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Abstract: The widespread presence of microplastics (MPs) is of growing concern for both
the scientific community and the public. Contemporary research increasingly focuses on
ecosystem transformation and global climate change. We conducted a literature review,
consisting of 46 studies, to investigate the consequences of MPs’ influence on the carbon
cycle in different soil types across various ecosystems. MPs can affect the cycling of carbon
compounds and other biogenic elements by impacting the soil microbiome, enzyme activity,
plant growth, litter decomposition, and more. The majority of authors report increased
CO2 and/or CH4 emissions in soils containing MPs. However, some studies demonstrate
the opposite or a neutral result, and the outcomes can differ even within a single study
depending on the soil type and/or the type, form, and size of the MPs used. Further
clarification and development of our understanding regarding the impact of MPs on the
carbon cycle across different ecosystems remain crucial, taking into account the inclusion
of as wide a variety of MPs as possible in future research.
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1. Introduction
Currently, among global concerns, climate change and the pollution of the environ-

ment with novel pollutants, including plastics and microplastics (MPs), are attracting
particular attention from the scientific community. Plastics have been actively used in
industry and everyday life since the 1940s–50s, but studies devoted to plastic waste in the
environment first appeared in the scientific literature starting in the 1970s [1,2]. However,
the problem did not attract significant interest from scientists until the early 2000s, when,
along with increasing pollution from large plastic waste, the accumulation of microplastics
in ecosystems also became a concern. Under the influence of ultraviolet radiation, seawater,
hydrolysis, soil erosion, or biological activity, large plastic waste degrades into small parti-
cles. The term “microplastics” was first used to describe such particles in the ocean in a 2004
article by Thompson et al. [3]. Currently, MPs are defined as plastic fragments <5 mm [4],
and MPs themselves have been detected virtually everywhere in the environment and even
in animal and human tissues [5,6]. High production rates (global annual plastic production
reached 400.3 million tons in 2022 [7]), including of single-use products (approximately
50% of plastic items are tableware, bags, and packaging) [8], low recycling rates, and
the long lifespan of plastics lead to the significant accumulation of the material in the
environment. The lifespan of plastic products varies from less than 1 year to more than

Microplastics 2025, 4, 18 https://doi.org/10.3390/microplastics4020018

https://doi.org/10.3390/microplastics4020018
https://doi.org/10.3390/microplastics4020018
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microplastics
https://www.mdpi.com
https://orcid.org/0000-0002-5248-9018
https://orcid.org/0000-0003-2600-5494
https://doi.org/10.3390/microplastics4020018
https://www.mdpi.com/article/10.3390/microplastics4020018?type=check_update&version=1


Microplastics 2025, 4, 18 2 of 11

50 years; therefore, the annual volume of plastic waste does not necessarily correlate with
production within a specific time frame [6]. Environmentally unsound waste management
and unauthorized dumping lead to plastic entering the environment, and due to the long
decomposition time of plastics, they readily accumulate in various environmental compart-
ments. Huge volumes of MPs end up in the soil through sewage sludge deposition and
the use of compost, controlled-release fertilizers (CRFs), plant protection products using
capsule suspensions (CSPs), film-coated seeds, mulching films, and others [9–11]. The
use of the latter increased fourfold from 1991 to 2011 (from 0.32 to 1.25 million tons), and
more than 80% of agricultural films are made of low-density polyethylene (LDPE), which
is primarily used in greenhouse films [6]. The most significant plastic pollution levels in
soils are found in urban and agricultural areas. However, MPs are detected even in soils of
remote, non-urbanized territories, with data showing a content of 66 to 1933 units/kg of
dry soil in East Antarctic soils [12].

The accumulation of MPs affects the physicochemical properties and microbiome of
soil, which, in turn, can affect biogeochemical processes, including the carbon cycle, which
is one of the key functions of an ecosystem [13]. Soil represents the most important global
carbon reservoir on Earth (about 2300 Pg C [14]—more than the carbon in the atmosphere
and phytomass combined) [15], making it a crucial link in addressing climate change issues.

The soil organic carbon (SOC) pool is the largest active terrestrial carbon pool in
the biosphere, and even slight fluctuations in it can cause significant changes in the con-
centration of greenhouse gases in the atmosphere [16]. An increase in greenhouse gas
concentrations in the atmosphere will further exacerbate climate warming. In turn, climate
warming can contribute to the release of soil carbon, creating a positive feedback loop with
global warming [17]. Thus, the distribution and transformation of SOC have a profound
impact on the global carbon balance and climate change.

MPs are organic polymers containing almost 90% carbon [18]. Due to degradation and
leaching, they can contribute to SOC accumulation, and influence humification and the
further polymerization of dissolved organic matter (DOM), thereby indirectly affecting the
stability of SOC. Another way that MPs influence SOC formation is through various changes
in the structure of the soil microbial community, functional gene expression, and enzyme
activity [18]. It is also noted that MP pollution can complicate the accurate measurement of
SOC in soil, with possible overestimations, and this increase is more intense in soils with
low carbon content (<10.0 g kg−1) [6].

Prior to 2020, the impact of microplastic (MP) incorporation into soils received limited
research attention. However, studies conducted on loess soils in China have demonstrated
significant effects on soil dissolved organic matter (DOM)—specifically, high MP amend-
ment levels increased nutrient content within the DOM solution—and on soil enzyme
activity [19]. Furthermore, research has explored the complex interactions between pesti-
cides and MPs [20], revealing that the interaction of glyphosate with low MP concentrations
negatively impacted dissolved organic carbon (DOC) dynamics, ultimately leading to a
loss of bioavailable carbon.

In the past 5 years, there has been a rapid increase in the number of publications
concerning the impact of MPs on the soil carbon cycle. Simultaneously, several reviews
have been compiled, analyzing the effects of MPs on carbon cycling processes in soils [18],
the likelihood of MPs contributing to the exacerbation of global warming [21], and the
microbial mechanisms of carbon transformation in MP-contaminated soils. Furthermore,
two separate reviews have been published on the accumulation of MPs in wetland systems
and agricultural soils [22,23], including data on the influence of MPs on carbon.

However, there has been a lack of focus on systematizing data on the impact of
MPs on processes related to the carbon cycle in different soils across various ecosys-
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tems, as soil greenhouse gas emissions are dependent on texture, soil moisture, SOC, pH,
and the microbiome.

The objective of this review is to identify, consolidate, and analyze data from experi-
mental studies and literature reviews to determine the effects of MP addition on the soil
carbon cycle in different soil types.

2. Materials and Methods
The search for and selection of relevant peer-reviewed research were conducted in

November 2024, using two online publication databases: PubMed and ScienceDirect. The
selection was limited to data published since 2020 in English only, and included empirical
or review studies that examined the link between soil microplastic contamination and the
carbon cycle. Additionally, the reference lists of selected publications were analyzed.

The following keywords were used to identify relevant articles: “microplastic”, “soil”,
“chemical properties”, “physical properties”, “soil organic carbon”, “greenhouse gases”,
and “emission activity”. Potentially relevant articles were read in full, and information
was analyzed.

3. Results
The initial search yielded 619 publications. After the removal of duplicates and

screening of titles and abstracts, 46 articles were selected (Figure 1). In order to control the
quality of the search and avoid biases, the search was validated by a second researcher.
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Figure 1. Flow chart of the literature screening.

The majority of authors (n = 28, 60.8%) in recent studies report increased CO2 and/or
CH4 emissions, but in five of these studies, the effect (increase, decrease, or no change)
depended on the type of MP and/or soil in soils containing MPs. However, there are also
studies that have demonstrated the opposite [24,25] or a neutral result [26–29].

The mechanisms of MPs’ influence on this process are receiving increasing atten-
tion. Several main research directions can be distinguished in terms of the impact on
(1) vegetation cover, (2) decomposition processes, and (3) the microbiome.
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3.1. Vegetation Cover

MPs can influence plant growth indirectly through their impact on the soil and rhizo-
sphere microbiome, and the physicochemical properties of the soil [14]. There are reports
of negative effects [20] of MPs on plant growth, but positive effects are more frequently
observed [30–32]. The question of a dose-dependent effect of MPs on microorganisms and
plants remains unresolved.

3.2. Decomposition Processes

If MPs increase plant growth independently of nutrient availability in the soil, the
nutrient content in the foliage may decrease (“dilution effect”), leading to a reduced rate of
decomposition. Furthermore, changes in the quality of leaf litter may result from impacts
on the microbiome, for example, on the stimulation of root colonization by arbuscular
mycorrhizal fungi, which have a significant influence on nutrient availability for plants.
The slower decomposition of leaf litter can reduce carbon stabilization levels in soil organic
matter. During the decomposition of lower-quality litter, microbes may consume nitrogen
from soil organic matter to process C from the litter, thus resulting in a loss of soil C [33].

The pollution of soils and terrestrial ecosystems by MPs also affects larger representa-
tives of the soil biota. Actively feeding living organisms may perceive MP particles as a
food source, while organisms with a passive feeding type, such as filter feeders, are forced
to ingest it [34]. Earthworms (Lumbricidae) transfer organic matter and other components
to deeper soil layers, which play an important role in decomposition. The consumption
of MPs by these organisms can increase their mortality and reduce their reproductive
capacity [35].

3.3. Microbiome

The shift in microbial activity is associated with the following:

• Changes in the physicochemical properties of the soil (aeration, water-holding
capacity, etc.). Soil microorganisms play a key role in maintaining soil structure, detoxi-
fying pollutants, and regulating SOC turnover. Microorganisms are capable of not only
converting dissolved organic matter into soil organic carbon, but also transforming
labile substances into microbial biomass and its metabolites. Furthermore, most of
the metabolites and residues of dead microorganisms can persist in the soil for a long
period, constituting a stable pool of soil carbon;

• The direct toxic effect of substances contained within MPs, such as plasticizers, or pol-
lutants adsorbed onto their surface (absorption of polycyclic aromatic hydrocarbons,
polychlorinated biphenyls, dioxin-like chemicals, polybrominated diphenyl ethers,
heavy metals, hydrophilic organic compounds like ciprofloxacin, and pharmaceuticals
has been confirmed [36–38]);

• The “priming” effect upon the addition of certain types of MPs—enhancing micro-
bial activity and subsequent potential changes in nutrient availability and dissolved
organic carbon. However, the high C:N ratio of most MP types may cause nutrient
immobilization and, conversely, reduce microbial activity [18].

Nearly a quarter of the studies (n = 8) focused on the impact of biodegradable MPs on
carbon cycling and emissions. Biodegradable MPs are increasingly attracting the attention
of researchers due to the large-scale use of mulching films and the growing popularity
of their biodegradable alternatives. The aim of transitioning to such mulching films is to
reduce plastic pollution in agricultural soils. However, the degradation of many of these
films in the environment has proven to be too slow or incomplete, also resulting in MPs
remaining in agricultural ecosystems.
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4. Discussion
It is not entirely possible to directly compare the results of the reviewed studies, as there

was significant variability in their methodologies, including the methods used for determining
and evaluating the effects. Furthermore, authors selected various types of plastics, although
polyethylene (PE) was used in the majority of studies using conventional plastics and polylactic
acid (PLA) in those investigating the effects of biodegradable polymers.

4.1. Distribution by Soil Type

Rice paddy ecosystems attracted the attention of authors in at least four studies.
Specifically, Xiao et al. (2021) [39] investigated the effect of PE MP addition on SOC
decomposition in waterlogged gley soils of rice paddy ecosystems. Soils were used without
MP addition, with low [0.01% w/w] and high [1% w/w] concentrations, and with the
addition of rice straw and glucose. Compared to the control, the total amount of CO2

derived from SOC in the soil with a low concentration of MPs decreased by 13.2% and 7.1%
after the addition of straw and glucose, respectively. The authors concluded that low doses
of polluting components of MPs promote SOM (soil organic matter) decomposition in rice
soil. However, at a high concentration of MPs, SOM decomposition was lower than at a
low concentration [39].

Wang et al. (2024) [40] studied the effects of three biodegradable plastic
types—polybutylene adipate terephthalate (PBAT), polylactic acid (PLA), and polybuty-
lene succinate (PBS)—on rice paddy and upland (mountain) soils. The study is notable
because the authors conducted it in situ, assessing CO2 and CH4 emissions using a portable
optical gas sensor. PBAT and PLA significantly increased CO2 and CH4 emissions, but PBS
demonstrated the opposite result [40]. Thus, the impact of biodegradable plastics on CO2

emissions may not be uniform.
Han et al. (2022) [41] studied the combined effects of hydrochar (HBC) and MP on

CH4 emissions in rice paddy soils. HBC is a new carbon-enriched material that serves
multiple functions as a soil amendment, including reducing greenhouse gas emissions.
The addition of HBC alone slightly reduced cumulative CH4 emissions. However, the
addition of PE and PP clearly stimulated an increase in the copy numbers of genes for
CH4 production (e.g., the mcrA gene), a decrease in the copy numbers of CH4 oxidation
genes (e.g., pmoA), and reduced crop yield, leading to an 83.5% increase in CH4 emissions
compared to the soil where only HBC was present. However, at the same time, no difference
in the effects on CH4 emission levels was observed between HBC and HBC combined with
PP [38]. In a similar study, HBC and HBC combined with polyethylene terephthalate (PET)
were added to rice paddy soils throughout the entire rice growth period. PET reduced
bacterial diversity, but the combined addition of PET and HBC did not cause significant
changes. At the same time, the relative abundance of some microorganisms associated
with the carbon cycle (e.g., Cyanobacteria, Verrucomicrobia, and Bacteroidetes) changed at the
phylum and class levels under all treatments. In addition, BC, PET, and their combination
reduced CH4 emissions, with the most pronounced reduction observed with the addition
of HBC + PET [42]. Thus, both the potential of HBC in reducing greenhouse gas emissions
and the soil response to MP addition in rice paddy ecosystems will vary significantly
depending on the co-presence of different MP types.

In addition, heterogeneous results were observed in a study concerning mangrove
ecosystem soils, which deposit large volumes of organic carbon due to high primary
productivity and low rates of decomposition and carbon cycling. Moreover, because
mangrove ecosystems are located in coastal zones, MPs enter them from both terrestrial and
marine sources, which increases the level of pollution by this material. Zhou et al. (2024)
demonstrated that MPs did not significantly affect the cumulative CO2 emissions in the
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topsoil layer but significantly increased CO2 release from the subsurface layer, and that
the stimulating effect of biodegradable PLA on CO2 release from the subsoil was stronger
than that of PE [43]. One of the most important ecosystems regarding CO2 sequestration
is the wetland ecosystem. A review of the mechanisms of MPs’ impact on this ecosystem
concluded that MPs negatively affect SOC sequestration and enhance greenhouse gas
emissions [32].

4.2. Distribution in Particle Size Fractions

Wang et al. 2024 observed that polypropylene (PP) and PLA increased CO2 emissions
by affecting organic carbon decomposition in different soil aggregates [40]. But although
both PP and PLA contributed to increased CO2 emissions, the effect depended on the type
and concentration of PP as well as the size of soil aggregates. Changes in soil carbon stocks
occurred mainly due to changes in organic carbon associated with macroaggregates. In
macroaggregates, PP decreased soil organic carbon (SOC) and dissolved organic carbon
(DOC). The opposite changes were observed in microaggregates, silt, and clay. PP and PLA
reduced diversity and altered bacterial community structure. Microplastic-induced changes
in functional genes were key drivers of their effects on carbon conversion in soil aggregates.

In their study, Yu et al., 2021 [44] observed a decrease in SOC in macroaggregates
(>250 µm) and an increase in unaggregated silt and aggregated clay (<53 µm)—soil aggre-
gates are the main depots of dissolved organic carbon (OC), and its protective mechanism is
different in soil aggregates with different particle sizes. In the experiment of Ren et al., 2020
MPs at a concentration of 5% (by weight) had no significant effect on the DOC content
in the short term in clay soil, and the DOC composition was related to the MP particle
size: smaller particles, degraded in the environment, created a new environment for mi-
crobial life and increased the diversity of both bacterial and fungal communities in the
contaminated soil [44]. In general, the transformation of the granulometric composition
of fine particle fractions under the influence of microplastics is poorly studied and can
be manifested in the transformation of the adhesive properties of soils, the formation of
non-true microaggregates, reduction in the volume of useful pore space, and degradation
of capillaries. This can directly and indirectly reduce the useful specific surface area of soil,
thus destroying ecological niches of microorganisms.

The addition of aged MPs to loam disturbed the bacterial community and changed
the physicochemical properties of soil, creating a favorable environment for increased
microbial activity and, consequently, accelerating the decay of organic matter. However, a
similar effect was not observed when pure MPs were added. This may be an indication of
the effect of MPs on the physical, adhesion, colloidal, and water–air parameters of soils.

Aged MPs also yielded a higher carbon mineralization ratio than pure MPs in con-
taminated soils in a study on artificial soil composed of four different minerals: quartz–
montmorillonite (mineral mixture), kaolinite (clay mixture), and goethite. The four model
minerals increased DOC release and CO2 emissions by altering the physicochemical proper-
ties of the MF and formed an environment for microbial growth. Increased enzyme activity
was observed in all soil variants except montmorillonite, in which high CO2 emission
against the background of low enzyme activity was present due to the fact that most of the
DOC was already mineralized. In general, the increased biomineralization of carbon by MP
minerals is at variance with ideas about the protective role of minerals with respect to SOC.

One work was devoted to sandy loam soils, in which the effect of straw application
to MP PE-contaminated soil was evaluated. The authors noted a decrease in the carbon
level against the background of a significant increase in SOC in the fraction available to
microorganisms [45].
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Thus, the role of microplastics in soils can be multidirectional. In soils of heavy
particle-size distribution, MPs can lead to the degradation of the pore environment and air
capacity, also reducing water permeability and clogging pores and voids. This is far from
a harmless effect, leading to a decrease in the specific surface area of the soil as a space
for microbial life. In sandy loam soils, and especially in sandy soils, the accumulation of
microplastic fine fractions in a certain amount can contribute to an increase in the range of
ecological niches for microorganisms (Figure 2).
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The data obtained on the presence or absence of an emission response to the ad-
dition of microplastics to various soil types [18–24,26–29,39–69] only indicate a short-
term metabolic response, which depends on both the quality of the SOM itself and the
oligotrophic–copiotrophic status of the microbiome of a particular soil. One of the tasks
of modern soil ecology is to calculate the volumetric capacity of the soil in relation to
microplastics—analogous to carbon capacity. This function of the soil can be considered a
depository ecosystem service in relation to the overall health of ecosystems, although for
the soil itself, this is more of a negative function, or anti-service, leading to the formation of
delayed and accumulated chemical and physicochemical damage to soils [18].

5. Conclusions
A comparable and detailed study of the effects of MP presence and accumulation in

soils is problematic: on the one hand, due to the impressive diversity of MP types and
modifications (including those related to the size, nature, and aging of particles) and forms
(fibers, particles, granules, etc.) which act differently, and on the other hand, due to the
diversity of effects manifesting in different soil ecosystems. There is a very limited number
of studies that examined the same type of soil, and even when 2–4 studies are available in
which experiments based on soils from comparable ecosystems were conducted, the type
and/or form of MP used, the concentration of polymer added, the temperature regime, the
duration of the experiment, and other factors generally do not coincide. Given the growing
volumes of soil pollution with this material, it remains crucial to (1) further clarify and
develop our understanding of the impact of MPs on the carbon cycle in various ecosystems,
(2) standardize methods for quantifying MPs and the carbon derived specifically from
them in soils, (3) standardize approaches to conducting experiments, while the target MP
concentrations for these should be based not only on current levels of pollution but also
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on future, expected higher levels, and (4) include as wide a variety of MPs as possible in
future research.
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Abbreviations

MPs Microplastics
OC Organic carbon
SOC Soil organic carbon
SOM Soil organic matter
OC Organic carbon
DOM Dissolved organic matter
CRFs Controlled-release fertilizers
CSPs Capsule suspensions
LDPE Low-density polyethylene
PE Polyethylene
PLA Polylactic acid
PBAT PBAT
PBS Polybutylene succinate
PP Polypropylene
PET Polyethylene terephthalate
HBC Hydrochar
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