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Твердофазным методом синтеза получена серия хромсодержащих твердых растворов CaCu3Ti4 – 4хСr4хO12 – δ

(пр. гр. Im3). Параметр элементарной ячейки твердых растворов изменяется незначительно – от 7,3897 (х = 0,02) 
до 7,3866 Å (х = 0,06). Во всех образцах в межзеренном пространстве определяется оксид меди. Образцы 
характеризуются малопористой зеренной микроструктурой. С ростом содержания хрома в образцах от x = 0,01 
до 0,06 максимальный продольный размер кристаллита по данным электронной сканирующей микроскопии 
уменьшается от 16 до 10 мкм. Проведены спектральные исследования зарядового состояния катионов 
допированного хромом титана кальция-меди CaCu3Ti4O12 (ССТО) методами рентгеновской спектроскопии (XPS и 
NEXAFS). По данным NEXAFS-и XPS-спектроскопии в твердых растворах ССТО катионы титаната имеют 
зарядовое состояние +(4 – δ), атомы меди и кальция – +2, а допированные катионы хрома – +3. 
     . 
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A series of chromium-containing solid solutions CaCu3Ti4 – 4хСr4хO12 – δ (sp. gr. Im3) were obtained by the solid-phase 
synthesis method. The unit cell parameter of the solid solutions changed insignificantly from 7.3897 (х = 0.02) to 7.3866 Å 
(х = 0.06). Copper oxide was determined in the intergranular space in all samples. The samples were characterized 
by a low-porosity grain microstructure; with an increase in the chromium content in the samples from x = 0.01 to 0.06, 
the maximum longitudinal crystallite size, according to the scanning electron microscopy data, decreased from 16 
to 10 μm. Spectral studies of the charge state of chromium-doped titanium calcium copper CaCu3Ti4O12 cations 
were carried out using X-ray spectroscopy (XPS and NEXAFS). According to NEXAFS and XPS spectroscopy data, 
titanium cations have a charge state of +(4 – δ) in solid solutions of calcium-copper oxides, copper and calcium atoms 
have a charge state of +2, and doped chromium cations have a charge state of +3. 
    . 
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Введение 
В последние годы все больше внимание ис-

следователей привлекают перовскитоподобные ок-
сидные материалы на основе титаната кальция-
меди состава CaCu3Ti4O12 (ССТО) с гигантскими 
значениями диэлектрической проницаемости [1 – 4]. 
Особый интерес к ССТО вызван тем, что, в отли-
чие от обычных сегнетоэлектрических материалов 
на основе перовскита, CCTO имеет диэлектриче-
скую проницаемость более 104 при комнатной 
температуре [1] со слабой температурной зависи-
мостью от 100 до 400 К [2]. Благодаря этому он 
перспективен при изготовлении высокочастотных 
конденсаторов, карт памяти и других микроэлек-
тронных устройств. 

Кубическая перовскитоподобная структура 
весьма толерантна к изо- и гетеровалентным кати-
онным замещениям, вызывающим различного  
рода искажения кристаллической решетки и,  
как следствие, многообразие физико-химических 
свойств сложных оксидов на их основе. Кристал-
лическая структура CaCu3Ti4O12 является резуль-
татом трансформации кубической структуры пе-
ровскита CaTiO3 вследствие искажения угла на-
клона октаэдров TiO6, вызванных несоответствием 
размеров и природы катионов Ca2+ и замещающих 
их ян-теллеровских катионов Cu2+ [4]. Несмотря 
на большое количество исследований, посвящен-
ных CaCu3Ti4O12, природа изменения его диэлек-
трических свойств до сих пор остается предметом 
активных обсуждений. Первоначально обнаруже-
ние гигантской диэлектрической постоянной в 
ССТО объяснялось так называемой внутренней 
поляризацией катионов титана (IV) [5]. Дальней-
шее исследование диэлектрического поведения 
ССТО обнаружило необходимость учитывать и 
внешнюю поляризацию, индуцированную элек-
трическим неоднородным полем между полупро-
водниковым зерном и изолирующими зеренными 
границами керамических образцов [6],  
и привело к пониманию того, что уникальное ди-
электрическое поведение CCTO связано с особен-
ностями не только кристаллической структуры 
CaCu3Ti14O12 [1 – 3, 7], но и межзеренных эффек-
тов [8]. Все это способствовало развитию обшир-
ных исследований влияния природы заместителей 
в перовскитоподобной структуре ССТО на харак-
теристики керамики, в основном эмпирическим 
путем. Так, высокие значения диэлектрической 
проницаемости обнаружены в оксидной керами- 
ке на основе CaCu3Ti4O12 при введении в структу-
ру атомов железа, стронция и никеля, лантанои- 
дов [9 – 12]. Увеличение диэлектрической кон-
станты достигается путем введения в структу- 

ру CaCu3Ti4O12 катионов висмута [13]. Наилучшие 
электрофизические характеристики проявляет  
керамика состава ССТО, в которой 20 ат. % заме-
щено на никель, диэлектрическая проницаемость 
такой керамики и тангенс диэлектрических потерь 
равны 1,510 ꞏ 105 и 0,051 (25 С, 1 кГц) соответст-
венно [14 – 16]. Однако высокая диэлектрическая 
проницаемость титаната кальция-меди часто со-
провождается высокими значениями тангенса угла 
диэлектрических потерь, что существен- 
но ограничивает практическое применение ке- 
рамики. Исследователи повысили диэлектри- 
ческую проницаемость CCTO путем снижения  
тангенса потерь за счет допантов, увеличиваю- 
щих сопротивление границ зерен керамики. Уста-
новлено, что оптимальные электрические харак- 
теристики и микроструктура керамики могут  
быть достигнуты в присутствии избытка TiO2 в мат-
рице CCTO или допированием хромом [17 – 19]. 
Относительно высокие значения диэлектричес- 
кой проницаемости ∼20 000 и тангенса потерь  
при 1 кГц получены для хромсодержащей керамики 
состава CaCu3Ti4 – xCrxO12 – x/2 при x = 0,03 [18, 19].  

Высокую диэлектрическую проницаемость 
керамики на основе ССТО связывают с нали- 
чием катионов титана и меди в переменных сте- 
пенях окисления и сосуществованием ионных  
пар Ti (III)/Ti (IV), Cu (I)/Cu (II) в определенных 
пропорциях [14, 20, 21]. Как показано в рабо- 
те [19], допирование CCTO хромом уменьшает 
соотношения в парах Ti (III)/Ti (IV), Cu (I)/Cu (II), 
что является причиной понижения диэлектриче-
ской константы по сравнению с недопирован- 
ным ССТО. Исследованы особенности электрон-
ного состояния катионов хрома, кальция, титана и 
меди в образцах CaCu3Ti4 – 4хСr4хO12 – δ при совмест-
ном использовании высокоточных методов XPS и 
NEXAFS рентгеновской спектроскопии. 

 
Экспериментальная часть 
В качестве прекурсоров для твердофазного 

синтеза твердых растворов использовали взятые  
в стехиометрических количествах CaCO3 и окси- 
ды Cr (III), Ti (IV), Cu (II). Методика приготовле-
ния образцов традиционна и подробно изложена  
в работе [22]. Фазовый анализ проводили с помо-
щью рентгеновского дифрактометра Shimadzu 6000 
(CuKα; 2θ = 10…80; 2,0 /мин). Параметр элемен-
тарной ячейки образцов рассчитывали с использо-
ванием пакета программ CSD [23]. Методом ска-
нирующей электронной микроскопии (СЭМ) и 
энергодисперсионной рентгеновской спектроско-
пии (ЭДС) (электронный сканирующий микроскоп 
Tescan VEGA 3LMN, энергодисперсионный спек-
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трометр INCA Energy 450) анализировали морфо-
логию поверхности и химический состав препара-
тов. NEXAFS-спектроскопию образцов выполняли 
с использованием синхротронного излучения нако-
пителя BESSYII (Берлин, Германия). NEXAFS-
спектры получали методом регистрации полного 
электронного выхода. XPS-анализ проводили на 
рентгеновском спектрометре Thermo Scientific 
ESCALAB 250Xi, в котором источником ионизи-
рующего излучения служила рентгеновская трубка 
с AlKα-излучением (1486,6 эВ). Ионно-электронную 
систему компенсации заряда использовали для ней-
трализации заряда образца. Все пики откалиброва-
ны по энергетической шкале относительно пика 
C1s при 284,6 эВ. Обработку экспериментальных 
данных осуществляли с использованием программ-
ного обеспечения спектрометра ESCALAB 250 Xi. 

 

Результаты и обсуждение 
По данным рентгеновской дифракции, образ-

цы CaCu3Ti4 – 4хСr4хO12 – δ (0,005 ≤ х ≤ 0,060)  
кристаллизуются в структурном типе двойного 
кубического перовскита, как титанат кальция-ме-
ди (пр. гр. Im3). На рентгенограммах образцов сла-
бо фиксируются рефлексы оксида меди (II) [14, 22, 
24] (рис. 1), который, по данным СЭМ, эпизодиче-
ски распределяется в межзеренном пространстве. 

Параметр элементарной ячейки недопированно-
го CaCu3Ti4O12 составляет 7,3881 Å [25]. В результа-
те расчета параметров ячейки CaCu3Ti4 – 4хCr4хO12 – δ 
установлено, что параметр незначительно умень-
шается от увеличения концентрации хрома:  
от 7,3897 (х = 0,02), 7,3859Å (х = 0,04) до 7,3866Å 
(х = 0,06), что связано с замещением ионов тита- 

на R(Ti (IV)к.ч = 6) = 0,605 Å близкими по разме- 
ру ионами хрома (R(Cr (III)к.ч = 6) = 0,615 Å,  
R(Cr (VI))к.ч = 6) = 0,44 Å [26], а также выделением 
оксида меди. Параметр элементарной ячейки об-
разцов сопоставим с параметрами ячейки хромсо-
держащих препаратов [18, 19, 27]. По данным 
элементного картирования образцов установлено, 
что оксид хрома (III) в образцах не образует само-
стоятельной фазы, а катионы хрома входят в хи-
мический состав образцов. В следовых количест-
вах проявляется оксид меди (II) в межзеренном 
пространстве образцов. Микроструктура образцов 
образована оплавленными близкой к кубической 
форме кристаллитами, максимальный продольный 
размер которых варьируется от 18 (х(Сr) = 0,01)  
до 10 (х(Сr) = 0,06) мкм в зависимости от содер-
жания хрома в образцах (рис. 2). С ростом содер-
жания хрома размер кристаллита уменьшается. 
Кроме того, согласно данным ЭДС, интенсивность 
линии поглощения хрома с увеличением фор-
мульного содержания хрома в образцах увеличи-
вается, что подтверждает вывод о растворении ок-
сида хрома (III) в титанате кальция-меди в рас-
сматриваемом концентрационном интервале. 

На рис. 3 и 4 представлены NEXAFS- и  
XPS-спектры катионов кальция, меди, титана и хро-
ма в исследованных образцах CaCu3Ti4 – 4xCr4xO12 – δ 
(табл. 1). Для сравнения на рисунках приведены 
спектры оксидов металлов, входящих в состав ис-
следованных твердых растворов, а также спектры 
недопированного ССТО [28]. Анализ представ-
ленных на рисунках спектров позволяет сделать 
вывод, что внедрение катионов хрома в структу- 
ру ССТО кардинально не изменяет спектральных

 

 
 

Рис. 1. Дифрактограммы CaCu3Ti4O12 (1) и CaCu3Ti4 – 4хСr4хO12 – δ  
при х = 0,005 (2), 0,02 (3), 0,04 (4), 0,06 (5); * – рефлексы CuO 
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Рис. 2. Микрофотографии поверхности керамики CaCu3Ti4 – 4хСr4хO12 – δ  
при х = 0,01 и 0,06 в режиме упругоотраженных электронов 

 
Таблица 1 

 

Энергетическое положение полос в XPS-спектрах 
образцов ССТО, допированных хромом 

 

Катион 
Энергетическое положение, эВ 

2p3/2 2p3/2 сателлиты 2p1/2 2p1/2 сателлиты

Ca2+ 345,9 355,3 349,5 358,2 

Cu2+ 933,5 940,4; 942 953,2 961,6 

Ti+(4 – δ) 457,7 471,3 463,3  

Cr3+ 576,0  585,8  

 
свойств катионов кальция, меди и титана. Анало-
гичное поведение данных характеристик мы на-
блюдали для исследованных нами ранее образцов 
ССТО, допированных катионами железа,  
никеля, марганца и кобальта [28, 29]. Для сравне-
ния на рис. 3 приведены Ti2p-спектры оксидов 
титана TiO2 и его полиморфов – анатаз, рутил и 
аморфная форма оксида титана (IV). Характерной 
особенностью оксидных соединений титана (IV) 
является его октаэдрическая координация. Между 
тем симметрия кристаллической решетки разная: 
анатаз и рутил имеют тетрагональную, брукит – 
ромбическую, а Ti2O3 – тригональную симметрию. 
В представленных NEXAFS-спектрах титана ос-
новные полосы поглощения связаны с переходами 
2p-электронов титана на 3d-свободные состояния. 

Вследствие спин-орбитального взаимодействия 
они делятся на две серии – 2p3/2 и 2p1/2. Первые 
пики в каждой серии описываются как перехо- 
ды 2p-электронов на t2g-подуровень, а вторые опре-
деляют переходы в eg-состояние. Это и наблюдает-
ся во всех спектрах оксидов титана (TiO2, Ti2O3) 
[30, 31]. Интересно, что полоса поглощения вбли-
зи 460 эВ в анатазе и рутиле дополнительно рас-
щеплена на две составляющие, и соотношение их 
интенсивностей разное, что может свидетельство-
вать о неэквивалентном координационном окру-
жении атомов титана в них. В аморфном оксиде 
титана (а-TiO2) указанное расщепление проявляет-
ся в виде наплыва с высокоэнергетической сторо-
ны, как в анатазе. Спектры хромсодержащих об-
разцов ССТО совпадают по числу основных дета-
лей и их энергетическому положению со спектра-
ми оксида титана TiO2, что указывает на зарядовое 
состояние катионов титана как +4. Наличие рас-
щепления полосы вблизи 460 эВ, проявляющееся в 
виде наплыва с низкоэнергетической стороны, 
указывает на сходство полиэдрического окруже-
ния атомов титана в ССТО с рутилом. Действи-
тельно, в обоих соединениях октаэдры TiO6 связа-
ны между собой общими кислородными вершина-
ми, в то время как в анатазе полиэдры TiO6 имеют 
общие ребра. Подчеркнем, что описанный выше 
наплыв полосы в спектрах ССТО нечеткий и со-
поставим со спектром аморфного TiO2, что можно 
интерпретировать как искажение октаэдрического 
окружения катионов титана (IV). 



Nekipelov S. V., Makeev B. A., Fedorova A. V., Zhuk N. A. “Ultra-soft X-ray spectroscopy study of chromium-doped titanium calcium-copper CaCu3Ti4O12” 

glass-ceramics.ru  35 Steklo i keramika, 2025, Vol. 98, No. 10 (In Russ) 

 
 

Рис. 3. NEXAFS Ti2p-спектры (а), Cu2p-спектры (б), 
Ca2p-спектры ССТО (в), допированные хромом,  

и оксидов титана, меди, кальция и  
атомарного кальция 

 
NEXAFS-спектры катионов меди в перовски-

те и оксидах Cu2O и CuO, в которых катионы  

меди (II) имеют искаженную плоскоквадратную 
координацию, а в кубической решетке Сu2O ка-
тионы меди (I) имеют координационное число 2, 
представлены на рис. 3. По энергетическому по-
ложению основных полос поглощения спект- 
ры ССТО твердых растворов совпадают со спек-
трами CuO, из чего следует, что катионы меди  
в растворах CCTO и недопированном титанате 
кальция-меди имеют зарядовое состояние +2. 
NEXAFS 2р-спектры кальция приведены на рис. 3, 
для сравнения показаны спектры атомарного 
кальция и кальция в оксиде кальция [32, 33]. Энер-
гетическое положение основных полос совпадает 
в спектрах CCTO и CaO, между тем спектр ато-
марного кальция смещен в область меньших энер-
гий. В спектрах ССТО заметно расщепление полос 
в результате воздействия кристаллического поля,  
в то время как в спектрах CaO влияние поля про-
является в появлении сателлитных полос, прини-
мая во внимание, что оксид кальция имеет ГЦК 
решетку, в которой катионы кальция имеют окта-
эдрическое кислородное окружение. В ССТО по-
лиэдрическое кислородное окружение кальция 
икосаэдрическое [34], по симметрии существенно 
ближе к сферическому, чем октаэдрическому ок-
ружению, в связи с этим расщепление кристалли-
ческим полем может быть менее выражено или 
вовсе отсутствовать, как в случае атомарного 
кальция. Широкие наплывы с низкоэнергетиче-
ской стороны от пиков в спектрах могут быть  
связаны с влиянием кислородного окружения.  
В совокупности, по представляемым результа- 
там можно заключить, что катионы кальция  
в твердых растворах имеют зарядовое состоя- 
ние +2. На основании сопоставления значений 
энергии связи рассматриваемых катионов с энер-
гиями связи в их оксидах можно сделать вывод, 
что в рассматриваемых сложных оксидах катионы 
меди и кальция имеют зарядовое состояние +2, 
катионы титана – +(4 – δ).  

Сравнение спектров образцов со спектром 
Cr2O3 и известными из литературы спектрами  
оксидов CrO2 и CrO3

 [35, 36] показывает (рис. 4), 
что спектр CaCu3Ti4 – 4xCr4xO12 – δ хорошо коррели-
рует со спектром Cr2O3, в котором катионы хро- 
ма (III) находятся в октаэдрическом кислородном 
окружении. На основании этого сделан вывод, что 
катионы хрома в ССТО преимущественно нахо-
дятся в октаэдре и зарядовом состоянии Cr3+. 

Таким образом, по данным рентгеновской 
спектроскопии, в твердых растворах ССТО катио-
ны титана имеют зарядовое состояние +(4 – δ), 
катионы меди и кальция – +2, а катионы хрома – +3. 
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Рис. 4. Обзорный XPS-спектр (а), Cu2p-спектры (б), Ca2p-спектры (в), Ti2p-спектры (г) и Cr2p-спектры (д) 
для допированного хромом ССТО и спектры оксидов CaO, CuO, Ti2O3 и TiO2, CrO2, CrO3 и Cr2O3 

 
Методом NEXAFS-спектроскопии не под-

твердилось наличие катионов меди (I) в керамике, 
достоверно обнаружить катионы Ti (III) при ис-
пользовании методов рентгеновской спектроско-
пии не представляется возможным из-за недоста-
точной селективности спектров Ti (IV) и Ti (III). 

 
Выводы 
Методами спектроскопии, рентгенофазо- 

вого и микрозондового анализа исследованы  
хромсодержащие образцы титаната кальция-меди 

CaCu3Ti4 – 4хCr4хO12 – δ, синтезированные твердофаз-
ным методом. В качестве примесной фазы в об-
разцах может присутствовать оксид меди (II).  
По данным XPS и NEXAFS 2p-спектров, в хром-
содержащей керамике ССТО катионы меди и 
кальция имеют зарядовое состояние +2, атомы ти-
тана – +(4 – δ), а допированные катионы хрома – +3. 
Ионы хрома распределяются в позиции Ti (IV).  
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