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Аннотация 
Изучены условия петрогенезиса и эволюции пород при региональном метаморфизме вулкано-плутонического 
комплекса каскамской структуры в пределах террейна Инари на северо-западе России. Применен детальный 
петрографический анализ пород, рассмотрены особенности химического состава минералов, выполнено моде-
лирование магматического и метаморфического минералообразования. РТ-условия образования пород, наряду 
с ранее известными фактами, включая изотопно-геохронологические, не позволяют соотнести изученные 
толщи с породами беломорского комплекса, как считалось прежде. Моделирование магматического и мета-
морфического минералообразования показало хорошую сходимость модельных полей устойчивости мине-
ральных парагенезисов и количественного соотношения минералов с наблюдаемыми в реальных образцах. 
Ранние минеральные парагенезисы магматического этапа отвечают кристаллизации ряда породообразующих 
и акцессорных минералов из коматиитового расплава, на них накладываются минеральные парагенезисы про-
грессивного и регрессивного метаморфизма. Реликтовые магматические минералы (оливин, клинопироксен, 
ортопироксен, магнетит-шпинель) в метаперидотитах позволяют оценить их ликвидусные температуры в диа-
пазоне 1480-950 °С. Прогрессивная стадия метаморфических преобразований характеризуется развитием ми-
неральных парагенезисов: гранат + амфибол + плагиоклаз + кварц ± биотит, амфибол + плагиоклаз + кварц. 
Поздняя низкотемпературная регрессивная стадия метаморфизма характеризуется развитием эпидот-, цоизит-, 
актинолитсодержащих ассоциаций и ряда других низкотемпературных минералов. Пиковые значения парамет-
ров прогрессивного метаморфизма оцениваются как Т = 600-700 °С, Р = 5-9 кбар, для регрессивной стадии  
Т = 400-500 °С, Р = 3-5 кбар. Выявленные термодинамические условия эндогенного породообразования в кас-
камской структуре необходимо учитывать при определении принадлежности изученных вулканогенно-плуто-
нических и метаосадочных комплексов к палеопротерозойским террейнам Кольско-Норвежской области Фен-
носкандинавского щита. 
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Введение 
Геологическое и тектоническое строение Фенноскандинавского щита в целом и Кольско-Нор-

вежской области в частности интерпретируется, исходя из представлений о блоковом строении 
земной коры, основанных на принципиальных различиях в тектоническом развитии верхнекоро-
вых структур, периодизации их эндогенной эволюции и особенностях глубинного строения по 
геофизическим данным [1]. Эти представления в последние десятилетия трансформировались в 
«террейновую» геодинамическую парадигму. Террейновый анализ привнес в описательные прин-
ципы тектонического районирования и ранжирование докембрийских комплексов генетический 

ЗАПИСКИ ГОРНОГО ИНСТИТУТА 
Journal of  Mining Ins t i tute  

 

Сайт журнала: pmi.spmi.ru 

 

ISSN 2411-3336; е-ISSN 2541-9404 

 

https://www.elibrary.ru/cmijjb
https://www.elibrary.ru/cmijjb


 

 

Записки Горного института. 2025. С. 1-14 

© А.Б.Вревский, А.В.Юрченко, Ш.К.Балтыбаев, 2025 

EDN CMIJJB   

2 

Статья опубликована в открытом доступе по лицензии CC BY 4.0  

смысл (например, аккреционный, дисперсионный и составной террейны), который во многом за-
висит от концептуальных предпочтений авторов (плейт- или плюм-тектонических). Представле-
ния существенно эволюционировали благодаря появлению новых изотопных данных о возрасте 
верхнекоровых геологических комплексов и их глубинных протолитов.  

 Для Кольско-Норвежской области Фенноскандинавского щита (Центрально-Кольский  
террейн) (рис.1, а) существует несколько вариантов геодинамических моделей развития литосферы 
в раннем докембрии [2-4], имеющих целый ряд принципиальных отличий, главным образом в  
интерпретации геодинамической природы террейнов. Одним из ключевых регионов для рекон-
струкции орогенного развития континентальной литосферы Кольско-Норвежской области в ран-
нем докембрии является террейн Инари [5]. Большая и наименее изученная часть террейна  
расположена между палеопротерозойскими структурами Пасвик-Полмак-Печенгского пояса и  
Лапландским гранулитовым поясом и протягивается в юго-восточном направлении более чем на 
300 км от каледонид на территорию Северной Норвегии и Финляндии.  

На территории России террейн Инари, который пространственно соответствует ранее  
выделенному Каскамскому блоку (блок-антиклинорий) [2, 6], граничит на юго-западе с Лоттинско-
Сальнотундровским блоком Лапландского гранулитового пояса, а на северо-востоке граница  
проходит вдоль вулканогенно-осадочных комплексов Южно-Печенгской зоны. Террейн Инари 
пространственно во многом совпадает с Печенгско-Аллареченским рудным районом [7], что опре-
деляет актуальность его исследования в металлогеническом аспекте. 

Существуют лишь общие представления о строении террейна Инари как о тектонической 
смеси (tectonic packages) архейских и протерозойских комплексов [3, 4, 8], а в рамках теоретиче-
ских геодинамических построений эта область рассматривается в составе Инари-Терской ювениль-
ной дуги, возникшей в результате двухстадийной коллизии с последующим формированием вторич-
ного ороклина [4, 8]. Такое разнообразие геодинамических представлений во многом определяется 
ограниченным количеством современных петролого-геохимических и изотопных данных [9-11].  

В разные годы на северо-западе Кольского п-ова в пределах, соответствующих современным 
представлениям о тектонических границах террейна Инари, исследователи выделяли в крупных 
синклинальных структурах существенно вулканогенную каскамскую свиту неопределенного  
неоархейско-палеопротерозойского возраста. В настоящее время, благодаря полученному изотоп-
ному U-Pb возрасту (1923-1926 млн лет) кислых и средних метавулканитов, каскамская свита была 
отнесена к калевийскому надгоризонту карельского комплекса [5], что принципиально меняет 
представления о геологическом строении и металлогенической зональности Печенгско-Алларе-
ченгского рудного района и геодинамической природе террейна Инари.  

Цель работ – определение условий петрогенезиса мантийного магматизма и термобарической 
эволюции регионального метаморфизма вулкано-плутонического комплекса каскамской струк-
туры на основе решения задач детальной петрографии, анализа особенностей химического состава 
минералов и определения PT-параметров метаморфических изменений. Исследование направлено 
на получение новых сведений о корреляции эндогенных процессов и сопоставление геологиче-
ского строения и тектонической эволюции смежных блоков Кольско-Норвежской области, что  
является важнейшим инструментом для террейнового анализа Фенноскандинавского щита. 

Методы 
Исследование строения минералов и анализ их составов произведены на сканирующем элек-

тронном микроскопе JSM-6510LA с ЭДС JEOL JED-2200 (ИГГД РАН, аналитик О.Л.Галанкина) 
при ускоряющем напряжении 20 кВ и токе 1 нА с ZAF-методом коррекции матричных эффектов. 
Предел обнаружения элементов – 0,1 %. Фотографии минералов получены в режимах композицион-
ного контраста (BSE) и вторичных электронов (SEI). 

Минеральные геотермометры. Для Ol-Cpx термометрии использовалось уравнение [12], ос-
нованное на Fe-Mg обмене между авгитом и оливином; для Cpx-Ol-Spl термометрии применялось 
уравнение, разработанное для шинелевых перидотитов [13]; для Ol-Spl термометрии использова-
лось уравнение равновесия по [14]; для парагенезиса двух пироксенов применялись геотермо-
метры [15, 16]; для парагенезиса амфибола с плагиоклазом использован геотермометр Т.Холланда 
и Р.Бланди [17]; для парагенезиса граната и амфибола использованы несколько термометрических 
инструментов, калибровки которых даны в работах [18-21]; для парагенезиса граната и биотита 
применялся термометр [22]. 

https://www.elibrary.ru/cmijjb
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Минеральные геобарометры – мономинеральный амфиболовый [23], гранат-амфибол-пла-

гиоклазовый [24-26], гранат-биотит-плагиоклазовый для кварцсодержащих пород [27]. 
Расчет полей устойчивости минеральных парагенезисов выполнялся с помощью программы 

Perple_X v.6.9.1 [28] с обновлениями до 2022 г. В расчетах использовалась база термодинамиче-
ских данных hp62ver [29] для минералов и твердых растворов клиноамфибола cAmph(G), ортоам-
фибола oAmph(DP), клинопироксена Omph(GHP), оливина O(HP), талька T, биотита Bio(TCC), по-
левых шпатов (feldspar), хлорита Chl(W), граната Gt(W), шпинели Sp(WPC), ортопироксена 
Opx(W), белых слюд Mica(CHA), хлоритоида Ctd(W), ставролита St(W), ильменита Ilm(WPH)  
в системе MnTiNCKFMASH-CO2 (MnO-TiO2-Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O), а также 
модель силикатного расплава melt(G) [30, 31]. 

Порядок кристаллизации минералов определялся в породе перидотитового состава вместе с 
оценкой ликвидусных температур для оливина, пироксенов, плагиоклаза и магнетита по уравне-
ниям геотермометров, откалиброванных для систем минерал-расплав программного комплекса 
COMAGMAT 3.73 [32]. 

Для моделирования минералообразования и оценок РТ-параметров были использованы пред-
ставительные химические анализы основных разновидностей пород каскамской свиты (табл.1) и 
около 400 микрозондовых анализов минералов. Сокращения названий минералов приведены по [33], 
расчет формул минералов по [34]. 

Геологическая характеристика строения региона и состава пород 
На территории северо-запада Кольского п-ова наиболее сохранившимся и доступным для ис-

следования фрагментом супракрустального комплекса каскамской свиты являются две сопряжен-
ные синклинальные структуры протяженно-
стью более 25 км в районе тундр Куроайви, 
Кораблекк, Каскама, Шуорт в 40 км к юго-за-
паду от Печенгской структуры (рис.1, а).  

Нижняя часть разреза вулканогенно-оса-

дочного комплекса каскамской свиты (более 

3000 м) представлена преимущественно различ-

ными амфиболитами и Grt-Bt-Amp сланцами, 

по химическому составу отвечающими толеито-

вым и глиноземистым метабазальтам (табл.1). 

Характерной особенностью разреза является 

присутствие тел метагипербазитов, анхимоно-

минеральных амфиболитов и актинолит-хлори-

товых сланцев мощностью 15-20 м и протяжен-

ностью более 300 м, химический состав 

которых отвечает коматиитам и коматиитовым 

базальтам (табл.1). Структурно-геологическое 

положение пород позволяет рассматривать 

часть из них как метаморфизованные потоки 

вулканитов, силлы и гипабиссальные интрузии, 

а наиболее крупные массивы вероятно являются 

доскладчатыми интрузиями перидотитов. Вы-

шележащая средняя толща гранат-биотит-амфи-

боловых гнейсов и плагиосланцев с прослоями 

амфиболитов слагает две синклинальные струк-

туры (рис.1, б). В верхней части средней толщи 

залегает несколько пачек мелкозернистых пла-

гиосланцев, лейкократовых биотит-полевошпато-

вых гнейсов и амфиболитов мощностью 20-30 м, 

которые рассматриваются как метаморфизован-

ные аналоги кислых и средних вулканитов и их 

туфов (табл.1).  

Рис.1. Схема геологического строения каскамской  

структуры [35] с изменениями 
 

1 – тоналитовые гнейсы; 2-4 – супракрустальный комплекс  
каскамской свиты (2 – верхняя, 3 – средняя и 4 – нижняя толщи);  

5 – плагиомикроклиновые граниты; 6 – метагаббро; 7 – дайки  

метагипербазитов; 8 – разрывные нарушения; 9 – структурные  
элементы (а – сланцеватость, б – гнейсовидность);  

10 – Центрально-Кольский террейн; 11 – Мурманский террейн;  

12 – Лапландский гранулитовый пояс; 13 – Северо-Печенгская зона; 
14 – Южно-Печенгская зона; 15 – террейн Инари; 16 – интрузии  

тоналитов и плагиогранитов; 17 – осадки венда  
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Таблица 1 
 

Содержание петрогенных оксидов в представительных образцах основных типов пород каскамской свиты, мас.% 
 

Петрогенные 

оксиды 

Образцы 

1 2 3 4 5 6 7 8 9 

104 20-3д 106 18-5б 101-1 17-3а 8-12 8-6 17-4а 

SiO2 42,00 42,60 39,60 40,00 47,15 46,20 52,75 78,95 71,00 

TiO2 0,13 0,10 0,09 0,07 0,53 0,44 0,48 0,19 0,20 

Al2O3 8,30 10,45 13,75 13,50 19,60 20,00 16,55 9,90 12,80 

Fe2O3 5,52 3,79 3,97 2,83 1,85 3,35 2,41 1,22 0,90 

FeO 8,54 8,41 8,67 9,32 9,96 9,32 7,63 3,10 4,92 

MnO 0,20 0,18 0,19 0,15 0,23 0,18 0,20 0,10 0,10 

MgO 21,95 20,00 20,00 20,00 6,50 5,48 4,91 0,32 1,51 

CaO 7,69 10,21 12,24 7,52 11,20 12,08 9,88 2,74 5,05 

Na2O 0,27 0,32 0,37 0,44 1,41 1,18 2,51 2,67 2,72 

K2O 0,07 0,28 0,04 0,18 0,14 0,09 0,53 0,45 0,15 

P2O5 0,07 0,03 0,03 0,03 0,05 0,03 0,19 0,06 0,10 

ППП 5,84 3,92 3,30 6,30 1,62 1,99 1,66 0,34 0,93 

Сумма 100,58 100,29 100,25 100,34 100,24 100,34 99,70 100,04 100,38 

CaO/Al2O3 0,9 1,0 0,9 0,8 – – – – – 

Al2O3/TiO2 64 86 153 193 51 – – – – 

CIA – – – – – – 51 49 48 

al' 0,23 0,32 0,42 0,42 1,1 1,1 – – – 

 

Примечания. 

al' = Al2O3/(MgO + Fe2O3 + FeO) – индекс глиноземистости, мас.%.  

CIA = 100 × [Al2O3/(Al2O2 + CaO + Na2O + K2O)] – химический индекс зрелости, мол.%. 

1-4 – метаперидотиты; 5, 6 – гранат-амфиболовый сланец и гранат-эпидотсодержащий амфиболит (глиноземистые ме-

табазальты); 7 – эпидотсодержащий амфиболит (метаандезит); 8, 9 – амфибол-плагиоклазовый сланец и мигматизированный 

гранат-амфибол-плагиоклазовый сланец (кислые метавулканиты). 

 

Ядерные части синклиналей (рис.1) сложены верхней толщей каскамской свиты, представ-

ленной преимущественно мелко- и среднезернистыми сланцеватыми и массивными амфиболи-

тами с прослоями актинолит-хлоритовых сланцев, по составу сходных с коматиитовыми базаль-

тами, толеитовыми и глиноземистыми метабазальтами нижней толщи разреза. 

Петрографо-минералогическая характеристика пород и особенности химического состава 

минералов 

Метаморфизованный перидотит (обр. 104, 20-3д, 106, 18-5б). Петрография. Количествен-

ный минеральный состав породы, об.%: оливин 20-40; ортопироксен до 5; роговая обманка до 10; 

клинопироксен 20-40; плагиоклаз 20-30; зеленая шпинель до 5. В массивных породах из силлов  

и гипабиссальных интрузий достаточно определенно диагностируется ранний (магматический) па-

рагенезис, состоящий из оливина (впоследствии серпентинизированного), клинопироксена, орто-

пироксена, плагиоклаза и шпинели. К метаморфическим минералам относятся амфибол, эпидот, 

хлорит, шпинель, магнетит. Оливин образует бесцветные изометричные зерна размером до 1-1,5 см 

и имеет сетчато-петельчатую структуру за счет многочисленных трещин (рис.2, а, б), заполненных 

серпентином, в котором находится новообразованный магнетит. По краю зерен оливина развивается 

светло-зеленый тремолит, а на контакте с плагиоклазом – червеобразные вростки шпинели (рис.2, б), 

ориентированные перпендикулярно кайме. Клинопироксен встречается как во включениях в оли-

вине, так и в виде ксеноморфных зерен в матриксе. При этом он часто замещается амфиболом по 

краю зерна и по трещинам спайности. Ортопироксен развит в виде единичных мелких ксеноморф-

ных зерен, как правило, по контакту с оливином в виде тонкой каймы между оливином и амфибо-

лом. Зеленая шпинель расположена как в матриксе в виде крупных отдельных зерен, так и в сим-

плектитовых  сростках  с  амфиболом.  Плагиоклаз  часто   имеет   полисинтетические   двойники, 

https://www.elibrary.ru/cmijjb
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храняется и распознается внутри амфибол-шпинелевого симплектита. В плагиоклазе наблюдаются 

скопления эпидот-цоизитового агрегата. Местами отмечаются крупные зерна роговой обманки  

(до 2 мм), насыщенные включениями ильменита. Отмечается также локальное замещение амфи-

бола актинолит-тремолитовым агрегатом совместно с игольчатым хлоритом.  

Состав минералов. Оливин относится к форстериту с ХMg = Mg/(Mg + Fe) = 0,72-0,75 у круп-

ных зерен, у мелких зерен ХMg = 0,66 без примеси Cr2O3, в единичных анализах содержание  

NiO до 0,28 мас.%, а также присутствует постоянная примесь MnO – 0,19-0,74 мас.%. Клинопи-

роксен представлен диопсидом с ХMg = 0,86-0,94, небольшими примесями Cr2O3 до 0,41 мас.%, 

TiO2 до 0,31 мас.% и MnO до 0,22 мас.% в отдельных зернах, содержание Al2O3 – 0,54-2,8 мас.%. 

Наибольшее содержание алюминия имеет клинопироксен, образующий включения в оливине. Орто-

пироксен по составу отвечает энстатиту с ХMg = 0,74-0,79, содержит примеси MnO (0,33-0,72 мас.%)  

и Al2O3 (0,51-1,65 мас.%). Плагиоклаз имеет анортитовый состав (An = 94-100 %). 

Шпинель по составу соответствует Hc43-54Spl44-54Mg2-4, содержит небольшую примесь цинка 

(ZnO = 0,11-0,49 мас.%), марганца (MnO = 0,26-0,9 мас.%). Не выявлено явных различий в составе 

крупных зерен шпинели и ее прорастаний в виде симплектитов. 

Амфибол в основном представлен магнезиальной роговой обманкой (рис.3, а) с ХMg = 0,79-0,89. 

В симплектитовых прорастаниях со шпинелью амфибол заметно богаче Al2O3: соответствует чер-

макиту с Al2O3 = 14,2-17,5 мас.%, а в кайме – роговой обманке с Al2O3 = 5,5-13,4 мас.%. В сим-

плектите также встречаются более крупные части роговой обманки, по составу отвечающие мине-

ралу, находящемуся в каймах. Роговая обманка, развивающаяся по клинопироксену, содержит 

заметную примесь TiO2  = 0,1-0,75 мас.%. 

Глиноземистый метабазальт (эпидотсодержащий амфиболит, обр. 8-12). Петрография. 

Количественный минеральный состав, об.%: эпидот до 10; плагиоклаз до 20; амфибол до 55; кварц 

до 15; хлорит до 5; акцессорные апатит, титанит и магнетит. Структура породы в основном пой-

килобластовая, гранонематобластовая, текстура массивная. В эпидот-амфиболовой массе не 

наблюдается заметной предпочтительной ориентировки минералов (см. рис.2, в). Эпидот до 0,5 мм 

содержит округлые включения кварца, алланита. Плагиоклаз изменен, размеры зерен до 0,3 мм, 

замещается цоизитом. Амфибол травянисто-зеленый, по трещинам спайности более коричневый, 

замещается  хлоритом.  Кварц  в  виде округлых зерен до 0,1 мм находится в тесной ассоциации с 
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 Рис.2. Фотографии шлифов в проходящем свете (а, в-е) и BSE-изображение (б) изученных пород каскамской свиты: 

а – метаморфизованный перидотит (обр. 104), серпентинизированный Ol, Срх замещающийся Hbl, Ep замещает Pl,  

симплектит Spl+Hbl по Pl; б – метаморфизованный перидотит (обр. 104), Spl+Hbl симплектиты, зональная Amp кайма  

на контакте Ol с Pl; в – эпидотсодержащий амфиболит (обр. 8-12), зерна эпидота содержат включения кварца, плагиоклаз 

измененный; г – гранат-амфиболовый сланец (обр. 101-1), Grt содержит включения Qz и Amp, обтекается призматическим 

травянисто-зеленым Amp; д, е – мигматизированный гранат-амфибол-плагиоклазовый сланец (обр. 17-4а),  

Grt в Pl-Amp матрице, замещается Chl-Bt-Ms агрегатом, содержит включения Qz и Pl 
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эпидотом, встречается в небольшом количестве также во включениях в амфиболе. В осветленных 
участках породы, эпидот-плагиоклаз-кварцевых по составу, эпидот с включениями кварца имеет 
размер зерен до 0,5 мм. Плагиоклаз изменен сильнее, а размеры зерен кварца становятся больше – 
до 0,4 мм.  

Состав минералов. Плагиоклаз в амфиболите имеет состав андезина (An = 44-53 %), при за-
мещении его эпидотом состав приближается к чистому альбиту (An = 2-16 %). Амфибол представ-
лен паргаситом и магнезиальной роговой обманкой (рис.3, а), в ассоциации с хлоритом ранний 
амфибол замещается актинолитом. В более лейкократовой части породы магнезиальная роговая 
обманка чуть более железистая с ХMg = 0,53-0,65, содержит больше ТiO2 (0,37-0,85 мас.%), Na2O 
(0,76-1,55 мас.%) и Al2O3 (7,92-14,0 мас.%), меньше Сl (0,11-0,28 мас.%), чем магнезиальная ро-
говая обманка с ХMg = 0,61-0,70 в амфиболовой массе, содержащая ТiO2 (0,40-0,81 мас.%), Na2O 
(0,6-1,6 мас.%), Al2O3 (7,4-11,4 мас.%), Сl (0,15-0,19 мас.%). Более поздний актинолит имеет  
ХMg = 0,71-0,72 и содержит ТiO2 (0-0,61 мас.%), Na2O (0-0,23 мас.%), Al2O3 (0,75-5,41 мас.%),  
Сl (0-0,08 мас.%).  

Глиноземистый метабазальт (гранат-эпидотсодержащий амфиболит, обр. 17-3a). Пет-
рография. Количественный минеральный состав, об.%: амфибол до 65; плагиоклаз до 15; эпидот 
до 10; кварц 10; единичные зерна граната; вторичные минералы – хлорит, акцессорный ильменит. 
Представляет собой крупнозернистую неоднородную породу, в которой амфибол-плагиоклазовая 
матрица содержит порфиробласты амфибола размером до 4 мм и единичные зерна граната разме-
ром до 2 см (см. рис.2, г). Встречаются зерна амфибола с обильными включениями ильменитовых 
игл и округлых зерен кварца размером до 0,1 мм, а также более мелкие зерна амфибола без вклю-
чений. Порфиробласты граната иногда содержат включения крупных (до 1 мм) зерен эпидота- 
цоизита и ильменита, а также кварца, плагиоклаза и амфибола в центральной части зерна, края не 
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Рис.3. Особенности составов минералов пород каскамсой свиты:  

а – химический состав амфибола по [36], координаты осей соответствуют сумме содержаний 

катионов в минерале, в кислом метавулканите (1 – обр. 8-6; 2 – обр. 17-4а), глиноземистом 

метабазальте (3 – обр. 101-1; 4 – обр. 17-3а), метаандезите (5 – обр. 8-12), метаперидотите  

(6 – обр. 104; 7 – тот же образец, но амфибол в составе симплектитового прорастания);  

б – профили химической зональности гранатов из амфибол-плагиоклазового сланца  

(обр. 8-6) и мигматизированного гранат-амфибол-плагиоклазового сланца (обр. 17-4а) 
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содержат включений. Лейкократовые участки породы представлены кварц-эпидот-плагиоклазо-
выми агрегатами. Встречаются зерна плагиоклаза размером до 1 мм с полисинтетическими двой-
никами, зажатые между зерен амфибола. По плагиоклазу развиваются эпидот и цоизит. Хлорит 
отдельными скоплениями развивается по амфиболу. 

Состав минералов. Гранат по составу гроссуляр-альмандиновый Py9-14Alm65-72Sps2-5Grs15-19. 

Отмечается тенденция к увеличению гроссулярового и пиропового компонента к краю с уменьше-

нием альмандинового. Амфибол рядом с гранатом представлен магнезиальной роговой обманкой 

с ХMg = 0,55-0,56, содержит ТiO2 (0,68-0,77 мас.%), Na2O (0,68-0,82 мас.%), Al2O3 (7,16-7,50 мас.%), 

куммингтонит с ХMg  = 0,44 на контакте с гранатом и по краю роговой обманки. В безгранатовом мат-

риксе амфибол представлен ферри-чермакитом с ХMg = 0,39-0,44 и содержит ТiO2 (0,14-0,35 мас.%), 

Na2O (1,17-1,62 мас.%), Al2O3 (17,3-20,1 мас.%). Плагиоклаз неоднородный, для него характерны более 

кислые по составу включения (An = 52-68 %, лабрадор) в более основном зерне (An = 87-92 %, битов-

нит-анортит), на контакте с гранатом плагиоклаз имеет состав лабрадора (An = 54-64 %). Хлорит в 

виде крупных зерен ~3 мм на контакте с амфиболом имеет магнезиальность ХMg = 0,57-0,58. 
Глиноземистый метабазальт (гранат-амфиболовый сланец, обр. 101-1). Петрография. 

Количественный минеральный состав, об.%: гранат до 15; амфибол 50; плагиоклаз до 25; кварц до 10. 
В плагиоклаз-амфиболовой матрице породы встречаются порфиробласты граната с хорошо сфор-
мированными гранями размером до 1,5 см. Эти порфиробласты содержат многочисленные вклю-
чения кварца, плагиоклаза, амфибола в центре зерна, края зерен без включений. Плагиоклаз при 
размере зерен до 0,5 мм, вместе с амфиболом размером до 0,6 мм, расположен параллельно слан-
цеватости, облекая при этом порфиробласты граната (см. рис.2, г).  

Состав минералов. Гранат пироп-альмандиновый Py22-26Alm58-63Sps3-4Grs11-16 с незначитель-
ной зональностью, показывающей уменьшение пиропового компонента с возрастанием гроссуля-
рового и альмандинового к краю зерна. В матриксе плагиоклаз по составу отвечает битовниту  
(An = 78-82 %), к контакту с гранатом и амфиболом некоторые зерна имеют небольшую зональ-
ность – содержание анортитового компонента уменьшается до An = 48-58 %. Во включениях в 
гранате состав плагиоклаза более основной (An = 86-87 %), чем в матриксе. Амфибол по составу 
отвечает магнезиальной роговой обманке (рис.3, а), на контакте с гранатом ближе к чермакиту с 
ХMg = 0,57-0,66, содержит ТiO2 = 0,41-0,83 мас.%, Na2O = 1,04-1,67 мас.%, Al2O3 = 14,2-15,11 мас.%. 

Метариолит (амфибол-плагиоклазовый сланец, обр. 8-6). Петрография. Количественный 
минеральный состав, об.%: амфибол до 20; плагиоклаз до 30; кварц до 50; единичные зерна био-
тита, хлорита и граната, акцессорные ильменит, апатит, циркон. Порода состоит из зеленого, тра-
вянисто-зеленого амфибола размером зерен до 2 мм, вытянутых параллельно сланцеватости.  
В амфиболе встречаются включения акцессорных минералов и кварца. Текстура неоднородная:  
в более лейкократовой части отмечается укрупнение зерен амфибола до 3 мм, при этом их стано-
вится заметно меньше. В самых лейкократовых частях породы встречаются только отдельные 
зерна амфибола в интерстициях между зернами кварца. Амфибол частично хлоритизирован. Био-
тит встречается в виде тонких лейст. Ближе к гранату биотита становится больше, он находится в 
срастании с амфиболом и местами развивается по измененному плагиоклазу. Плагиоклаз часто с 
двойниками, размер зерен до 3 мм, их размер увеличивается в лейкократовой части до 5 мм, под-
вержен замещению карбонатно-слюдистым агрегатом (не более 10 об.%). В лейкократовой части 
зерна плагиоклаза так же, как и зерна кварца, вытянуты по направлению рассланцевания, часто с 
корродированными краями. Иногда плагиоклаз содержит включения кварца и амфибола. Единич-
ные зерна граната встречаются как в меланократовой, так и лейкократовой массе. Размер граната 
в меланократовом матриксе (до 2 мм) больше, чем в лейкократовом (до 1 мм). В лейкократовой 
части гранат замещается хлоритом в ассоциации с рудным (ильменит) и более поздним (альбит) 
плагиоклазом. 

Состав минералов. Состав амфибола в лейкократовой части более железистый с ХMg = 0,25-0,32, 
помимо железистого паргасита присутствует и гастингсит (см. рис.3, а). Содержание  
ТiO2 = 0,59-1,14 мас.%, Al2O3 = 13,5-14,7 мас.%, Na2O = 1,42-1,89 мас.%, Сl = 0,33-0,48 мас.%.  
В меланократовой части породы амфибол представлен железистым паргаситом с ХMg = 0,29-0,32, 
содержит ТiO2 = 0,46-1,16 мас.%, Al2O3 = 13,7-15,1 мас.%, Na2O = 1,3-1,86 мас.%, Сl = 0,25-0,40 мас.%. 
Биотиты образца относятся к железистым разностям (XMg = 0,35) с преобладанием в составе сидеро-
филлитового компонента и содержат TiO2 (3,3-3,4 мас.%). Состав плагиоклаза в пределах образца  

https://www.elibrary.ru/cmijjb
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однороден (An = 26-29 %) и соответствует олигоклазу, кроме его оторочек вокруг граната, состав в 
которых более кислый (An = 8-10 %). Гранаты гроссуляр-альмандинового ряда Py6-7Alm61-66Sps7-9Grs18-25 
в лейкократовой части и Py7-8Alm62-65Sps8-9Grs19-23 в меланакратовой в ассоциации с амфиболом. 
Для них одинаково характерно снижение альмандинового и спессартинового компонентов,  
а также увеличение гроссулярового от центра к краю зерен (рис.3, б). 

Метариодацит (мигматизированный гранат-амфибол-плагиоклазовый сланец, обр. 17-4a). 
Петрография. Количественный минеральный состав, об.%: гранат до 5; амфибол до 20; плагиоклаз 

до 30; кварц до 45; единичные зерна биотита, мусковита и хлорита; акцессорный ильменит. Порода 

неоднородная, представляет собой мигматизированный гранатсодержащий амфиболит. На контакте 

с лейкократовой частью появляются порфиробласты граната размером до 1 см (см. рис.2, д, е)  

с обилием включений кварца и плагиоклаза. От предыдущего рассматриваемый образец отличается 

более крупными размерами зерен, отсутствием предпочтительной ориентировки минералов, 

большим развитием хлорита как в ассоциации с амфиболом, так и по гранату. Вместе с хлоритом 

встречаются биотит и мусковит, которые местами развиваются по плагиоклазу. Акцессорные 

минералы представлены ильменитом с включениями рутила, по которому в свою очередь разви-

вается титанит. 

Состав минералов. Гранат гроссуляр-пироп-альмандинового состава Py11-18Alm65-71Sps4-9Grs9-15. 

Для него характерно увеличение альмандинового и спессартинового компонентов, уменьшение 

пиропового и гроссулярового от центра к краю зерен (рис.3, б). Наиболее железистый состав имеет 

гранат, замещающийся хлоритом, Py11-13Alm70-71Sps7-9Grs10. Плагиоклаз в породе имеет состав оли-

гоклаза (An = 28-31 %), наибольшие изменения наблюдаются в лейкократовой части породы, где 

плагиоклаз становится чуть более основным (An = 33 %). Амфибол в породе представлен магнезиальной 

роговой обманкой и чермакитом (рис.3, а) с ХMg = 0,42-0,46, содержит ТiO2 (0,20-0,44 мас.%),  

Na2O (1,54-1,66 мас.%), Al2O3 (16,6-17,55 мас.%). Более железистый хлорит на контакте с грана-

том, возможно, развивается по амфиболу, ХMg = 0,43-0,47. Хлорит, развивающийся по мелким зер-

нам граната и плагиоклазу, имеет ХMg  = 0,31-0,39. 

Магматическая стадия кристаллизации 

Для выяснения РТ-условий кристаллизации магматических минералов использованы составы ме-

таморфизованных перидотитов – образцы 104, 106, 18-5б, 20-3д (табл.1, 2), в которых хорошо сохра-

нились структурно-текстурные признаки и минералы магматической стадии образования породы. 
 

 Таблица 2 
 

Ликвидусные температуры кристаллизации минералов  

в породах перидотитового состава каскамской свиты, °С 
 

Образец Ol-melt Opx-melt Aug-melt Mt-melt Pl-melt 

106 1478 – 1285 1187 1074 

20-3д 1457 – 1307 1184 1036 

18-5б 1486 1168 1284 1189 1073 

104 1493 1172 1312 1199 955 

 

Примечание. Ликвидусные температуры рассчитаны с использованием уравнений 

минерал-расплав программы COMAGMAT 3.73 [32]. 

 

Идентифицированный первичный минеральный парагенезис, состоящий из оливина, двух пи-

роксенов, плагиоклаза с некоторым количеством магнетита-шпинели, хорошо воспроизводится 

при модельном построении равновесной кристаллизации в программе COMAGMAT (рис.4). При 

этом, кроме совпадения состава минералов при образовании их из расплава, воспроизводятся и 

объемные соотношения, устанавливаемые по петрографическим данным. Помимо воспроизведе-

ния порядка кристаллизации минералов и их количества, результаты моделирования показали хо-

рошее соответствие расчетных составов минералов (оливина, пироксенов, плагиоклаза) реально 

наблюдаемым в породах. В частности, магнезиальность оливина снижается от ~0,94 до 0,70, а ос-

новность плагиоклаза меняется от почти чистого анортита до битовнита, демонстрируя уменьше-

ние номера плагиоклаза при снижении температуры кристаллизации (рис.4, а). 

https://www.elibrary.ru/cmijjb
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Дополнительно рассчитаны температуры и последовательность кристаллизации минералов, по-
лученных с применением уравнений равновесий в системе минерал-расплав (табл.2). Уравнения  
расчета температур программного комплекса COMAGMAT показали, что ликвидусные темпера-
туры для оливина и пироксенов находятся в диапазоне ~1500-1200 °С. Для плагиоклаза температура 
равновесия в системе плагиоклаз-расплав определена как 955 °С, но первая кристаллизация  
минерала начинается при Т = 1202 °С. 

PT-условия метаморфических преобразований пород 
Для оценки термодинамических режимов устойчивости минеральных парагенезисов при ме-

няющихся Р и Т для изученных основных типов пород (см. табл.1) использован метод построения 
псевдосечений. Помимо устойчивости минеральных парагенезисов при изменении режима давле-
ния и температуры, оценивались вариации соотношения СО2 и Н2О в предполагаемом углекис-
лотно-водном флюиде. Расчеты показали, что наиболее адекватные (отвечающие наблюдаемым) 
результаты получаются при использовании чистого водного флюида без примеси СО2. С помощью 
программного пакета Perple_X [28] построены фазовые диаграммы для пород, отвечающих со-
ставу исходного протолита (рис.5). На диаграммах хорошо воспроизводится ассоциация метамор-
фических минералов, наблюдаемая в шлифах. 

Широко распространенный в породах метаморфический минеральный парагенезис, состоя-
щий из граната, амфибола, плагиоклаза, вторичного клинопироксена, моделируется в области 
средних значений температуры и давления – Т ~700 °С; Р ~5-7 кбар. Диапазон Р и Т отвечает су-
перпозиции изоплет составов минералов, близких к реальным составам минералов по данным мик-
розондового анализа. 

Наблюдаемая в некоторых породах мигматизация (например, в гранат-амфибол-плагиоклазо-
вом сланце, обр. 17-4а) позволяет значительно сузить возможную РТ-область метаморфического 
минералообразования. Так, с учетом появления анатектического расплава в изученной породе,  
РТ-область метаморфического минералообразования для нее оценивается как Т = 710-760 °С и  
Р = 6-8 кбар (рис.5, б). 

Результаты классической минеральной термобарометрии не противоречат оценкам Р и Т ми-
нералообразования, полученным методом псевдосечений. Для пород, сохранивших магматиче-
ские и метаморфические минеральные парагенезисы (например, обр. 104), выявляются давления  
и температуры, соответствующие магматической стадии кристаллизации минералов и последую-
щим среднетемпературному и среднебарическому режимам метаморфических преобразований 
(табл.3). Использование минеральных термометров и барометров, основанных на соответствии  
химических составов сосуществующих минералов определенным значениям давления и темпера-
туры, позволило определить высокотемпературную стадию минералообразования (оливин-шпи-
нель-пироксеновые, пироксеновые термометры), соотносимую с этапом магматической кристал-
лизации минералов и расплава. 
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Рис.4. Последовательность равновесной магматической кристаллизации минералов из расплава по данным расчета  

в программе COMAGMAT для образцов метаморфизованного перидотита: а – обр. 104; б – обр. 18-5б; в – обр. 106; г – обр. 20-3д. 

Составы оливина и плагиоклаза согласуются с реальными составами минералов по данным микрозондового анализа 

https://www.elibrary.ru/cmijjb
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Преобладающее большинство минеральных геотермометров, использующих составы амфи-
болов, биотитов, плагиоклазов и гранатов, указывает на температуру метаморфизма пород в диа-
пазоне ~580-700 °С при давлении 5-9 кбар (рис.6). 
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Рис.5. РТ-диаграммы фазовых равновесий, рассчитанные методом минимизации энергии  

Гиббса в программе Perple_Х: а – гранат-эпидотсодержащий амфиболит (обр. 17-3а);  

б – мигматизированный гранат-амфибол-плагиоклазовый сланец (обр. 17-4а). Серым цветом  

выделены области, которые соответствуют наблюдаемым гранатсодержащим минеральным  

парагенезисам в изученных породах. Штриховкой показан РТ-диапазон образования  

наблюдаемого метаморфического минерального парагенезиса рассматриваемого сланца  

в условиях частичного плавления породы 

https://www.elibrary.ru/cmijjb
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Таблица 3 
 

Оценка РТ-параметров минералообразования пород каскамской свиты 
 

Образец 

CpxOl CpxOl GrtHbl GrtHbl GrtHbl GrtHbl HblPl GrtBt GrtHblPl GrtHblPl Hbl GrtBtPl 

L96 MG15 GP84 P91 P85 R00 HB94 H00 DHP00 KS89 M16 WZR04 

Температура, °С Давление, кбар 

104 940-1120 1120-1230 – – – – – – – –   

101-1 – – 585-665 620-720 580-640 465-655 640-820 – 4,4-9,9 3,4-6,8   

8-12 – – – – – – 590-730 – – –   

17-3a – – – – – – 647-800 – – –   

8-6 – – 660 670 615 580 620 660-720 6,9-8,0 6,9-7,8  9,7-9,8 

17-4a – – 585-645 590-675 580-620 650-670 575-700 690-700 5,9-9,4 8,3-8,6 8,3-8,4  

 

Примечание. Геотермометры: L96 [12], MG15 [13], GP84 [18], P91 [20], P85 [19], R00 [21], HB94 [17], H00 [22]; геоба-

рометры: DHP00 [25], KS89 [24], M16 [23], WZR04 [27]. 

 

 
Результаты термобарометрии согласуются с наблюдаемыми минеральными парагенезисами в 

породах каскамской структуры как магматического этапа, так и метаморфического. Следует отме-

тить, что в последние годы неоднократно демонстрировалась успешность применения термобаро-

метрических инструментов для оценки условий образования минеральных парагенезисов и в маг-

матических системах [37-40], и в метаморфических [41-46]. Удалось проследить эволюцию 

термодинамических режимов петрогенезиса в различных тектонических обстановках, например 

зонах субдукции [47-49] или при экстремальных температурных режимах [44]. Немало работ  

посвящено реконструкции РТ-параметров метаморфизма на основе применения геохимических 

особенностей минералов [50-52] или численных модельных реконструкций минералообразова-

ния [53-55]. Такой подход показал перспективность для пород разного состава и контрастных гео-

динамических обстановок появления [56-58]. 

Заключение 

Моделирование магматического и метаморфического минералообразования пород каскам-

ской свиты с минимизацией энергии Гиббса показало хорошую сходимость модельных полей 

устойчивости минеральных парагенезисов и количественного соотношения минералов с наблю-

даемыми в реальных образцах. Оценки РТ-параметров метаморфического минералообразования с 
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Рис.6. РТ-диаграммы с результатами расчета параметров метаморфизма изученных сланцев: 

а – обр. 17-4а (мигматизированный гранат-амфибол-плагиоклазовый сланец); б – обр. 8-6 (амфибол-плагиоклазовый 

сланец). Расчетные линии для минеральных термометров и барометров: GP84 [18], P85 [19], KS89 [24], KS90 [25], 

P91 [20], HB94 [17], H00 [22], DHP00 [26], R00 [21], WZR04 [27], M16 [23] 
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использованием комплекса современных минеральных термобарометров и барометров, учитываю-

щих составы большего числа сосуществующих минералов, удовлетворительно соответствуют мо-

дельным построениям полей устойчивости минеральных парагенезисов и позволяют выделить два 

этапа минералообразования. Первый, магматический, соответствует этапу кристаллизации оли-

вина, клинопироксена, ортопироксена, магнетита-шпинели из коматиитового расплава в темпера-

турном диапазоне 1480-950 °С. Второй этап минералообразования отвечает прогрессивному мета-

морфизму и его низкотемпературной регрессивной стадии. Прогрессивная стадия метаморфических 

преобразований фиксируется во всех группах пород каскамской свиты и характеризуется массо-

вым развитием минеральных парагенезисов: гранат + амфибол + плагиоклаз + кварц ± биотит, 

амфибол + плагиоклаз + кварц. Поздняя (низкотемпературная регрессивная) стадия метаморфизма 

характеризуется развитием эпидот-, цоизит-, актинолитсодержащих парагенезисов, а также серпен-

тина, хлорита и других низкотемпературных минералов по минералам, образующим ранние параге-

незисы. Пиковые значения параметров регионального метаморфизма (Т = 600-700 °С, Р = 5-9 кбар) 

и его регрессивной стадии (Т = 400-500 °С, Р = 3-5 кбар) для пород каскамской структуры отличаются 

от пиковых значений для Южной зоны Печенгской структуры (Т = 590-750 °С, Р = 9,5-10,6 кбар [59] 

и Т = 630-690 °С, Р ~5 кбар). Полученные данные указывают на отсутствие признаков раннего 

метаморфизма высоких давлений (доходящих до эклогитовой фации), как это предполагалось в 

более ранних работах [35]. 

Результаты проведенных исследований необходимо учитывать при определении принадлеж-

ности каскамской структуры к тем или иным палеопротерозойским террейнам Кольско-Норвеж-

ской области Фенноскандинавского щита. 
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