различных нитевидных нанокристаллов III – V групп. Полученные 

результаты можно использовать для моделирования различных систем, которые 

подчиняются уравнениям Беккера – Деринга с линейными по размеру константами 

скоростей роста и фрагментации. 

Ключевые слова: нитевидный нанокристалл, полупроводниковые соединения III – 

V, распределение по длине, управляющие уравнения  
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Introduction 

 Freestanding semiconductor nanowires (NWs), in particular III – V NWs and 

heterostructures of different types based on such NWs, are widely reported in the 

literature as promising building blocks for nanoscience and nanotechnology [1, 2]. 

These NWs are grown by the vapor-liquid-solid method with a foreign metal catalyst 

(often Au [3]), which can be replaced by a group III metal in the self-catalyzed 

vapor-liquid-solid approach [4], or via selective-area epitaxy without any catalyst 

[5]. Surface diffusion of group III adatoms contributes into the vertical growth rate 

of Au-catalyzed NWs preparing by the vapor-liquid-solid method, of catalyst-free 

NWs preparing by selective-area epitaxy procedure and of similar selective-area 

epitaxy structures such as elongated nanomembranes [6 – 12].  

         Surface diffusion along the NW sidewalls is also possible in the NWs of 

elemental semiconductors [6]. The total diffusion flux of group III adatoms to the 

NW top equals the forward (direct) flux minus the backward (rejected) one [6, 8, 9, 
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11, 12]. According to current concepts [11, 12], the backward diffusion flux depends 

on the nucleation-mediated growth rate on the top nanowire/nanomembrane facet 

and rapidly increases when the nucleation is suppressed by surface energetics or 

geometry (see Refs. [12, 13] and references therein). When adatoms are collected 

from the entire NW length and the total diffusion flux is positive, the NWs elongate 

exponentially with time [6, 8, 9, 12]. Negative diffusion flux leads to the limited 

growth regime with a length value saturation [12, 13].  

 Length distributions (LDs) of NWs are interesting from the fundamental 

viewpoint and paramount for processing and device functionalization of the NW 

ensembles. In particular, narrow length distributions enable easier contacting of as-

grown NWs and suppress the unwanted inhomogeneous broadening of light-

emitting devices [2].  

          Theoretical and experimental studies of the III – V NW length distributions 

[14 – 19] have led to the following results. NWs growing by the direct impingement 

without surface diffusion and nucleation delays feature the Poisson length 

distributions [14]. NWs growing by the direct impingement and forward diffusion 

from their entire length feature much broader Polya LDs [15]. Sub-Poissonian 

narrowing of the NW length distributions [18, 19] can be observed in thin enough 

NWs growing by the direct impingement due to a specific effect of nucleation 

antibunching which suppresses fluctuational broadenings [20 –24]. Nucleation delay 

in the formation of the very first NW monolayer above the substrate surface leads to 

a very significant broadening of the NW length distributions, with a long tail for 

shorter lengths [14, 16, 18]. It cannot be suppressed by nucleation antibunching [18]. 

Desorption of semiconductor material from a catalyst droplet does not change the 

Poisson shape of the length distributions [17]. 

 On a more general ground, NWs growing by the direct impingement and 

surface diffusion present an interesting example of non-equilibrium system 

described by the Becker – Döring rate equations with size-linear rate constants, 

where the LDs can easily be measured in different growth stages. The Becker – 



4 
 

Döring rate equations are widely used in the nucleation theory [26 – 28] and other 

growth-related theories [29 – 52] including those for epitaxial islands [38 – 45]. One 

important outcome of these works in the Family – Vicsek scaling of the size 

distribution [38]. In Refs. [50 – 52], we demonstrated that size-linear forward rate 

constants naturally led to the Family – Vicsek scaling, which was confirmed 

experimentally for Au-catalyzed InAs NWs in Ref. [15]. However, backward 

surface diffusion was never studied in this regard.  

        Consequently, our goal of this work is to analyze theoretically the length 

distributions of nanowires with forward and backward diffusion and to reveal 

whether backward diffusion affects the previously obtained the Polya length 

distribution [15].           

Computational model 

 The usual growth law for the length L of individual NW growing by the direct 

impingement from the vapor flux ν, forward and backward surface diffusion of 

adatoms is given by [6, 11, 12]: 

 
 

2λ
σν tanh ην 1 ,

λ

dL L
c

dt R

 
   

 
 

(1) 

where λ is the diffusion length of adatoms on the NW sidewalls; σ, η are the 

dimensionless geometrical factors that depend on the droplet geometry (or the no 

droplet case for NWs grown through selective-area epitaxy and deposition technique 

(vapor deposition or directional molecular beam epitaxy); c is the factor for 

describing the backward diffusion (it is independent of the NW length).  

      The same growth law is valid for nanomembranes [12]. The case c = 0 

corresponds to the absence of backward diffusion. Such a growth was earlier 

considered in Ref. [15]. For fairly short structures with L << λ, tanh(L/λ) = L/λ. In 

this case, adatoms diffuse along the entire NW length and the NW growth rate scale 

linearly with L and is independent of λ [8, 9]. 
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       It is convenient to measure the NW length L in monolayers (MLs); this 

dimensionless length is  

 s = L/h = 0, 1, 2, …,  

where h is the height of a monolayer (in particular, h = 0.326 MLs for GaAs).  

       Introducing the dimensionless time τ and constant a according to expressions 

 2
, ,

2

R
t a

R h

 
  


 

(2) 

Eq. (1) for the average NW length over the monolayers s s  takes the following 

form:  

 
 1 .

τ

ds
a c s

d
    

(3) 

 

Fig. 1. A comparison of the curves’ behavior of the average length ‹s›           

(over monolayers of NW) with dimensionless time τ for two c values at a = 100.                                                                                                          
Inserts: The examples of hexahedral GaAs NWs and elongated GaAs nanomembranes [10], 

exhibiting these growth regimes due to predominantly forward and backward surface Ga 

diffusion, respectively    
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          The solution to Eq. (3) with zero initial condition at τ = 0 is 

  1 τ
1
.

1

c
e

s a
c







 
(4) 

          From Eq. (4) it will be obvious that s  increases infinitely at c < 1 and then 

saturates to the quantity 

 / ( 1)s a c    at c > 1.  

    It can be seen from Fig. 1 an exponential growth of the average length at c = 0.5 

and sublinear growth with the length saturation at c = 1.2 for a = 100. In so doing, 

the hexahedral GaAs NWs and elongated GaAs NMs from Ref. [10] exhibit 

superlinear and sublinear growth regimes due to predominantly forward and 

backward surface Ga diffusion, respectively (see inserts in Fig. 1). This explains the 

experimentally observed infinite and limited growth modes of nanowires and 

nanomembranes [11 – 13] but tells us nothing about the length distribution in the 

nanowire ensemble grown under identical conditions for each NW. 

         To access the statistical properties within the NW ensemble, we note that the 

NW formation occurs via the reaction scheme 

 
1 1s sA B A A B   for s = 0, 1, 2, …,  

where A1 denotes the NW monolayer, and AsB is the NW composed of s monolayers 

with A0B ≡ B as the nucleation seed (a catalyst nanoparticle for the vapor-liquid-

solid growth or patterned pinhole in a mask layer for the selective-area epitaxy 

growth) [6,14 – 19].  

          We introduce the normalized length distribution fs(τ) which satisfies the 

normalization condition   

  
0

1τss
f




  (5) 

at any time.  

      The discrete set of the Becker – Döring rate equations for heterogeneous growth 

writes [6, 14 – 19, 50]: 
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0

1

1

,

, 1.s
s s

df
J

dt

df
J J s

dt


 

  

 (6) 

       The flux Js for the regular growth rate given by Eq. (3) can be written as 

 
1( ) , 1.s s sJ a s f csf s     (7) 

        The NW length distribution contains all statistical characteristics of a NW 

ensemble, including the average length  τs  and variance D(τ): 

          
2 2 2

τ 1 ττ

τ τ , τ τ .ss
s s sf D s s s s




       (8) 

No nucleation delay for the formation of the very first NW monolayer is considered 

in this model. The nucleation delay is described by 

 
1 0 1J bf cf  , with b < a or even b << a [14, 16, 18],  

and strongly affects the length-distribution shape.  

       It was earlier considered for irreversible NW growth at c = 0 by the direct 

impingement without nucleation antibunching in Ref. [14], direct impingement with 

nucleation antibunching in Ref. [18], and direct impingement with forward surface 

diffusion of adatoms in Ref. [16]. Introduction of the nucleation delay in the Becker 

– Döring equations for reversible growth (at c > 0) is a very complex problem that 

will be studied elsewhere.      

Analytic solution of the length distribution 

         Analytic solution of the Becker – Döring rate equations with size-linear rate 

constants is obtained by using the generating function for the length distributions 

[14 – 16, 50, 51]:  

    
0

, τ τ .sss
f x f x




  (9) 

         Differentiating the generating function with respect to time and using Eqs. (6), 

we get  
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  
 

1

, τ 1
1 τ .

τ

s

ss

f x
J x

x





  
  

  
  

(10) 

          Remarkably, size-linear rate constants yielding Eq. (7) for Js lead to the closed 

first-order equation in partial derivatives for the generating function:  

  
   

 
 

, τ , τ
1 , τ .

τ τ

f x f x
x x c af x

  
    

  
 

(11) 

           This equation should be solved with the initial condition 

  , τ 0 1f x    (12) 

that corresponds to f0 (τ = 0) = 1, fs (τ = 0) = 0 for s ≥ 1 (no NWs at the beginning of 

deposition).  

         From Eq. (11), the generating function obeys the normalization condition     

f(1,τ) = 1.                                                   

         The average length is obtained from the equation 

 
 

 

1

, τ
τ .

x

f x
s

x






 

(13) 

             Differentiating Eq. (11) with respect to x and putting x = 1, we obtain Eq. 

(3) for the average length, with the solution given by Eq. (4). Now Eq. (11) contains 

only two parameters: a and c. Therefore, the resulting NW length distribution should 

be two-parametric. At c = 0, the solution should yield the result of Ref. [15], that is, 

the Polya length distributions for irreversible NW growth without backward 

diffusion. 

 Eq. (11) is solved by the method of characteristics.  The equivalent system of 

ordinary differential equations is  

 

    
τ

.
1 1 1

d dx df

x x c a x f
  

  
 

(14) 

           Integration of the first equation gives the first integral T(x,τ) of the form  
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   1 τ 1
.

c T x
e

c x

  



 

(15) 

           Using the expression 

      1 1 / exp 1 τ 1x c c T          

in the second equation and integrating it with the initial condition 

  τ 0 1,f     

we obtain the following equation: 

 

 
  

 

1 τ

1

1
, τ .

1

a
c T

c T

e
f x

e

 



 
  

 
 

(16) 

         Using Eq. (15), the final result for the generating function is given by 

 
 

  

1
, τ ,

1 τ 1
a

f x
y x


   

 
(17) 

with      

 
 

   1 ττ 1
τ .

1

cs e
y

a c




 


 
(18) 

 The discrete length distribution is obtained from this generating function by 

applying the known formulae:  

  

     0

1
, .

1 11

s

as

a s y

a s y
 







 
 

   
  

(19) 

        Our final result for the exact length distribution is given by the Polya 

distribution, which can be presented in the two equivalent forms: 

 

 
 

 

   

 

 

 
   

     

τ1
τ , 0,

1 1 τ1 τ

τ
τ 1 1 , 0.

1 τ

s

s a

sa

s

a s y
f s

a s yy

s a s a
f s

a a s s



  
  

       

   
     

     

 (20) 
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Here Γ(ξ) denotes the gamma-function.  

Results and discussion 

 Thus, the main result of this work can be formulated as follows. The nanowire 

length distribution in reversible growth with forward and backward surface diffusion 

of adatoms along their entire length is able to be given by the same Polya distribution 

as in Ref. [15] without backward diffusion.  

         However, there is one important difference. For irreversible growth at c = 0, 

the length distribution is truly one-parametric, because the average length of the 

Polya length distribution is given by the expression   

    τ exp τ 1 ,s a      

and increases infinitely in the large time limit.  

        Our refined model with arbitrary c describes either infinite growth at c < 1 or 

limited growth at c > 1, and hence is appropriate for a much wider range of data 

including the sub-linear growth regimes of nanowires and nanomembranes [6, 12,  

13] as well as more general reversible growth systems [27 – 35]. In particular, the 

equilibrium length distribution at c > 1 is two-parametric: 

 
   

 

   
1

1 1 ,
1

a

s s

a s
f c

a s c

 
  

  
 

(21) 

with the average length  1s a c   . 

        This asymptotic equilibrium state is maintained even under the deposition flux 

due to the prevalent backward diffusion that equalizes the direct impingement flux 

and forward diffusion to the top of the structures.   

The variance of the Polya length distribution is given by the expression  

 2

.
s

D s
a

   
(22) 
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           Therefore, the asymptotic width D  of the broad Polya length distribution is 

proportional to the average size at s ≫ a . At a → ∞, the Polya length distribution is 

reduced to a much narrower Poisson one:  

 

   
 

2

1
exp exp ,

! 22

s
s

s

s ss
f s s s

s ss

 
    

  

 
(23) 

with the variance D s .  

        The continuum Polya LD at s >> a is obtained in the same way as in Refs. [15, 

50]. We use 

       11 , ( 1) ,
a a as a s a a s s s

           

along with  

      1 lim 1 exp
ss

s
a s as s s as s




         

at large s and finite as s . 

         This results in the continuum LD has the form  

 
 

 

1
1

, exp .

aaa s s
f s s a

s a s s



   
    

    
 

(24) 

          From Eq. (2) in 𝑎, we can see that this parameter is always much larger than 

unity for NWs, ranging from about 10 for very thin NWs with R ≈ 5 nm to ~200 nm 

for thicker NWs with R ≈ 50 nm. At a >> 1, we can use the Stirling formula for  

      1 2 / .
a

a a a a a e       

     The function 

    1 exp exp lnax ax ax a x       

as the sharp maximum under the exponent at x = 1.  

     This allows us to write the following: 
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     
2

exp ln exp 2 1 ,ax a x a a x      
 

  

resulting in the symmetrical Gaussian approximation for the continuum length 

distribution [15]: 

 

 
 

2

2

1
, exp .

2 2

s sa a
f s s

s s

 
  

  

 
(25) 

a)                                                           b) 

  

Fig. 2. Evolution of the NW length distributions in the initial growth stage (a) 

and for longer values of growth time τ: from 3 to 5 (b) in the infinite (с = 0.5) 

and limited (с = 1.2) growth regimes at a = 100; s is a number of NW 

monolayers  

  

Fig. 2 shows the time evolution of the LD in the infinite (с = 0.5) and limited 

(с = 1.2) growth regimes with the same a value (a = 100). The LDs are similar in the 

initial stage for short τ values from zero to 0.4 (see Fig. 2,a), but become very 

different for longer growth times from 3 to 5 (see Fig. 2,b). These LDs are given by 

the same Eqs. (20). The only difference is in the average length s , which is c-

dependent and evolves differently in the infinite and limited growth regimes. Fig. 3 

shows the equilibrium LDs given by Eq. (21) at different c values for the same a 

value (a = 10). These LDs narrow up for larger c, corresponding to the shorter 

equilibrium lengths.  

Hence, the magnitude of the backward diffusion from top to bottom of the 

structures can be used as an additional tuning knob for their LDs.    
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         It can be seen from Eq. (25) that the Family – Vicsek scaling function for the 

re-normalized LD  ,sf s s  versus x s s  is given by the probability density of the 

gamma-distribution [16, 50]:  

 
   

 
1, , .

a
a axa s

sf s s F x x e x
a s

   


 
(26) 

      At a >> 1 this is further reduced to   

 
     

2
, exp 1 .

2 2

a a
sf s s F x x



 
    

 
 

(27) 

        These universal scaling functions do not depend on the average NW length and 

satisfy the usual sum rules for the surface density and average size of the structures 

[38 – 44]:    

    
0 0

1.dxF x dxxF x
 

    (28) 

 

Fig. 3. Equilibrium NW length distributions at different c values (a = 10) 

 

Fig. 3 shows the continuum length distributions given by Eqs. (24) and (26) 

in the natural and Family–Vicsek scaled variables at different a value from 1 to 250 

for the same average length s  = 3000.  As mentioned above, the case a = 1 is not 

relevant for NWs, but may be interesting for other systems including linear rows of 
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metal adatoms on reconstructed Si surfaces [50, 53 – 55]. Generally, the Polya 

distribution is monotonically decreasing at a ≤ 1 and unimodal at a > 1. The 

threshold case a = 1 corresponds to the geometrical distribution and the exponential 

Family–Vicsek scaling function F(x) = exp (–x). The Polya length distributions 

become more symmetric for larger a-values, with the Gaussian approximation 

becoming indistinguishable from Eqs. (24) or (26) at a ≥ 100.  

The shapes of both length distributions in Fig. 4 are similar. As evident, they 

narrow up for larger a-values.                                                                                                                                       

 However, the non-scaled length distributions in Fig. 3,a describe the NW 

ensemble with a given mean length, while the scaled length distributions in Fig. 3,b 

apply for any mean length s >> 1 or, equivalently, for all but very short growth 

times.  

    a)                                                           b) 

  

Fig. 4. Continuum LDs in the natural (a) and Family–Vicsek-scaled variables (b) 

for the same average length of 3000 monolayers and different a value.                                                                
In Fig. 4,b, the symmetrical Gaussian scaling function given by Eq. (27) is shown (dashed lines); 

it becomes indistinguishable from Eq. (26) at a ≥ 100 for this average length   

  

        Fig. 5 shows the experimental NW length distributions with similar average 

lengths from Refs. [15, 19], fitted by the model. GaAs NWs of Ref. [19] were grown 

by the self-catalyzed vapor-liquid-solid method (with liquid Ga droplets). In this 
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case, the NW axial growth rate is controlled by the As input, and Ga surface 

diffusion does not contribute to the NW elongation. These LDs are well-fitted by the 

Poisson length distribution given by Eq. (23), with s = 4035 MLs and  D s s . InAs 

NWs of Ref. [15] were grown by the Au-catalyzed vapor-liquid-solid method, where 

indium surface diffusion is always effective. Consequently, their length distribution 

is well-fitted by the Polya distribution given by Eq. (27) with s = 4500 MLs and 

  2D s s a . This length distribution is much broader than Poissonian one. Further 

growth of these Ga-catalyzed GaAs NWs leads to sub-Poissonian narrowing due to 

nucleation antibuncning (as descrivbed in detail in Ref. [19]). No nucleation delays 

are prersent is both cases, which is achieved by the droplet organization prior to NW 

growth.   

 

Fig. 5. LDs of self-catalyzed GaAs [19] (Data 1) and Au-catalyzed InAs [15] 

(Data 2) NWs with surface diffusion of group III adatoms with s  = 4035 MLs 

and without it ( s  = 4500 MLs), respectively (histograms), fitted by the 

continuum Poisson (see Eq. (23)) and Polya LD with a = 200 (see Eq. (27)) (blue 

and red lines) 

 
 

Summary 
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 To summarize, it has been shown in the paper that backward diffusion of 

adatoms along the NW sidewalls does not obey the Polya LD shape, previously 

obtained for irreversible NW growth by surface diffusion [15, 16]. Consequently, 

the FV scaling form of the continuum LD remains the same. However, the reversible 

growth model describes different regimes of NW growth depending on the 

parameter c. At c < 1, NWs grow to infinite length, while at c > 1 they evolve to the 

equilibrium Polya distribution. These exact results can be used for understanding 

and controlling the NW/NM LDs grown by different epitaxy techniques and under 

different conditions, including the experimentally observed sublinear growth modes 

with the length saturation [11 – 13]. We hope that the obtained analytic distribution 

will be useful for modeling different systems including linear rows of adatoms                    

[53 – 55], surface islands [26, 28, 37, 43, 44], planar NWs [56], and III – V ternary 

nanostructures [2]. The complex case of the diffusion-induced heterogeneous 

growth with a nucleation delay will be considered in our future work. 
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