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Линейное натяжение сидячих капель
Рассмотрим систему, которая включает в себя каплю, подложку и окружающий пар.
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V — объёмы,
A— площади межфазных поверхностей,
L—длина линии трёхфазного контакта,
ω— объёмная плотность Ω,
p—давления,
σ— поверхностные натяжения,
κ— линейное натяжение.

Большой термодинамичекий потенциал такой системы:

Ω = ωγV γ − pαV α − pβV β︸ ︷︷ ︸
объёмные вклады

+ σαβAαβ + σβγAβγ + σαγAαγ︸ ︷︷ ︸
поверхностные вклады

+ κL︸︷︷︸
линейный вклад

.

Для капель, имеющих форму шарового сегмента, из условия стационарности Ω в
равновесии получается (при выборе поверхности натяжения в качестве разделяющей
поверхности αβ)

I формула Лапласа: pα − pβ =
2σαβ

R
,

I обобщённое соотношение Юнга: σαβ cos θ = σβγ − σαγ − κ

r
− ∂κ

∂r
.
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Большие и малые капли. Линейное натяжение из cos θ(1/r)
I Для больших капель соотношение Юнга принимает классический вид

σαβ cos θ∞ = σβγ − σαγ.
I Для малых капель часто [молчаливо] предполагают σ = const, κ = const:

σαβ cos θ = σβγ − σαγ − κ

r
.

Поверхностные натяжения считаются постоянными и равными для обоих
соотношений.

Вычитая одно из другого получим

cos θ∞ − cos θ =
κ

σαβr
.

Обычно линейное натяжение вычисляют из
угла наклона зависимости косинуса краевого
угла от кривизны основания капли:

cos θ ∝ − κ

σαβr
.

Такой способ применялся уже в первой рабо-
те, учитывавшей влияние линейного натяже-
ния на краевой угол (пузырька): В.С. Веселов-
ский, В.Н. Перцов // ЖФХ 8, 245 (1936).

J.Y.Wang, S. Betelu, B.M. Law //
Phys. Rev. Lett. 83, 3677 (1999)
Copyright ©1999 American Physical Society

https://doi.org/10.1103/PhysRevLett.83.3677
https://doi.org/10.1103/PhysRevLett.83.3677
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Учeт зависимости поверхностных натяжений от химического
потенциала [однокомпонентного флюида]

Запишем обобщённое соотношение Юнга, предполагая поверхностные натяжения
взятыми при заданных (T, µ)

σαβ cos θ = −∆σγ − κ

r
− ∂κ

∂r
, ∆σγ ≡ σαγ − σβγ.

Поверхностные натяжения здесь уже зависят от химического потенциала, так же,
как и размер капли. Линейное натяжение κ и ∂κ/∂r также зависят от размера
капли/химического потенциала.
Классическое соотношение Юнга для системы на бинодали (T, µ∞)

σαβ∞ cos θ∞ = −∆σγ∞, ∆σγ∞ ≡ σαγ∞ − σβγ∞ .
Из разности соотношений получим уже

σαβ∞ cos θ∞ − σαβcos θ = δ∆σγ +
κ

r
+
∂κ

∂r
, δ∆σγ≡ ∆σγ −∆σγ∞.

σαβ∞ (cos θ∞ − cos θ) = δ∆σγ + δσαβcos θ +
κ

r
+
∂κ

∂r
, δσαβ ≡ σαβ − σαβ∞

Уже имеем 4 вклада в поправку к σαβ∞ cos θ∞: δ∆σγ, δσαβcos θ, κ/r, ∂κ/∂r
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Зависимости поверхностных натяжений от химического
потенциала [однокомпонентного флюида]
Используем уравнение адсорбции Гиббса dσ = −s̄ dT − Γ dµ в изотермическом
случае:

δσαβ = σαβ − σαβ∞ ' − Γαβ∞ δµ, где δµ ≡ µ− µ∞.

Для поверхности твердое тело—флюид используем обобщенное уравнение
адсорбции Гиббса (А.И. Русанов, 1992)

dσ = −s̄ dT + (γ̂ − σ1̂) : (dê− dN̂i/Ni)︸ ︷︷ ︸
работа поверхностной деформации

− Γ dµ,

где (γ̂ — тенозор механического поверхностного натяжения (поверхностного избытка
тензора напряжений), ê— поверхностный тензор деформации, N̂i —массовый тензор
смещения неподвижного компонента [твердой подложки]. В простом случае
постоянной (либо пренебрежимо малой) деформации dê = 0 и постоянного
количества вещества подложки в пределах, ограниченных разделяющей
поверхностью, dN̂i = 0, так что dσ = −s̄ dT −Γ dµ (как для случая флюид—флюид).

Можно рассмотреть и более общий случай, например, для одинаковых изменений N̂i

для поверхностей αγ и βγ при изменении химпотенциала флюида µ.

В рассмотренном и таких более общих случаях δ∆σγ '
(
Γβγ∞ − Γαγ∞

)
δµ.
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Оценка размерных поправок к косинусу краевого угла
Из соотношений Гиббса—Дюгема

dp = s dT + n dµ

для флюидных фаз α и β в изотермическом случае, считая nβ∞ � nα∞, получим
pα − pβ ' nα∞δµ где δµ ≡ µ− µ∞.

Пользуясь также формулой Лапласа и соотношением r = R sin θ, заключаем

pα − pβ =
2σαβsin θ

r
' 2σαβ∞ sin θ∞

r
, δµ ' 2σαβ∞ sin θ∞

nα∞r
= O

(
1/r
)
.

Анализируя аналогично уравнение линейной адсорбции, можно показать, что
∂κ

∂r
= O

(
(δµ)2

)
= O

(
1/r2

)
.

Т. о., 3 из 4-х поправок к σαβ∞ cos θ∞ являются поправками первого порядка по 1/r:

δ∆σγ = O
(
1/r
)
, δσαβcos θ = O

(
1/r
)
, κ/r = O

(
1/r
)
, ∂κ/∂r = O

(
1/r2

)
Можно показать, что при r →∞, угол наклона зависимости cos θ от 1/r равен

− κ∞/σ
αβ
∞︸ ︷︷ ︸

вклад линейного
натяжения

− 2 sin θ∞
(
Γβγ∞ − Γαγ∞ − Γαβ∞ cos θ∞

)
/nα∞︸ ︷︷ ︸

вклад адсорбций

.

D.V. Tatyanenko, A.K. Shchekin // Interfacial Phenom. Heat Transfer 5, 113 (2017).

http://doi.org/10.1615/InterfacPhenomHeatTransfer.2018025483
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Интерес к цилиндрическим каплям

b

R
θ

r
γ

αβ

Для равновесной цилиндрической капли имеем

I формулу Лапласа: pα − pβ =
�A2σαβ

R
,

I обобщённое соотношение Юнга: σαβ cos θ = σβγ − σαγ
�
��S
SS
−κ
r
− ∂κ

∂r
.

Учитывая зависимость поверхностных натяжений от химпотенциала, получим

σαβ∞ (cos θ∞ − cos θ) = δ∆σγ + δσαβcos θ
�
��S
SS

+
κ

r
+
∂κ

∂r
.

Угол наклона зависимости cos θ от 1/r при r →∞ равен

��
���

�XXXXXX−κ∞/σαβ∞ − �A2 sin θ∞
(
Γβγ∞ − Γαγ∞ − Γαβ∞ cos θ∞

)
/nα∞.
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Интерес к цилиндрическим каплям
Цилиндрические капли являются популярным объектом молекулярно-динамического
моделирования:
I легко использовать периодическое граничное условие;
I предполагается отсутствие влияния линейного натяжения (строго говоря, верно

только в первом порядке по 1/r).

M.Kanduč, L. Eixeres, S. Liese, R.R. Netz // Phys. Rev. E 98, 032804 (2018)
Copyright ©2018 American Physical Society

https://doi.org/10.1103/PhysRevE.98.032804
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Равновесные осесимметричные и цилиндрические капли

Ra

ra

b

β
α

γ

θa

I pα − pβ =
2σαβa

Ra
,

I σαβa cos θa = σβγ − σαγ − κa

ra
− ∂κa

∂ra
,

I линейное приближение:

cos θ∞ − cos θa '
κa

σαβ∞ ra
,

κa ≡ κ∞ +

+
2σαβ∞ sin θ∞

nα∞

(
Γβγ∞ − Γαγ∞ − Γαβ∞ cos θ∞

)
.

b

Rc
θc

rc
γ

αβ

I pα − pβ =
σαβc

Rc
,

I σαβc cos θc = σβγ − σαγ − ∂κc

∂rc
,

I линейное приближение:

cos θ∞ − cos θc '
κc

σαβ∞ rc
,

κc ≡
σαβ∞ sin θ∞

nα∞

(
Γβγ∞ − Γαγ∞ − Γαβ∞ cos θ∞

)
.

κa, κc — так называемые кажущиеся линейные натяжения.

Д.В. Татьяненко, А.К.Щёкин, Коллоид. журн. 81, 517 (2019).

http://doi.org/10.1134/S0023291219030157
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Линейное натяжение из данных cos θ(1/r) в двух геометриях
Сопоставляя выражения для «кажущихся линейных натяжений» κa и κc, получаем

κ∞ = κa − 2κc.

−20

−15

−10

−5

0

5

10

−1 −0.5 0 0.5 1

κ a
,κ

c,
𝜅
∞

(п
Н

)

cos 𝜃∞

𝜅∞, Kanduč et al., PRE 98, 032804 (2018)
𝜅∞ из κa и толменовской поправки
𝜅∞ = κa − 2κc
κa
κc
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Данные молекулярно-динамических расчетов взяты из работы
M.Kanduč, L. Eixeres, S. Liese, R.R. Netz // Phys. Rev. E 98, 032804 (2018).

https://doi.org/10.1103/PhysRevE.98.032804
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Уход от классического соотношения Юнга: прямое
сопоставление результатов измерений для двух геометрий

Можно рассмотреть разность обобщённых соотношений Юнга для двух разных
геометрий:

σαβc cos θc − σαβa cos θa =
κa

ra
+
∂κa

∂ra
− ∂κc

∂rc
.

Здесь все величины берутся при одинаковых значениях температуры и химического
потенциала! Это соответствует в первом порядке по δµ (или 1/ra) каплям Rc ' Ra/2
(rc ' ra/2). В первом же порядке по 1/ra это даёт

cos θc

∣∣∣
Rc=Ra/2

− cos θa

∣∣∣
Ra
' κ∞

σαβ∞ ra
, cos θc

∣∣∣
rc=ra/2

− cos θa

∣∣∣
ra
' κ∞

σαβ∞ ra
.

Таким способом линейное натяжение можно находить напрямую, а не вычитая один
коэффициент наклона из другого. При этом
I все вклады, связанные с изменениями поверхностных натяжений, сокращаются;
I график разности cos θc − cos θa от 1/ra стартует из точки (0, 0); нет неизвестной

при моделировании точки cos θ∞ при 1/ra → 0.
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Преимущество при нелинейной зависимости cos θa,c(1/ra,c)

При нелинейной зависимости cos θa(1/ra) или/и cos θc(1/rc) возможны ситуации,
когда линейная аппроксимация cos θa,c(1/ra,c) неплохо работает в области
наноразмерных капель, но не соответствует асимптотической при 1/ra,c → 0:
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Зависимость косинуса краевого угла малых сидячих осесимметричных капель нелетучей
ионной жидкости (иодид 1-бутил-3-метилмедазолия, C8H15IN2) на кремниевой подлож-
ке от кривизны линии трехфазного контакта 1/ra по данным AFM-измерений в работе
L.-O.Heim, E. Bonaccurso // Langmuir 29, 14147 (2013).

https://doi.org/10.1021/la402932y
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Interface displacement model
Для верификации предлагаемого способа нахождения линейного натяжения
используем interface displacement модель (метод функционала профиля толщины
плёнки):

Ω(ID)[l(x);T, µ] = Ωγ − pβVtot︸ ︷︷ ︸+

+

∫ [ объёмная часть︷ ︸︸ ︷
− nα∞δµ l(x) +

поверхностная часть︷ ︸︸ ︷
σαγ∞ + σαβ∞

√
1 + (∇l)2 +

тонкоплёночный
вклад︷ ︸︸ ︷

U(l(x))
]

d2x,

где l(x) локальная толщина профиля плёнки в точке x поверхности подложки,

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

l(x)

U(h) —межповерхностный потенциал, связаный с расклинивающим давлением Π(h)
формулой:

U(h) =

∞∫
h

Π(ξ) dξ.
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Межповерхностный потенциал и расклинивающее давление в
системе с частичным смачиванием

Π

h

h
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S∞
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−µ
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f∞

S∞

Межповерхностный потенциал Ũ(h) ≡ U(h)/σαβ∞ и соответствующее
расклинивающее давление Π̃(h) ≡ Π(h)/σαβ∞ для частично смачиваемой поверхности
(схематическое изображение).
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Уравнения Эйлера—Лагранжа

Уравнения Эйлера—Лагранжа для Ω(ID)[l(x);T, µ]:

−σαβ∞
(

d

dx
+

1

x

)
lx√

1 + l2x︸ ︷︷ ︸− Π(l(x)) = nα∞δµ ( = pα − pβ) (осесимметричная),

капиллярное давление︷ ︸︸ ︷
−σαβ∞

d

dx

lx√
1 + l2x

− Π(l(x)) = nα∞δµ ( = pα − pβ) (цилиндрическая).

Граничные условия: lx(0) = 0, lx −−−→
x→∞

0.

Существует два решения: тривиальное, соответствующее плёнке постоянной
толщины и нетривиальное, соответствующее капле на «подстилающей» плёнке:

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

f
l(x)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

f
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Тривиальное решение
В обеих геометриях совпадает и соответствует
плёнке некоторой постоянной толщины f :

dU/dh
∣∣
h=f
≡ −Π(f) = nα∞δµ.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

f

Тривиальное решение — равновесное состояние поверхности βγ подложки в контакте
с газом, а плёнка толщины f соответствует равновесному значению адсорбции

Γβγ = (nα − nβ)f ≈ nα∞f.

Равновесное поверхностное натяжение твёрдое тело—газ в рамках модели:

σβγ = σαγ∞ + σαβ∞ + U(f)− nα∞fδµ.

Таким образом, тривиальное решение позволяет получать равновесные значения
адсорбции Γβγ и поверхностного натяжения σβγ.

Т. к. толщина пленки f зависит от значения химического потенциала µ, то величина
адсорбции Γβγ и поверхностное натяжение σβγ тоже. В пределе µ→ µ∞

f → f∞, Γβγ → Γβγ∞ = nα∞f∞, σβγ → σβγ∞ = σαγ∞ + σαβ∞ + U(f∞),

равновесный коэффициент растекания S∞ ≡ σβγ∞ − σαγ∞ − σαβ∞ = U(f∞).

Γβγ — это единственная (из трех) ненулевая адсорбция, а σβγ — единственное (из
трех) поверхностное натяжение, которое здесь зависит от µ и дает вклад в
размерную зависимость краевого угла θ.
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Нетривиальное решение

В нетривиальном случае, численно решая уравнения, можно получить профили
сидячей капли l(x):

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

α

β

γ

R

f

r

θ
l(x) m(x)

Далее, пользуясь формулами Лапласа, нетривиальным решениям можно
сопоставить «макроскопические» профили m(x):

m(x) ≡
{√

R2 − x2 −R cos θ, x < r (для m(x) > 0),

0, x > r.

Сопоставление происходит из условий l(0) = m(0). R находим из формул Лапласа
соответствующей геометрии.
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Линейное натяжение бесконечно большой капли

Для линейного натяжения бесконечно большой капли может быть получено точное
выражение:

κ̃∞ ≡
κ∞

σαβ∞
= −f∞

√
−S̃∞

(
2 + S̃∞

)
+

+

∞∫
f∞

[√(
Ũ(h)− S̃∞

) (
2− Ũ(h) + S̃∞

)
−
√
−S̃∞

(
2 + S̃∞

) ]
dh,

где f∞ ≡ f |µ=µ∞ — толщина «подстилающей» плёнки под бесконечно большой
каплей (глобальный минимум потенциала U(h)),
Ũ ≡ U/σαβ∞ — обезразмеренный межповерхностный потенциал,
S̃∞ ≡ S∞/σ

αβ
∞ = Ũ(f∞) — безразмерный равновесный коэффициент растекания

(значение обезразмеренного потенциала Ũ(h) в его глобальном минимуме f∞).
H.T.Dobbs, J.O. Indekeu // Physica A 201, 457 (1993),
D.V. Tatyanenko, A.K. Shchekin // Interfacial Phenom. Heat Transfer 5, 113 (2017).

К этому значению при δµ→ +0 (r →∞) стремятся линейные натяжения
κ̃a ≡ κa/σ

αβ
∞ и κ̃c ≡ κc/σ

αβ
∞ осесимметричной и цилиндрической капель.

http://doi.org/10.1016/0378-4371(93)90120-S
http://doi.org/10.1615/InterfacPhenomHeatTransfer.2018025483
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Модельный потенциал и профили капель (вариант 1)
Для проведения численных расчётов был использован короткодействующий
межповерхностный потенциал

Ũ(h) ≡ U(h)/σαβ∞ = Ae−h/λ +Be−2h/λ + Ce−3h/λ.

H.T.Dobbs // Int. J. Mod. Phys. B 13, 3255 (1999)
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Значения параметров: A = 0, B = −3, 0, C = 4, 8, λ = 1, 0.

http://doi.org/10.1142/S0217979299003003
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Краевые углы и линейное натяжение (вариант 1)

−0.12

−0.09

−0.06

−0.03

0

0 0.03 0.06 0.09 0.12 0.15

𝜆𝑟−1
a

𝜅̃∞/𝑟a

cos 𝜃c − cos 𝜃a

Вычисленное в рамках модели линейное натяжение: κ̃∞/λ ≡ κ∞/σ
αβ
∞ λ = −0.795.
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Модельный потенциал и профили капель (вариант 2)
Для проведения численных расчётов был использован короткодействующий
межповерхностный потенциал

Ũ(h) ≡ U(h)/σαβ∞ = Ae−h/λ +Be−2h/λ + Ce−3h/λ.

H.T.Dobbs // Int. J. Mod. Phys. B 13, 3255 (1999)
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Значения параметров: A = 1, 4, B = −4, 5, C = 3, 5, λ = 1, 0.

http://doi.org/10.1142/S0217979299003003
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Краевые углы и линейное натяжение (вариант 2)
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Вычисленное в рамках модели линейное натяжение: κ̃∞/λ ≡ κ∞/σ
αβ
∞ λ = 0.632.

Здесь зависимость cos θc − cos θa от 1/ra быстро «разворачивается» в другую
сторону. Это связано со сменой знака линейного натяжения с уменьшением размера
капли (при заданном виде потенциала и значениях параметров).
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Результаты
I Широко используемый способ нахождения линейного натяжения из наклона

cos θa ∝ κa/σ
αβ
∞ ra дает значение «кажущегося линейного натяжения»

κa ≡ κ∞ +
2σαβ∞ sin θ∞

nα∞

(
Γβγ∞ − Γαγ∞ − Γαβ∞ cos θ∞

)
,

включающего эффект адсорбций (зависимостей поверхностных натяжений от
размера капли). Аналогичный способ для цилиндрических капель дает

κc ≡
σαβ∞ sin θ∞

nα∞

(
Γβγ∞ − Γαγ∞ − Γαβ∞ cos θ∞

)
.

Отсюда [истинное] линейное натяжение прямой линии: κ∞ = κa − 2κc.
I Комбинируя данные для осесимметричных и цилиндрических капель, можно

найти истинное линейное натяжение прямой линии трехфазного контакта κ∞:

cos θc

∣∣∣
Rc=Ra/2

− cos θa

∣∣∣
Ra
' κ∞

σαβ∞ ra
или cos θc

∣∣∣
rc=ra/2

− cos θa

∣∣∣
ra
' κ∞

σαβ∞ ra
.

I Предложенный способ верифицирован с использованием interface displacement
модели с короткодействующим межповерхностным потенциалом.

D.V. Tatyanenko, K.D. Apitsin, Line tension from dual-geometry sessile
droplet measurements: Combining contact-angle size-dependence data for
axisymmetric and cylindrical droplets to determine the line tension //
Phys. Rev. E 111, 035503 (2025). DOI: 10.1103/PhysRevE.111.035503.

https://pureportal.spbu.ru/files/133551154/PhysRevE_2025_v111_n3_035503.pdf
https://doi.org/10.1103/PhysRevE.111.035503
https://doi.org/10.1103/PhysRevE.111.035503
https://doi.org/10.1103/PhysRevE.111.035503
https://doi.org/10.1103/PhysRevE.111.035503
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