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Abstract. The length distributions of I1l —V nanowires growing by direct impingement and
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forward and backward rate constants.
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AnHoTauusi.  Pacnpenenenus  mo  JAAMHAM — HUTEBUIHBIX ~ HAHOKPHCTAJUIOB
HOJYIPOBOIHUKOBBIX coequHeHuit |1l — V rpynm npenctaBisiorT uHTEpeC ¢ GpyHAaAMEHTaIbHON
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TOYKH 3pEHU U JJIs IPUOOPHBIX MPHIIOKEHUH. B paboTe uccnenoBanbl KHHETUYECKUE YPAaBHEHHS
pOCTa HUTEBHUIHBIX HAHOKPUCTAJIIOB C TIOJIOKUTEIBHON M OTpUIIaTeNIbHOM Anddy3ueit BIOIb OcH
pocTta, ¢ OECKOHEUHBIM POCTOM CpPEAHEH NJIMHBI WK €€ HACBIIIEHUEM Ha OOJIBIIUX BPEMEHHBIX
uHTepBanax. [lomydeHo TouHOe pemieHHe 3agayn B Buae pacnpeneneHus [loiia, u3ydeHa
KOHTHHYaJIbHaA (bopMa JaHHOI'O pacHpCACJICHUA W IMPOAHATIU3UPOBAHBI SKCIICPUMCHTAJIBHBIC
pacnpeeneHus 1o [UIMHE Pa3IMYHbIX HUTeBUAHBIX HaHOKpUcTawioB |1l —V rpynm. [Tomy4dennsie
pPE3yiabTaTbl MOXHO HCIIOJb30BaTh JJId MOACIIMPOBAHUSA PA3JIMYHBIX CHUCTEM, KOTOPLIC
HNOAYUHSIOTCS ypaBHeHUsIM bekkepa — JlepuHra c JHMHEHHBIMH 1O pa3Mepy KOHCTaHTaMH
CKOpocTel pocTa 1 (hparMeHTaluu.
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Introduction

Freestanding semiconductor nanowires (NWSs), in particular 111 —V NWs and
heterostructures of different types based on such NWs, are widely reported in the
literature as promising building blocks for nanoscience and nanotechnology [1, 2].
These NWs are grown by the vapor-liquid-solid method with a foreign metal catalyst
(often Au [3]), which can be replaced by a group Il metal in the self-catalyzed
vapor-liquid-solid approach [4], or via selective-area epitaxy without any catalyst
[5]. Surface diffusion of group 1l adatoms contributes into the vertical growth rate
of Au-catalyzed NWs preparing by the vapor-liquid-solid method, of catalyst-free
NWs preparing by selective-area epitaxy procedure and of similar selective-area

epitaxy structures such as elongated nanomembranes [6 — 12].

Surface diffusion along the NW sidewalls is also possible in the NWs of
elemental semiconductors [6]. The total diffusion flux of group 11l adatoms to the

NW top equals the forward (direct) flux minus the backward (rejected) one [6, 8, 9,
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11, 12]. According to current concepts [11, 12], the backward diffusion flux depends
on the nucleation-mediated growth rate on the top nanowire/nanomembrane facet
and rapidly increases when the nucleation is suppressed by surface energetics or
geometry (see Refs. [12, 13] and references therein). When adatoms are collected
from the entire NW length and the total diffusion flux is positive, the NWs elongate
exponentially with time [6, 8, 9, 12]. Negative diffusion flux leads to the limited

growth regime with a length value saturation [12, 13].

Length distributions (LDs) of NWs are interesting from the fundamental
viewpoint and paramount for processing and device functionalization of the NW
ensembles. In particular, narrow length distributions enable easier contacting of as-
grown NWs and suppress the unwanted inhomogeneous broadening of light-

emitting devices [2].

Theoretical and experimental studies of the Il1 — V NW length distributions
[14 — 19] have led to the following results. NWSs growing by the direct impingement
without surface diffusion and nucleation delays feature the Poisson length
distributions [14]. NWs growing by the direct impingement and forward diffusion
from their entire length feature much broader Polya LDs [15]. Sub-Poissonian
narrowing of the NW length distributions [18, 19] can be observed in thin enough
NWs growing by the direct impingement due to a specific effect of nucleation
antibunching which suppresses fluctuational broadenings [20 —24]. Nucleation delay
in the formation of the very first NW monolayer above the substrate surface leads to
a very significant broadening of the NW length distributions, with a long tail for
shorter lengths [14, 16, 18]. It cannot be suppressed by nucleation antibunching [18].
Desorption of semiconductor material from a catalyst droplet does not change the

Poisson shape of the length distributions [17].

On a more general ground, NWs growing by the direct impingement and
surface diffusion present an interesting example of non-equilibrium system
described by the Becker — Doring rate equations with size-linear rate constants,

where the LDs can easily be measured in different growth stages. The Becker —
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Doring rate equations are widely used in the nucleation theory [26 — 28] and other
growth-related theories [29 — 52] including those for epitaxial islands [38 —45]. One
important outcome of these works in the Family — Vicsek scaling of the size
distribution [38]. In Refs. [50 — 52], we demonstrated that size-linear forward rate
constants naturally led to the Family — Vicsek scaling, which was confirmed
experimentally for Au-catalyzed InAs NWs in Ref. [15]. However, backward

surface diffusion was never studied in this regard.

Consequently, our goal of this work is to analyze theoretically the length
distributions of nanowires with forward and backward diffusion and to reveal
whether backward diffusion affects the previously obtained the Polya length
distribution [15].

Computational model
The usual growth law for the length L of individual NW growing by the direct
impingement from the vapor flux v, forward and backward surface diffusion of

adatoms is given by [6, 11, 12]:

%zc\w%tanh(%jnv(l—c), (1)

dt R

where A is the diffusion length of adatoms on the NW sidewalls; o, n are the
dimensionless geometrical factors that depend on the droplet geometry (or the no
droplet case for NWSs grown through selective-area epitaxy and deposition technique
(vapor deposition or directional molecular beam epitaxy); c is the factor for

describing the backward diffusion (it is independent of the NW length).

The same growth law is valid for nanomembranes [12]. The case ¢ = 0
corresponds to the absence of backward diffusion. Such a growth was earlier
considered in Ref. [15]. For fairly short structures with L << A, tanh(L/A) = L/A. In
this case, adatoms diffuse along the entire NW length and the NW growth rate scale

linearly with L and is independent of A [8, 9].



It is convenient to measure the NW length L in monolayers (MLs); this

dimensionless length is
s=Lh=0,1,2,...,
where h is the height of a monolayer (in particular, h = 0.326 MLs for GaAs).
Introducing the dimensionless time t and constant a according to expressions

T:ﬂt, a:G_R’ (2)
R 2nh

Eq. (1) for the average NW length over the monolayers 5 =(s) takes the following

form:

o5 =a+(1-c)s. (3)
dt

< T T T
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Fig. 1. A comparison of the curves’ behavior of the average length <s)

(over monolayers of NW) with dimensionless time t for two ¢ values at a = 100.
Inserts: The examples of hexahedral GaAs NWs and elongated GaAs nanomembranes [10],
exhibiting these growth regimes due to predominantly forward and backward surface Ga
diffusion, respectively



The solution to Eqg. (3) with zero initial conditionat t=0 is

e(l—c)‘: _1 (4)
1-¢

S=a

From Eq. (4) it will be obvious that 5 increases infinitely at ¢ < 1 and then

saturates to the quantity
5§ =al(c-1) atc>1.

It can be seen from Fig. 1 an exponential growth of the average length at c = 0.5
and sublinear growth with the length saturation at ¢ = 1.2 for a = 100. In so doing,
the hexahedral GaAs NWs and elongated GaAs NMs from Ref. [10] exhibit
superlinear and sublinear growth regimes due to predominantly forward and
backward surface Ga diffusion, respectively (see inserts in Fig. 1). This explains the
experimentally observed infinite and limited growth modes of nanowires and
nanomembranes [11 — 13] but tells us nothing about the length distribution in the
nanowire ensemble grown under identical conditions for each NW.

To access the statistical properties within the NW ensemble, we note that the

NW formation occurs via the reaction scheme
AB+A <A B fors=0,1,2,...,

where A; denotes the NW monolayer, and A;B is the NW composed of s monolayers
with AoB = B as the nucleation seed (a catalyst nanoparticle for the vapor-liquid-
solid growth or patterned pinhole in a mask layer for the selective-area epitaxy
growth) [6,14 — 19].

We introduce the normalized length distribution fy(t) which satisfies the

normalization condition

3 £ (0)=1 ()

s=0 S
at any time.

The discrete set of the Becker — Doring rate equations for heterogeneous growth
writes [6, 14 — 19, 50]:



dfO —

—L=-7,
dt 6)
o, _ Ji—Jg, 821

dt

The flux Js for the regular growth rate given by Eqg. (3) can be written as
J.=(a+s)f_, —csf,s>1. (7)

The NW length distribution contains all statistical characteristics of a NW

ensemble, including the average length 5(<) and variance D(t):

5(1)=(s), =20, sf. (1).D(x) = ((s=5)") =(s*),~5°(v). (8)

No nucleation delay for the formation of the very first NW monolayer is considered

in this model. The nucleation delay is described by
J, =bf, —cf,, with b < aor even b << a[14, 16, 18],

and strongly affects the length-distribution shape.

It was earlier considered for irreversible NW growth at ¢ = 0 by the direct
impingement without nucleation antibunching in Ref. [14], direct impingement with
nucleation antibunching in Ref. [18], and direct impingement with forward surface
diffusion of adatoms in Ref. [16]. Introduction of the nucleation delay in the Becker
— Doring equations for reversible growth (at ¢ > 0) is a very complex problem that

will be studied elsewhere.
Analytic solution of the length distribution

Analytic solution of the Becker — Doring rate equations with size-linear rate
constants is obtained by using the generating function for the length distributions
[14 — 16, 50, 51]:

f(x1)=3" f(0)x. 9)

Differentiating the generating function with respect to time and using Eqgs. (6),

we get



of (x,1)

s :(1_%)2;35 ()¢ (10)

Remarkably, size-linear rate constants yielding Eq. (7) for Js lead to the closed

first-order equation in partial derivatives for the generating function:

o(xt 2O (1) (11)
- =(x 1){(x c) - + af (x,r)}.
This equation should be solved with the initial condition
f(xt=0)=1 (12)

that corresponds to fo(t=0) =1, fs (t=0) =0 for s > 1 (no NWs at the beginning of

deposition).

From Eg. (11), the generating function obeys the normalization condition
f(l,t)=1.

The average length is obtained from the equation

o (x| (13)

x=1

Differentiating Eq. (11) with respect to x and putting x = 1, we obtain Eq.
(3) for the average length, with the solution given by Eq. (4). Now Eq. (11) contains
only two parameters: a and c. Therefore, the resulting NW length distribution should
be two-parametric. At ¢ = 0, the solution should yield the result of Ref. [15], that is,
the Polya length distributions for irreversible NW growth without backward

diffusion.

Eq. (11) is solved by the method of characteristics. The equivalent system of

ordinary differential equations is

dr dx df (14)

1 (x-1)(x-c) a(x-1)f

Integration of the first equation gives the first integral T(x,t) of the form



oty _ =X (15)

Using the expression
x—1=(1-c)/ {exp[(l—c)(r -T)] —1}

in the second equation and integrating it with the initial condition

f (r = 0) =1,
we obtain the following equation:
1—et-om=9 T (16)
fxe) {ﬁ}
Using Eq. (15), the final result for the generating function is given by
f(x)=—— . (47)
[1+y(r)(1-%)]
with
_5(r)_e"r (18)
()= a 1-c

The discrete length distribution is obtained from this generating function by

applying the known formulae:

F'(a+s) 1 y (19)

Z;r(a)r(s +1) £ (1-¢)*" 1+y

Our final result for the exact length distribution is given by the Polya

distribution, which can be presented in the two equivalent forms:

(20)




Here I'(§) denotes the gamma-function.
Results and discussion

Thus, the main result of this work can be formulated as follows. The nanowire
length distribution in reversible growth with forward and backward surface diffusion
of adatoms along their entire length is able to be given by the same Polya distribution
as in Ref. [15] without backward diffusion.

However, there is one important difference. For irreversible growth at ¢ = 0,
the length distribution is truly one-parametric, because the average length of the

Polya length distribution is given by the expression
5(1)= a[exp(r)—l:l,
and increases infinitely in the large time limit.

Our refined model with arbitrary ¢ describes either infinite growth at ¢ < 1 or
limited growth at ¢ > 1, and hence is appropriate for a much wider range of data
including the sub-linear growth regimes of nanowires and nanomembranes [6, 12,
13] as well as more general reversible growth systems [27 — 35]. In particular, the

equilibrium length distribution at ¢ > 1 is two-parametric:

f,(o0) =[1-Ve]" %C& (21)

with the average length 5, =a/(c-1).

This asymptotic equilibrium state is maintained even under the deposition flux
due to the prevalent backward diffusion that equalizes the direct impingement flux

and forward diffusion to the top of the structures.
The variance of the Polya length distribution is given by the expression

(22)

10



Therefore, the asymptotic width /D of the broad Polya length distribution is
proportional to the average size at > a. At a — oo, the Polya length distribution is

reduced to a much narrower Poisson one:

- ) 23
fs(§):exp(—§)%§s;J;_gexp{—(sz_;)}' (23)

with the variance D=5.
The continuum Polya LD at s >> a is obtained in the same way as in Refs. [15,
50]. We use

(1+5/a) " =(s/a) ",T(a+s)/T(s+D) =s*",
along with

(1+a/s) " =lim[1+(as/s)/s] =exp(-as/s)

S§—>0

at large s and finite as/s.

This results in the continuum LD has the form
a a-1 24
f (s,§):% a [ij exp(—aéj. (24)
S S S

From Eqg. (2) in a, we can see that this parameter is always much larger than

unity for NWSs, ranging from about 10 for very thin NWs with R =5 nm to ~200 nm

for thicker NWs with R = 50 nm. At a >> 1, we can use the Stirling formula for

I'(a)=T(a+1)/a=2z/a(ale)’.
The function

x* ' exp(—ax) = exp(—ax+alnx)

as the sharp maximum under the exponent at x = 1.

This allows us to write the following:

11



exp(—ax+alnx) = exp[—a—(a/z)(x—l)z},

resulting in the symmetrical Gaussian approximation for the continuum length
distribution [15]:

1 ]a a(s-s) (25)
f(s,5)==,]— —— .
(s:5) 5 zyzex'{ 2 5° }
a) b)
Js .]:,,10‘3 17=3I
1 —c=0.5
154 (x=4 —_—c=12
0.15 ] s
12

0.10 +

0.05 +

LI

0 500 1000 1500 2000 2500 )

Fig. 2. Evolution of the NW length distributions in the initial growth stage (a)
and for longer values of growth time t: from 3 to 5 (b) in the infinite (¢ = 0.5)
and limited (¢ = 1.2) growth regimes at a = 100; s is a number of NW
monolayers

Fig. 2 shows the time evolution of the LD in the infinite (¢ = 0.5) and limited
(c = 1.2) growth regimes with the same a value (a = 100). The LDs are similar in the
initial stage for short t values from zero to 0.4 (see Fig. 2,a), but become very
different for longer growth times from 3 to 5 (see Fig. 2,b). These LDs are given by
the same Eqs. (20). The only difference is in the average length s, which is c-
dependent and evolves differently in the infinite and limited growth regimes. Fig. 3
shows the equilibrium LDs given by Eq. (21) at different ¢ values for the same a
value (a = 10). These LDs narrow up for larger c, corresponding to the shorter
equilibrium lengths.

Hence, the magnitude of the backward diffusion from top to bottom of the

structures can be used as an additional tuning knob for their LDs.

12



It can be seen from Eq. (25) that the Family — Vicsek scaling function for the
re-normalized LD 5f (s,5) versus x=s/s is given by the probability density of the

gamma-distribution [16, 50]:
ST (5,5)=F () = —x"e ™ x=2. (26)
At a >> 1 this is further reduced to

§f(5,§)=F(X)=\/§exp{—g(x—1)2}_ (27)

These universal scaling functions do not depend on the average NW length and

satisfy the usual sum rules for the surface density and average size of the structures
[38 — 44]:

Jl & (x) = [} doc (x) =1. (28)
S
0.06 -
0.04 -
0.02
0 25 5 75 100 125 s

Fig. 3. Equilibrium NW length distributions at different ¢ values (a = 10)

Fig. 3 shows the continuum length distributions given by Egs. (24) and (26)
in the natural and Family—Vicsek scaled variables at different a value from 1 to 250
for the same average length 5 = 3000. As mentioned above, the case a = 1 is not

relevant for NWs, but may be interesting for other systems including linear rows of
13



metal adatoms on reconstructed Si surfaces [50, 53 — 55]. Generally, the Polya
distribution is monotonically decreasing at a < 1 and unimodal at a > 1. The
threshold case a = 1 corresponds to the geometrical distribution and the exponential
Family—Vicsek scaling function F(x) = exp (—x). The Polya length distributions
become more symmetric for larger a-values, with the Gaussian approximation

becoming indistinguishable from Eqgs. (24) or (26) at a > 100.

The shapes of both length distributions in Fig. 4 are similar. As evident, they

narrow up for larger a-values.

However, the non-scaled length distributions in Fig. 3,a describe the NW
ensemble with a given mean length, while the scaled length distributions in Fig. 3,b

apply for any mean length §>> 1 or, equivalently, for all but very short growth

times.
a) b)
‘110-3_ T T
J; ﬂ a=1
a=10
a=50
1.5 a=100 -
,\ a=250
1.0
0.5
0 1000 2000 3000 4000 5000 s 0.0 0.5 1.0 1.5 X

Fig. 4. Continuum LDs in the natural (a) and Family—Vicsek-scaled variables (b)

for the same average length of 3000 monolayers and different a value.
In Fig. 4,b, the symmetrical Gaussian scaling function given by Eq. (27) is shown (dashed lines);
it becomes indistinguishable from Eq. (26) at a > 100 for this average length

Fig. 5 shows the experimental NW length distributions with similar average
lengths from Refs. [15, 19], fitted by the model. GaAs NWs of Ref. [19] were grown
by the self-catalyzed vapor-liquid-solid method (with liquid Ga droplets). In this

14



case, the NW axial growth rate is controlled by the As input, and Ga surface
diffusion does not contribute to the NW elongation. These LDs are well-fitted by the
Poisson length distribution given by Eq. (23), with §=4035 MLs and D(5)=5. InAs

NWs of Ref. [15] were grown by the Au-catalyzed vapor-liquid-solid method, where
indium surface diffusion is always effective. Consequently, their length distribution
is well-fitted by the Polya distribution given by Eq. (27) with = 4500 MLs and

D(5)=5?%/a. This length distribution is much broader than Poissonian one. Further

growth of these Ga-catalyzed GaAs NWs leads to sub-Poissonian narrowing due to
nucleation antibuncning (as descrivbed in detail in Ref. [19]). No nucleation delays
are prersent is both cases, which is achieved by the droplet organization prior to NW
growth.

£,107° : . . ; : ;

5 [ |Data 1

i [ ]Data2

] Poisson ]

— Polya, ¢=200

6 -
4 i
2 1 -
04 . - LL1
3500 4000 4500 5000 S

Fig. 5. LDs of self-catalyzed GaAs [19] (Data 1) and Au-catalyzed InAs [15]
(Data 2) NWs with surface diffusion of group 11l adatoms with § = 4035 MLs
and without it (S = 4500 MLs), respectively (histograms), fitted by the
continuum Poisson (see Eqg. (23)) and Polya LD with a = 200 (see Eq. (27)) (blue
and red lines)

Summary
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To summarize, it has been shown in the paper that backward diffusion of
adatoms along the NW sidewalls does not obey the Polya LD shape, previously
obtained for irreversible NW growth by surface diffusion [15, 16]. Consequently,
the FV scaling form of the continuum LD remains the same. However, the reversible
growth model describes different regimes of NW growth depending on the
parameter c. At c <1, NWs grow to infinite length, while at ¢ > 1 they evolve to the
equilibrium Polya distribution. These exact results can be used for understanding
and controlling the NW/NM LDs grown by different epitaxy techniques and under
different conditions, including the experimentally observed sublinear growth modes
with the length saturation [11 — 13]. We hope that the obtained analytic distribution
will be useful for modeling different systems including linear rows of adatoms
[53 — 55], surface islands [26, 28, 37, 43, 44], planar NWs [56], and Il —V ternary
nanostructures [2]. The complex case of the diffusion-induced heterogeneous

growth with a nucleation delay will be considered in our future work.
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