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Abstract: Agricultural land abandonment is a widespread phenomenon found in many
regions of the world. There are many studies on post-agricultural changes in temperate,
arid, semi-arid regions, etc., but studies of such soils in boreal or Arctic conditions are
rare. Our study aims to fill the gaps in research on the processes of post-agricultural soil
transformation, with a focus on the harsh climatic conditions of the Arctic and Subarctic
regions. Parameters of soil organic matter (SOM) are largely reflected in the quality of soil,
and this study investigates the dynamics of SOM properties in Subarctic agricultural soils
in process of post-agrogenic transformation and long-term fertilization. Using a chronose-
quence approach (0–25 years of abandonment) and a reference site with over 90 years of
fertilization, we performed elemental (CHN-O) analysis, solid-state 13C NMR spectroscopy
of SOM, PXRD of soil and parent material, and multivariate statistical analysis to identify
the connections between SOM composition and other soil properties. The results revealed
transient increases in soil organic carbon (SOC) during early abandonment (5–10 years;
3.75–4.03%), followed by significant declines after 25 years (2.15–2.27%), driven by mineral-
ization in quartz-dominated soils lacking reactive minerals for organo-mineral stabilization.
The reference site (the Yamal Agricultural Station) maintained stable SOC (3.58–3.83%)
through long-term organic inputs, compensating for poor mineralogical protection. 13C
NMR spectroscopy highlighted shifts from labile alkyl-C (40.88% in active fields) to oxi-
dized O-alkyl-C (21.6% in late abandonment) and lignin-derived aryl-C (15.88% at middle
abandonment), reflecting microbial processing and humification. Freeze–thaw cycles and
quartz dominance mineralogy exacerbated SOM vulnerability, while fertilization sustained
alkyl-C (39.61%) and balanced C:N (19–20) ratios. Principal Component Analysis linked
SOC loss to declining nutrient retention and showed SOM to be reliant on physical occlu-
sion and biochemical recalcitrance, both vulnerable to Subarctic freeze–thaw cycles that
disrupt aggregates. These findings underscore the fragility of SOM in Subarctic agroecosys-
tems, emphasizing the necessity of organic amendments to counteract limitations of poor
mineralogical composition and climatic stress.

Keywords: Arctic; Yamal; fallow lands; agroecosystems; post-agricultural shifts; plaggic
podzols; sandy soils; 13C NMR; SOM; PXRD; soil minerals
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1. Introduction
The abandonment of agricultural land has emerged as a significant ecological and

socioeconomic phenomenon observed across diverse global regions, with profound impli-
cations for ecosystem dynamics and carbon cycling [1,2]. Current estimates suggest that
approximately 2.2 million km2 of formerly cultivated land has been abandoned worldwide,
representing nearly 1.5% of the Earth’s terrestrial surface [3]. Notably, Russia accounts for
roughly 25% of this total (with about 706,000 km2 land having been abandoned)—a legacy
of post-Soviet socioeconomic transitions and shifting agricultural priorities [3,4]. Following
abandonment, these landscapes typically undergo secondary ecological succession, a pro-
cess whereby vegetation gradually regenerates, often progressing toward a state resembling
pre-agricultural ecosystems [5]. However, the trajectory and pace of recovery are highly
variable, influenced by interactions between historical land use, regional climate, and biotic
factors [6,7]. There are many studies on post-agricultural changes in soils [1,3,4,8,9] and
several large meta-analyses and reviews on this topic [2,6,7,10–12], but only a few studies
on post-agricultural ecosystems in Subarctic and Arctic environments [13–15].

Soil carbon sequestration following land-use change is a critical yet complex process
shaped by a multitude of interdependent variables [16]. Climatic conditions, particularly
temperature and precipitation regimes, exert a dominant influence by regulating both plant
productivity—the primary source of soil organic matter—and microbial decomposition
rates [16,17]. For instance, cooler, moisture-limited environments may favor slower decom-
position and enhanced carbon storage, whereas warmer, humid regions often experience
accelerated soil organic matter turnover [18]. Soil texture further modulates these dynamics,
with fine-textured soils (e.g., clays) exhibiting greater carbon stabilization capacity due
to mineral–organic associations compared to coarse-textured soils [19]. Additionally, site-
specific factors, such as prior land management practices (e.g., tillage intensity and fertilizer
use), vegetation composition during succession, and the duration since abandonment
collectively determine the magnitude and direction of soil carbon changes [10,11]. Soil
organic matter (SOM) is the major component of soils that is crucial for the functionality
of agroecosystems [20]. It influences soil fertility, soil structure, and biological activity,
and it contributes to resistance to erosion and climate change [21]. SOM also serves as
a reliable indicator of soil quality, as its composition and structure are closely related to
organic matter transformation processes that occur under the influence of anthropogenic
activities and natural factors [22,23]. The investigation of SOM is of particular importance
in Subarctic regions, which are characterized by low temperatures, short vegetation periods,
and low rates of biogeochemical processes. Under such climatic conditions, anthropogenic
impacts, including intensive agricultural use, can lead to significant changes in the SOM
system [24–26]. Analysis of these changes has particular relevance for assessing land-use
implications and developing strategies and perspectives for the development of local
agriculture and improvement of food security in the northern regions [27–29].

The Subarctic climate zone, characterized by permafrost-affected soils and extreme
seasonal variability, presents unique challenges and opportunities for agricultural land
use and SOM dynamics [30,31]. In regions such as the Yamal (Yamal–Nenets Autonomous
District), the legacy of Soviet-era, agricultural expansion has left a mosaic of active and
abandoned cropland and farmlands [32,33]. These landscapes serve as critical case studies
for understanding how SOM systems evolve under anthropogenic disturbance and sub-
sequent natural recovery, particularly in cryogenic ecosystems where soil processes are
tightly coupled with temperature dynamics. The Yamal region’s agricultural soils also face
unique climatic pressures. Rising Arctic temperatures are projected to deepen the active
layer, potentially accelerating SOM mineralization and greenhouse gas emissions [22,34].
Alternatively, the region’s abandoned lands may act as unexpected carbon sinks, if veg-
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etative recovery and microbial adaptation offset these losses, or could be re-involved in
agricultural practices [25,35]. Commonly, land abandonment has been linked to increased
soil aggregation and carbon sequestration, driven by the recovery of plant-root systems
and microbial necromass accumulation [12]. In Arctic and Subarctic zones, these processes
are further influenced by permafrost thaw and active-layer dynamics, which influence
soil moisture regimes and SOM stabilization pathways [36]. It has previously been shown
that microbial communities in abandoned Yamal soils exhibit distinct taxonomic profiles
compared to undisturbed tundra, with reduced diversity in anthropogenically disturbed
sites, potentially slowing SOM turnover [37]. Usually, the physical protection of SOM
within aggregates—a key mechanism for carbon storage in temperate regions—may be less
effective in permafrost-affected soils due to cryogenic mass transfer (freeze–thaw cycles)
disrupting aggregate stability [38,39]. Agricultural activities in different environmental con-
ditions have a specific impact on the molecular and elemental composition of SOM [40,41].
It can be assumed that the discontinuation of agricultural activity is accompanied by a
slow recovery of the SOM structure; the stabilization of SOM and accumulation of aromatic
compounds occur against the background of a general increase in the resistance of organic
matter to decomposition. These processes can take decades and are associated with extreme
climatic conditions and a short growing season [42,43]. The intensity and direction of these
changes depend on climatic conditions, agrotechnologies, and the duration of land use [44].
Investigation of these processes in abandoned and active agricultural soils of the Subarctic
and Arctic will reveal the long-term consequences of the economic activity of humankind,
as well as assess the potential of ecosystem functions of agrogenically transformed soils.

13C NMR spectroscopy is a widely used tool for SOM analysis. This method allows a
detailed characterization of the composition of SOM, including the distribution of various
functional groups, such as aromatic, aliphatic, and carboxylic compounds [45]. 13C NMR
provides information on the ratio of stable and labile fractions of SOM, which is key to
understanding the stability of organic matter and its resistance to degradation [46]. The
agricultural management practices examined in this study altered the stability of SOM
by modifying the distribution of its carbon functional groups. Specifically, these practices
shifted the relative abundance of alkyl, O-alkyl, aromatic, and carbonyl carbon groups
within SOM. Fertilizer use, implemented to boost crop productivity, was found to elevate
the proportion of O-alkyl carbon functional groups [47]. The combined application of 13C
NMR and elemental analysis provides a comprehensive assessment of changes in the SOM
system, combining structural detail and quantitative parameters, which is particularly im-
portant in anthropogenically disturbed soils, as agricultural practices (fertilizer application
and tillage) alter both the elemental composition and structural diversity of SOM [48,49].

Earlier [13], we obtained data that showed that in the soils of the chronosequence
of abandoned farmlands (0–5–10–16–17–20–25 years old) in the vicinity of Salekhard,
there was a decrease in the SOC/clay ratio (r2 = 0.95), which indirectly indicates the
degradation of soil structure, and we made an assumption that these soils are not able to
stabilize the carbon pool over this long period of time. To verify this hypothesis, we put
forward a number of objectives: I—To characterize temporal shifts in SOM composition
and stability in a post-agricultural chronosequence (0–25 years) using elemental analysis
and 13C NMR spectroscopy to identify biochemical and structural changes. II—To compare
SOM dynamics between abandoned soils and a long-term fertilized reference site to assess
the effectiveness of organic additives in mitigating SOM loss under Subarctic conditions.
III—To identify key factors for SOM stability using multivariate statistics (PCA) linking
basic soil properties (pH, C:N ratio, DOC, etc.) and SOM quality management practices.
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2. Materials and Methods
A chronosequence analysis was applied to study agricultural soils with varying dura-

tions of abandonment in the Yamal–Nenets Autonomous District, Russia, near Salekhard.
This region lies within the permafrost zone, close to the Arctic Circle (66◦30′ N, 66◦42′ E),
at the southern edge of the forest–tundra ecotone. Characterized by a Subarctic climate
(Köppen classification: Dfc), the area experiences a mean annual air temperature of −5.1 ◦C,
with extremes averaging −23.1 ◦C in January and +15 ◦C in July. Sub-zero temperatures
persist for up to 240 days annually, while the growing season lasts fewer than 70 days.
Precipitation averages approximately 500 mm per year, peaking markedly during summer
months [50]. The investigated abandoned and active agricultural fields (Table 1) are located
on the high right bank of the Ob River. A detailed map with the sampling location can
be found in paper [13]; the coordinates of the sampling locations are given in Table 1. By
analyzing archival satellite images and interviewing the local population, it was established
that these plots were actively used for growing various cultures in the 1970s and 1980s and
belonged to the Yamal experimental agricultural station (YAS) [51].

Table 1. Classification of soils, degree of abandonment for each field, and sampling coordinates.

Sample Code

S5 S6 S8 S4 S2 S3 S1 S10 S11

Soil according to WRB 2022 [52]

Hortic
Podzol
(Arenic,
Cordic)

Plaggic
Albic

Podzol
(Arenic,
Cordic)

Plaggic
Ortsteinic

Podzol
(Arenic)

Plaggic
Turbic
Gleyic

Ortsteinic
Podzol

(Arenic)

Plaggic
Turbic

Ortsteinic
Podzol
(Siltic)

Plaggic
Podzol
(Siltic,

Cordic)

Plaggic
Ortsteinic

Podzol
(Siltic)

Plaggic
Podzol
(Turbic)

Histic
Entic

Podzol
(Folic)

Age of abandonment

0 5 10 16 17 20 25 YAS * Mature

Sampling site coordinates (WGS 84)

N66.5067◦

E66.6920◦
N66.5069◦

E66.6984◦
N66.5132◦

E66.6938◦
N66.5030◦

E66.7004◦
N66.5016◦

E66.6976◦
N66.5020◦

E66.6912◦
N66.4977◦

E66.6911◦
N66.5266◦

E66.6552◦
N66.5169◦

E66.6967◦

*—Yamal Agricultural Station.

The fieldwork was conducted in August 2023. According to interviews with local
people, the main crops in these fields have always been potatoes and forage plants for
livestock fodder. The soil sampling strategy was as follows: at each of the sites (Table 1), a
full soil section was made, and, additionally, 3 sampling points from topsoil (plow/post-
plow) horizons were established. For this study, samples were taken from the 5–15 cm
layer. A total of 4 separate sub-samples from the 5–15 cm layer were obtained for each field,
from which an average sample was then formed. Before preparing the average sample,
each sub-sample was air-dried at room temperature (24–25 ◦C) and sieved through a 1 mm
mesh sieve. The average sample was then prepared by mixing equal proportions of the
4 previously prepared sub-samples.

Before elemental analysis and 13C NMR spectroscopy, the soil samples were purified.
To remove paramagnetic minerals (e.g., Fe3+ and Mn2+) that may interfere with NMR
signals and concentrate SOM, the samples were demineralized with 10% (v/v) hydrofluoric
acid (HF) prior to NMR analysis. We used a modification of procedures from [53,54]. The
following is a brief description of the procedure: (1) A quantity of 15.0 ± 0.5 g of soil
(air-dried and sieved through a 1 mm mesh sieve) was placed in a high-speed centrifuge
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tube (50 mL). (2) Then, 30 mL of 10% HF was added to each centrifuge tube. (3) The
tubes with soil were placed on an orbital rotator and shaken for 8 h and then centrifuged
(6000 rpm, 30 min). (4) Following the centrifugation step, the supernatant was discarded.
The HF treatment procedure was repeated a further five times for each sample. (5) Af-
ter the final HF treatment, the samples were washed with distilled water (the procedure
was similar to the HF treatment), and the degree of purification was assessed by the pH
value of the supernatant. If the pH of the supernatant was less than 6.5–7, the washing
was continued (as a rule, 3–4 water treatments were sufficient to clean the sample of HF).
(6) After cleaning, the samples were oven-dried at 65 ◦C and gently ground and homoge-
nized using an agate mortar and pestle.

The elemental composition of the samples was determined using an elemental CHN-
analyzer (Euro EA 3028-HT; EuroVector Instruments & Software, Milan, Italy); the proce-
dure performed in triplicate. The results of the elemental analysis of the demineralized
samples were re-calculated, taking into account the ash contents. Ash content (Table 2)
was determined by the gravimetric method by ignition of the sample at 550 ◦C for 8 h
(before ash content determination and elemental analysis, the samples were dried at 105 ◦C
to a constant weight to remove moisture). The O content (%) was determined by the
difference—100 − (N, % + C, % + H, %). O:C, C:N, and H:C ratios were determined on the
basis of atomic percents.

Table 2. Ash contents in demineralized and dried soil samples.

Demineralized Sample (n = 3)

S5 S6 S8 S4 S2 S3 S1 S10 S11

Ash, % (mean ± SD)

34.5 ± 0.4 22.1 ± 0.8 33.8 ± 0.0 31.6 ± 0.1 28.1 ± 0.5 27.7 ± 0.8 41.9 ± 0.1 29.3 ± 0.0 0.8 ± 0.1

Solid-state CP/MAS 13C NMR spectra of concentrated SOM separated from soils were
measured with a Bruker Avance 500 NMR spectrometer (Bruker BioSpin GmbH, Rheinstet-
ten, Germany) in a 3.2 mm ZrO2 rotor. The magic-angle spinning frequency was 20 kHz
in all cases, and the nutation frequency for cross-polarization was u1/2p 1/4 62.5 kHz.
The repetition delays were 3 s. The number of scans was 6500–32,000. The contact time
was 0.2 µs. The spectra were quantified by subdividing them into the following chemical
shift regions: 0–45 ppm (alkyl), 45–60 ppm (N-alkyl and methoxyl), 60–110 ppm (O-alkyl),
110–140 ppm (aryl), 140–160 ppm (O-aryl), 160–190 ppm (carboxyl), and 190–230 ppm
(carbonyl) [44]. The 13C intensity distribution was determined by integrating the signal
intensity over the shift regions of the chemicals using MestReNova 12.0 software (Mestrelab
Research, Santiago de Compostela, Spain).

For each sample of SOM, the relative intensity of each band and integral indexes—
(Equations (1)–(3)): aromaticity index (ARM), hydrophobicity index (HB/HI), and alkyl
C/O-alkyl C (A/OA) ratio—were calculated based on the respective chemical shifts [44,55].

ARM =
Area (110–160 ppm)

Area (0–160 ppm)
(1)

HB
HI

=
Area (0–45 ppm) + Area (110–160 ppm)

Area (45–110) + Area (160–220 ppm)
(2)

A
AO

=
Area (0–45 ppm)

Area (45–110 ppm)
(3)
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The determination of the carbon contents of the dissolved organic compounds (DOCs)
was carried out in an aqueous extract from bulk soil samples. Three soil subsamples
weighing about 10 g from each sample of bulk soil were filled with 25 mL of distilled
water, shaken on a rotator for 15 min and left for 24 h, then shaken for an additional
15 min [56]. The suspension was filtered through a paper filter, and the volume of filtrate
was registered. Further, the DOC content was determined according to the Walkley–Black
method (colorimetric modification) [57], but instead of a soil sample, 10 mL of filtrate of
aqueous extract was taken. The results obtained for the carbon contents in the aliquots
were converted to the DOC contents for the soil samples and to the percentages of DOC
contents from the total organic carbon content in the soil [56].

To determine the mineralogical composition of the bulk soil samples from the Yamal
experimental agricultural station, they were ground in an agate mortar for in situ examina-
tion using a Rigaku MiniFlex II powder X-ray diffractometer (PXRD; Rigaku Corporation,
Tokyo, Japan) equipped with a 1D silicon strip PSD D/teX Ultra detector operated with
CoKα radiation at 30 kV and 15 mA in a Bragg–Brentano geometry. PXRD data were
collected in the range of 3–80◦ 2θ. Phase identification was carried out using the ICDD
PDF-2 Database (released 2022).

Cation exchange capacity (CEC, mEq/100 g) was measured in bulk soil samples using
the Bobko–Askinazi–Aleshin method [58]. Briefly, BaCl2 buffer solution (pH = 6.5) was
poured over a sample of soil (2–3 g), and saturation of the soil was carried out on paper
filters until the volume of the filtrate was equal to 150–200 cm3. After saturation, the paper
filters with the soil were dried and transferred to a glass, then 100 cm3 of H2SO4 solution
(0.05 N) was poured over them. After that, the suspensions were filtered, and 20 cm3

aliquots were taken from the filtrate and titrated with NaOH solution (0.1 N). Then, the
value of the CEC was calculated according to Equation (4).

CEC =
(V − V1)× C × V2 × 100

V3 × m
(4)

where V is the volume of NaOH solution, consumed for control titration of 20 cm3 of pure
H2SO4, cm3; V1 is the volume of NaOH solution, consumed for titration of 20 cm3 of filtrate,
obtained by displacement of Ba2+ with H2SO4, cm3; C is the molar concentration of NaOH
solution, mol dm−3; V2 is the volume of H2SO4 taken for displacement of Ba absorbed by
soil, cm3; m is the mass of the air-dried soil sample, g; V3 is the volume of filtrate taken for
titration, cm3; and 100 is the conversion factor per 100 g of soil.

We also used some soil physical parameters that were obtained in the previous study;
briefly, these parameters changed from S5 to S1 as follows: bulk density (g cm−3)—1.1 to
1.3 (r2 = 0.05), clay (%)—5.3 to 12.4 (r2 = 0.84), silt + clay (%)—11.2 to 20.2 (r2 = 0.89), and
SOC/clay—0.52 to 0.18 (r2 = 0.95). A detailed description of these soil parameters is given
in our previous work [13] and in Appendix A.

The Principal Component Analysis (PCA) method was chosen for multivariate data
analysis. For PCA analysis, a data matrix was compiled from previously published data
and data obtained in this study. The total matrix consisted of 16 variables: bulk density, pH
in water suspensions, SOC and TN in bulk soil, C:N ratio, clay in bulk soil, concentrations
of N minerals (NH4 and NO3) in bulk soil, and available P and K, which were taken from
our previous study [13] (Appendix A, Table A1). The DOC and the O:C, C:N, and H:C ratios
in SOM, as well as A/O-A and HB/HI values in SOM and the degree of aromaticity (ARM),
were taken for PCA from this study. The suitability of the data for PCA was determined
by performing Kaiser–Meyer–Olkin (KMO) and Bartlett tests, using IBM SPSS Statistics
(Version 27.0), according to the methodology described in [59,60]. Further PCA was then
performed using Origin (Pro) (Version 2024; OriginLab Corporation, Northampton, MA,
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USA), using the Kaiser rule (data were previously subjected to Z-score normalization). We
used orthogonal rotation of the data matrix using the Varimax method; variables with
loadings above |0.6| were considered significant.

Further statistical processing and visualization of data were carried out using Graph-
Pad Prism version 10.2.3 (GraphPad Software, Boston, MA, USA) and Origin (Pro) (Version
2024; OriginLab Corporation, Northampton, MA, USA).

3. Results
The SOM elemental analysis data (Figure 1) show that for the chronoseries of the soils

(S1–S8), the contents of major elements had the following values (means ± SDs, n = 21):
C—47.82 ± 2.69%, CV = 0.05; N—1.87 ± 0.28%, CV = 0.15; H—6.64 ± 0.44%, CV = 0.06;
O—43.66 ± 2.54%, CV = 0.06.
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In actively cultivated soils (S5, 0 years abandoned), SOM is characterized by a rela-
tively high C content (47.55 ± 0.53%, n = 3) and a moderate N concentration (1.63 ± 0.03%,
n = 3), indicative of fresh organic inputs from agricultural activity. The H content remains
stable at 7.20 ± 0.37% (n = 3), while O is around 43.62 ± 0.20% (n = 3) of SOM. After five
years of abandonment (S6), a noticeable increase in the SOM C content (51.72 ± 0.41%,
n = 3) and N content (1.92 ± 0.05%, n = 3) can be observed, while the O percentages
decrease to 40.23 ± 0.32% (n = 3). The H content slightly declines to around 6.14 ± 0.14%
(n = 3). By the tenth year of abandonment (S8), the N content rises significantly
(2.48 ± 0.02%, n = 3), and the SOM C content declines to 44.91 ± 0.42% (n = 3). The
O increases to 46.13 ± 0.16%, and the H levels remain relatively stable at 6.48 ± 0.28%. In
later abandonment stages (16–20 years; S4, S2, and S3), the C content is 48.16–49.82%, with
N concentrations of 1.61–1.94%. O levels are between 41.55% and 43.65%, while the H
content is within the 6.20–7.42% range. After 25 years of abandonment (S1), the N content
slightly declines (1.71 ± 0.02%, n = 3), while C levels drop notably to 43.56 ± 0.17%. The O
fraction increases to 48.02 ± 0.25% (n = 3), and H remains relatively stable (6.70 ± 0.06%,
n = 3). In comparison, the field at the Yamal Agricultural Station (S10) maintains a mod-
erate SOM composition, with C levels of 48.20 ± 0.04%, N at 2.25 ± 0.00%, and O at
42.99 ± 0.14% (mean ± SD, n = 3). The mature Histic Podzol (S11) exhibits the highest
SOM C content (53.86 ± 0.18%, n = 3) and the lowest H (5.42 ± 0.04%, n = 3) and O levels
(38.72 ± 0.13%, n = 3), reflecting highly decomposed, well-humified organic matter typical
of natural peat-accumulating soils [61].



Agronomy 2025, 15, 893 8 of 23

The data (Figure 2) were derived from 13C NMR spectroscopy, which quantifies the
relative abundance of carbon types in SOM based on their chemical shift regions. Key func-
tional groups include alkyl C (0–45 ppm), N-alkyl and methoxyl C (45–60 ppm), O-alkyl C
(60–110 ppm), aryl C (110–140 ppm), O-aryl C (140–160 ppm), carboxy C (160–190 ppm),
and carbonyl C (190–220 ppm) [27,45]. General statistics for the SOM molecular composi-
tion in the soil chronosequence are as follows (n = 7, means ± SDs): alcyl C—36.78 ± 3.41%,
CV = 9.03; N-alkyl and methoxyl C—6.04 ± 0.67%, CV = 11.16; O-alkyl C—21.87 ± 2.35%,
CV = 10.76; aryl C—13.57 ± 1.57%, CV = 11.55; O-aryl C—6.56 ± 0.83%, CV = 12.59; carboxy
C—11.72 ± 0.74%, CV = 6.28; carbonyl C—3.51 ± 0.59%, CV = 16.73. A detailed distribution
of the molecular composition of the SOM is given below and in Table 3.
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Figure 2. Box chart with normal distribution curve—relative abundance of the different functional
groups obtained by the integration of the peaks area from the 13C NMR results. S11 and S5—
representable 13C solid-state nuclear magnetic resonance spectra (13C NMR) of the concentrated SOM
samples for mature soil (S11) and soil of cultivated fields (S5).

Active Agricultural Field (S5, 0 Years of Abandonment): alkyl C (0–45 ppm)—40.88%;
N-alkyl and methoxyl C (45–60 ppm)—5.75%; O-alkyl C (60–110 ppm)—20.61%; aryl C
(110–140 ppm)—12.45%; O-aryl C (140–160 ppm)—5.75%; carboxyl C (160–190 ppm)—
10.93%; carbonyl C (190–220 ppm)—3.61%. Early Abandonment (S6, 5 Years): alkyl C—
39.04%; O-alkyl C—21.08%; aryl C—13.00%; carboxyl C—11.30%. Mid-Abandonment (S8,
10 Years): alkyl C—31.65%; aryl C—15.88%; O-aryl C—7.97%; carboxyl C—13.08%.

Late Abandonment (S1, 25 Years): alkyl C—35.06%; N-alkyl and methoxyl C—6.25%;
O-alkyl C—21.59%; aryl C—15.09%; O-aryl C—7.63%; carboxyl C—10.88%; carbonyl C—
3.47%. SOM of the field at the Yamal Agricultural Station (S10): alkyl C—39.61%; N-alkyl
and methoxyl C—5.90%; O-alkyl C—19.26%; aryl C—13.26%; O-aryl C—6.60%; carboxyl
C—11.89%; carbonyl C—3.48%. SOM of undisturbed peat soil (S11, Histic Podzol): alkyl
C—33.56%; N-alkyl and methoxyl C—6.05%; O-alkyl C—27.37%; aryl C—11.38%; O-aryl
C—5.36%; carboxyl C—12.64%; carbonyl C—3.64%.
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For recently abandoned agricultural soils (S5–S1, 0–25 years), the DOC content
(Figure 3) varies between 0.01% and 0.08%, with a general tendency to range between
0.02% and 0.06% across different abandonment periods. The proportion of DOC relative
to SOC is relatively low, spanning from 0.000302 to 0.002112%. The reference site, S10
(Yamal Agricultural Station), exhibits DOC values similar to the younger abandoned sites,
ranging from 0.03% to 0.04%, with DOC as a percentage of SOC between 0.000939 and
0.001708%. In contrast, the undisturbed peat soil (S11) shows significantly higher DOC
values, ranging from 0.30% to 0.43%. The DOC as a percentage of SOC in this site is notably
higher (0.098594–0.139221%).

Table 3. The 13C intensity distribution determined by integrating the signal intensity (YAS—Yamal
Agricultural Station, MT—mature peat soil).

Sample Age

Functional Groups of C Integral Indexes

Alcyl N-alkyl O-alkyl Aryl O-aryl Carboxyl Carbonyl

ARM HB/HI A/A-OChemical Shifts from 13C, %

0–45 45–60 60–110 110–140 140–160 160–190 190–220

S5 0 40.88 5.75 20.61 12.45 5.75 10.93 3.61 0.21 1.44 1.55
S6 5 39.04 5.96 21.08 13.00 6.23 11.30 3.39 0.23 1.40 1.44
S8 10 31.65 7.67 20.28 15.88 7.97 13.08 3.47 0.29 1.25 1.13
S4 16 40.31 5.52 21.37 12.35 6.45 11.40 2.60 0.22 1.45 1.50
S2 17 36.10 5.33 21.89 15.54 6.32 11.72 3.10 0.26 1.38 1.33
S3 20 34.44 5.85 23.33 13.18 6.70 11.68 4.82 0.24 1.19 1.18
S1 25 35.06 6.25 21.60 15.09 7.64 10.88 3.48 0.27 1.37 1.26
S10 YAS 39.61 5.90 19.26 13.26 6.60 11.89 3.48 0.23 1.47 1.57
S11 MT 33.56 6.05 27.37 11.38 5.36 12.64 3.64 0.20 1.01 1.00

Mean 36.74 6.03 21.87 13.57 6.56 11.72 3.51 0.24 1.33 1.33
SD 3.32 0.67 2.35 1.57 0.83 0.74 0.59 0.03 0.15 0.20
CV 9.03% 11.16% 10.76% 11.55% 12.59% 6.28% 16.73% 12.28% 11.40% 15.13%
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The data matrix (16 variables), including pH, SOC, TN, C:N, clay, P, K, N-NH4, and N-
NO3—from [13,31]—and DOC, SOM O:C, SOM C:N, SOM H:C, A/O-A, HB/HI, and ARM,
were analyzed by principal component (PCA) analysis; data from sample S11—reference
peat soil—were not included in the data matrix. Before PCA, we performed Kaiser–Meyer–
Olkin (KMO) and Bartlett tests. KMO = 0.65 (mediocre sampling adequacy). Bartlett’s test
of sphericity: χ2 = 394.8; p-value: < 0.001. These values confirmed the suitability of the data
for PCA analysis. The data were normalized (Z-score standardization applied). For PCA
analysis, Kaiser’s rule was used—components with an eigenvalue > 1 were selected. Three
significant components were selected: eigenvalues > 1, cumulative variance of ~76.5%
(PC1—35.5%; PC2—25.9%; PC3—18.1%). Rotation of the matrix by the Varimax method
was used. Significant variables within a component were selected with loadings above
|0.6|. Table 4 shows the component loadings (Varimax-rotated) for selected variables.
Figure 4 shows a biplot of the PCA analysis for selected data.

Table 4. Component loadings (Varimax-rotated). Key variables (|loadings| > 0.6) bolded.

Var.
Bulk Soil SOM

pH SOC DOC C:N Clay P K NH4 NO3 O:C C:N H:C A/O-A HB/HI ARM

PC1 0.03 −0.34 0.62 −0.84 −0.24 0.65 0.91 0.90 0.41 0.31 0.16 0.55 0.42 0.40 −0.29

PC2 −0.03 0.79 −0.12 −0.01 −0.02 0.16 0.15 0.15 0.70 −0.86 0.31 −0.72 0.83 0.63 −0.76

PC3 0.73 0.38 −0.17 −0.42 0.35 0.63 −0.20 −0.23 0.48 0.28 −0.91 0.15 −0.10 −0.09 0.48
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The PXRD data analysis from the Yamal Agricultural Station (Figure 5) soils reveal a 
mineralogical composition dominated by quartz, with significant contributions from ver-
miculite and Na and K feldspars (albite and orthoclase, respectively) and minor amounts 
of phlogopite and unidentified phases (with peak observed intensities below 1) in the 
plow soil horizon (Figure 5A). Quartz (SiO2)—key peaks: 2θ = 20.78° (d = 4.26 Å, observed 
intensity = 19), 2θ = 26.58° (d = 3.35 Å, observed intensity = 100—strongest peak); addi-
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fields (S6, S8, S4, S2, and S1 samples).

The PXRD data analysis from the Yamal Agricultural Station (Figure 5) soils reveal
a mineralogical composition dominated by quartz, with significant contributions from
vermiculite and Na and K feldspars (albite and orthoclase, respectively) and minor amounts
of phlogopite and unidentified phases (with peak observed intensities below 1) in the plow
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soil horizon (Figure 5A). Quartz (SiO2)—key peaks: 2θ = 20.78◦ (d = 4.26 Å, observed
intensity = 19), 2θ = 26.58◦ (d = 3.35 Å, observed intensity = 100—strongest peak); additional
peaks at 36.52◦, 50.10◦, and 59.90◦ confirm its prevalence. Vermiculite (clay mineral)—key
peaks: basal reflections at 2θ = 6.10◦ (d = 14.48 Å, (002)) and higher-order peaks (e.g.,
12.43◦, 18.72◦), multiple overlapping peaks with feldspars and micas. Feldspars—albite
(NaAlSi3O8), peaks at 27.88◦ (d = 3.20 Å) and other angles; orthoclase (KAlSi3O8), peaks at
27.43◦ (d = 3.25 Å) and other angles.
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Figure 5. X-ray diffraction patterns of bulk soil samples from Yamal experimental agricultural station:
(A) from plow horizon, from 0–10 cm—upper boundary and lower boundary of 20–30 cm plow
horizon; (B) parent material from 160–210 cm depth. Vrm—vermiculite, Qz—quartz, Ab—albite,
Or—orthoclase, Phl—phlogopite, Mnt—montmorillonite, An—anorthite, Chl—chlorite.

The dominant phases in the parent material (Figure 5B) were quartz, montmorillonite,
anorthite, biotite, and some members of the chlorite–serpentine mineral group. Quartz was
still a major component—2θ = 26.62◦ (d = 3.34 Å, observed intensity = 100.00). Additional
peaks at 20.81, 36.56◦, 50.15◦, and 59.93◦ (similar to the topsoil) were observed. Montmoril-
lonite (smectite clay)—key peaks: basal reflections at 2θ = 5.90◦ (d = 14.97 Å) and 26.66◦

(overlaps with quartz). Anorthite (CaAl2Si2O8)—key peaks: 2θ = 13.63◦, 23.57◦, and 30.10◦

(d = 6.48–2.96 Å). Biotite (K(Mg,Fe)3AlSi3O10(OH)2)—key peaks—scattered peaks (e.g.,
30.80◦ and 35.10◦). Chlorite–serpentine group minerals—key peaks: 2θ = 5.90◦ and 12.46◦

(d = 14.97 and 7.09 Å, respectively).
Additionally, the cation exchange capacity (CEC) was measured in the soil of the Yamal

experimental agrostation and the soil chronosequence (Table 1). For the soils of the Yamal
experimental agrostation, CEC = 12.97 ± 0.83 mEg/100 g (n = 3); this value was predomi-
nantly low but consistent with the mineralogical composition data (Figure 5). For soils from
the chronoseries, a gradual decrease in CEC was observed, with a maximum in young fallow
fields (Figure 6). For the soil in the active potato field (S5), CEC = 12.32 ± 0.68 mEg/100 g
(n = 3); these values were close to those of the soil of the Yamal experimental station. The
minimum CEC values were found in the soil of the oldest fallow field, which was more
than 25 years old (S1)—9.47 ± 1.97 mEg/100 g (n = 3).
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4. Discussion
Changes in SOM parameters in soils of abandoned lands vary across different regions,

e.g., in Central Perineae, on lands abandoned since the 1950s, there was an increase in the
contents and reserves of SOC and N at the primary stages of succession, and the SOM
composition lacked lignin and was dominated by fatty acids [62]. In a semi-arid climate,
in calcareous soils of the Central Zagros Mountains, SOC (7.0 Mg C ha−1) accumulation
occurred in the 0–30 cm layer on lands abandoned 18–22 years ago [63]. In the forest–steppe
zone of Eastern Siberia, accumulation of 0.85 Mg C ha−1 in the 0–30 cm layer was shown in
Haplic Luvisol. In abandoned croplands that were 0–7–25–60 years old, the main role in
C sequestration was played by the mineral-associated pool of SOM, and labile fractions
accumulated 2.8 times faster than stable ones [64]. In temperate, broad-leaved forest
areas of European Russia, post-agricultural dynamics of SOM pools were linked to carbon
accumulation within both active and passive pools [4]. Overall, it can be summarized that
researchers generally agree that three key factors influence carbon pools in abandoned
lands: climate, vegetation, and physical protection (aggregate stability) of SOM [65–68].
For our study, we had unique conditions that had not previously been investigated in
terms of SOM in soils of post-agricultural agroecosystems—a Subarctic climate, secondary
succession of forest tundra vegetation [13], and soils with a poor mineralogical composition
(Figure 5). In addition, this study is distinguished by the fact that soil plowing was not
carried out in situ, and soils for agricultural lands were pre-prepared [13].

We should first discuss general soil and SOM parameters of the Yamal experimental
agrostation: long-term tillage (>90 years) with organic (peat and manure) and mineral fertil-
izers maintained the quantity and quality of SOM in the Yamal experimental field. Despite
the Arctic conditions, the soil retains 3.6% SOC with a balanced molecular composition
dominated by C alkyls (39.6%) and moderate aromaticity (0.23). Despite the dominance
of quartz in the mineralogical composition and a small amount of clay (layered) minerals
(Figure 5A), it is possible for organo-mineral interactions to form strong complexes with
SOM, preserving alkyl C (microbial lipids) and reducing decomposition [49,69]. Contin-
uous application of organic fertilizer (peat and manure) provides labile C (O-alkyl) and
nitrogen (N), keeping the soil C:N (19–20) and C:N ratios in SOM (~25) low, which supports
microbial activity [70]. Moderate bulk density (1.27 g cm−3) and clay contents (13–15%)
favor aggregate formation, physically protecting SOM from microbial access [71,72]. Other
studies have shown that to maintain a stable amount of SOM in the soil of the Yamal Agri-
cultural Station, peat should be applied to the soil every 6 years at a dose of 4 kg m−2 [73].
These findings are consistent with studies of temperate agricultural systems, where clay
minerals and organic matter cooperatively stabilize SOM [74,75]. However, the Arctic con-
text creates unique constraints, as cold temperatures slow microbial turnover, increasing
the role of mineral defense [27]. High SOC (32.8%) and TN (1.48%) characterize Histic Entic
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Podzol (S11), peat from which is used to fertilize agricultural fields. The peat contributes
labile O-alkyl C (27.4%) but limited N, resulting in high C:N ratios in SOM (~31) and low
aromaticity (0.20). Pure peat lacks mineral matrices for stabilization, making it vulnerable
to oxidation during drainage [76]. However, when applied to relatively mineral-rich soils
(S10), peat-derived carbon binds to the mineral matrix, increasing SOM stability [75].

Active fields (S5: 0 years) exhibit (Figure 7) moderate SOC (2.68–2.80%), while short-
term abandonment (S6: 5 years) shows a spike (3.75–4.03%), likely due to reduced tillage
and initial plant-residue accumulation. Older abandoned sites (S1: 25 years) display lower
SOC values (~2.15–2.27%), suggesting progressive SOM mineralization [13]. Against the
background of quartz dominance in the mineralogical composition, the small amount of
layered minerals in soils and parent materials (Figure 5), and the decrease in the SOC/clay
ratio (0.52 in S5 → 0.18 in S1), we can assume that the negative dynamics of SOC may
also be associated with insufficient stabilization of carbon in organo-mineral complexes.
In contrast, S10 retains higher SOC/clay (0.23–0.26) and SOC values (3.6–3.8%) due to
continuous organic inputs and organo-clay complexes [13]. It was also found that the
SOC content in the studied soils has a strong correlation with CEC (Pearson’s r = 0.61,
r2 = 0.37). This correlation (Figure 7) may indicate that the content of exchangeable cations
in the studied soils is mainly responsible for the organic matter rather than the mineral
matrix of the soil; moreover, it was previously shown that the mineralogical composition
here is extremely poor, with the dominance of quartz and the minimal presence of layered
minerals (Figure 5).
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In abandoned soil chronoseries, TN depletion is also observed [13], dropping by 39%
(0.18% in S5 → 0.11% in S1), reflecting reduced fertilization and microbial nitrogen mining
from SOM [75]. Bulk soil C:N ratios increased (Figure 8) from 19–20 (S5) to 22–30 (S1–S3),
while the C:N ratio in SOM rose from 34 (S5) to 29–31 (S1), aligning with shifts toward lignin-
rich, nitrogen-poor organic matter and mirroring boreal post-agrogenic systems [76–78].
The SOM C:N ratio (21–35) exceeded the bulk C:N ratio (17–26), highlighting preferential
N retention in microbial biomass or mineral-associated SOM.

The van Krevelen diagram (Figure 9) shows that abandoned soils (e.g., S1: O:C = 0.82–0.83)
show higher oxidation than active fields (S5: O:C = 0.68–0.69), suggesting advanced SOM
decomposition. The reference site (S10: O:C = 0.66–0.67) has stable, less oxidized SOM. The
rise in O:C ratios in abandoned soils (S1: 0.82–0.83) signals oxidative humification, a process
intensified by prolonged exposure of SOM in poorly protected quartz matrices [79,80].
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13C NMR analysis provides insights into molecular reorganization (Figures 10 and 11).
Active fields (S5: alkyl C = 40.88%, A/O-A = 1.55) have more labile alkyl C, while older
abandoned soils (S8: alkyl C = 31.65%, A/O-A = 1.13) show dominance of O-alkyl C (e.g.,
carbohydrates). The high alkyl C content also detected in an active field (S5—40.88%) re-
flects labile plant lipids, which decompose rapidly when tillage disrupts aggregates [81,82].
Reduced alkyl C (Figure 10) and HB/HI (Figure 11) values correlate with diminished
physical protection, as hydrophobic alkyl moieties degrade under repeated freeze–thaw
cycles [83,84]. This aligns with studies on Siberian permafrost soils, where SOM loss
accelerated under warming [85]. The reference site (S10: 39.61% alkyl C) retains similar
levels due to continuous organic inputs [86]. The proportion of O-alkyl C (60–110 ppm)
gradually increases (20.6–21.6 %), despite a decrease in SOC concentration (r = −0.41,
p < 0.05), indicating a transient input of plant-derived organic matter from fresh organic
residues from the shrub litter. Dominance of O-alkyl C in abandoned soils indicates mi-
crobial processing into polysaccharides, which persist due to slower decomposition in
cold climates [46]. This mirrors patterns where O-alkyl C accumulated in abandoned
agricultural plots [87]. Increased aryl C in mid-abandonment (S8: 15.88%) reflects lignin
accumulation, a recalcitrant pool resistant to cold-climate decomposition [88]. However,
without mineral binding, aromatic SOM remains vulnerable to photodegradation [89].

We acknowledge that it is difficult to provide detailed knowledge of the stability of
SOC pools in these soils without a comprehensive study of carbon, specifically in particulate
and mineral-associated organic carbon (POC and MAOC) fractions, but our results allow
us to provide indirect conclusions. Mineral-protected SOC in soils is primarily formed from
organo-mineral interactions with secondary minerals by weathering over long periods,
varying from decades to centuries, prohibiting the accumulation of a substantial amount of
MAOC in a short time [90]. It is known that SOC in stable aggregates has a slower turnover
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than free POM [91]. Our results show that minerals with low reactive capacity (quartz) are
dominant in soils and parent materials, while layered minerals (vermiculite, etc.) are present
in considerably lower quantities (Figure 5). In addition, we observed a strong correlation
(r = 0.61) of SOC in bulk soil with CEC (Figure 7), indicating a significant contribution
of past fertilization to increasing sorption capacity in soils with a poor mineralogical
composition [92]. All other things being equal, there has been a substantial reorganization
of the molecular structure of SOM, with oxidation (Figure 9), an increase in aromaticity, and
a decrease in hydrophobicity over time (Figure 11). This may indicate a lack of physical
protection of SOM, since at high degrees of occlusion, the organic matter is generally poorly
accessible to microorganisms [43,90,93], but the data indicate that under these Subarctic
conditions, the labile fraction of SOM is gradually replaced by coarse organic residues
(O-alkyl C accumulation).
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S10—molecular structure of SOM in soil of Yamal Agricultural Station, S11—molecular structure of
SOM in reference peat soil.

There is a notion that repeated freezing and thawing disrupts soil aggregates, exposing
physically protected SOM to microbial decomposition and oxidative processes [71,94]. In
quartz-rich soils, the absence of clay minerals (e.g., vermiculite) exacerbates this vulnera-
bility, as aggregates rely only on weak organic binding agents [95]. This aligns with the
findings of those who observed accelerated SOM loss in mineral-poor Arctic soils subjected
to freeze–thaw events [96].

Quartz, with negligible cation exchange capacity and surface reactivity, fails to stabi-
lize SOM through organo-mineral associations [69]. This contrasts with temperate soils,
where clays and oxides dominate SOM stabilization [65,97]. Long-term fertilization at
S10 sustains SOC (3.58–3.83%) and stable alkyl C (A/O-A = 1.57). Fertilization through
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high organic inputs compensates for slow nutrient cycling and supports microbial activity,
stabilizing SOM through organo-mineral associations. Similar results were reported in
Finnish cropland soils, where manure application maintained SOM in soils [98]. We can
assume that changes in the structural composition and stabilization of SOM result from
several processes illustrated in Figure 12 and described below.
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Figure 12. Visualization of processes in agro-transformed soils in Subarctic climatic conditions.
1—Primary involvement of mature soils in agriculture promotes saturation of soil with labile C
and nutrients and stimulates aggregate formation. 2—Low temperatures and a short growing
season inhibit humification of fresh plant residues, leading to lignin accumulation and an increase in
aromaticity after abandonment. 3—Mineral matrix dominated by quartz does not allow occlusion
processes and formation of a physically protected SOM pool, while freeze–thaw cycles contribute to
disaggregation of earlier formed aggregates.

1—Cold temperatures reduce decomposition rates but favor selective preservation of
complex compounds [99,100]. 2—Freeze–thaw cycles disrupt soil structure, accelerating
SOM oxidation [101]. 3—Short growing seasons limit plant-derived C inputs, exacerbating
SOM decline in unmanaged systems [97]. These assumptions are indirectly supported by
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the results of the PCA analysis (Table 4). PC1 (35.5% of variance)—associated with DOC,
C:N, P, K, and NH4—reflects the processes of continuous active soil management, which in
combination with the poor mineralogical composition of soils and freeze–thaw cycles does
not allow long-term retention of nutrients, and short growing seasons do not allow the
accumulation and recycling of fresh organic residues. The PC1 gradient (Figure 4) separates
the active/reference soils (S5 and S10) from older abandoned soils. High P/K and labile C
indicate sustained fertility from fertilization, counteracting Subarctic nutrient limitations.
PC2 (25.9% of variance)—related to SOC, NO3, and SOM characteristics (O:C, H:C, A/O-A,
HB/HI, and ARM)—reflects decomposition and stabilization of organic matter, while cold
temperatures slowed decomposition but failed to offset SOC losses in abandoned soils due
to limited inputs. The PC2 gradient (Figure 4) also separates the active/reference soils from
older abandoned soils and decreases predominantly for young abandoned soils with older
abandoned soils, indicating disrupted SOM stability in abandoned soils. PC3 (18.1% of
variance) is related to pH, P, and the C:N ratio; also, PC3 has the highest loading for clay
content (0.35). This PC likely reflects the increased capacity of soils to sorb P at a high SOM
content and a high SOM humification rate, as indicated by high opposite loadings for P
and SOM C:N ratios (Table 4). Previously, similar results were reported for fertilized sandy
soils at different pH gradients [95].

5. Conclusions
This study justifies the complex interplay of climatic, mineralogical, and anthropogenic

factors with respect to SOM dynamics in Subarctic agricultural soils. The chronosequence
analysis revealed that short-term abandonment (5–10 years) initially enhances SOC due
to reduced tillage and plant-residue accumulation. However, prolonged abandonment
(>20 years) leads to significant SOC depletion (2.15–2.27%), driven by oxidative humifi-
cation and mineralization in quartz-dominated soils with imperceptible organo-mineral
stabilization. The absence of reactive clay minerals (e.g., vermiculite) and the dominance of
quartz—a mineral with a low cation exchange capacity—render SOM reliant on physical
occlusion and biochemical recalcitrance, both of which are vulnerable to Subarctic freeze–
thaw cycles that disrupt aggregates. 13C NMR spectroscopy provided critical insights into
molecular shifts: active fields exhibited labile alkyl-C (40.88%), indicative of fresh plant
inputs, while abandoned soils showed progressive enrichment of O-alkyl-C (21.6%) and
aryl-C (15.88%), signaling microbial processing and lignin accumulation. Despite lignin’s
recalcitrance, its vulnerability to degradation in mineral-poor matrices underscores the
instability of SOM in unmanaged systems. In contrast, the reference site of the Yamal
experimental agrostation (S10) demonstrated resilience through continuous organic fertil-
ization, maintaining alkyl-C (39.61%) and moderate aromaticity (ARM = 0.23). This stability
arises from organo-mineral interactions with limited clay minerals, highlighting the role of
sustained organic inputs in bypassing mineralogical constraints.

Key climatic stressors—short growing seasons and freeze–thaw cycles—amplify SOM
degradation. Cold temperatures slow microbial decomposition but fail to offset SOC losses
due to limited fresh C inputs in abandoned soils. PCA analysis further linked SOC decline
to nutrient leaching (P and K) and acidification, which inhibit microbial activity. The rise in
O:C ratios (0.68 to 0.83) and declining hydrophobicity (HB/HI = 1.44 to 1.19) in abandoned
soils validate advanced oxidation and loss of alkyl compounds. Sustainable management
must prioritize organic amendments (e.g., peat and manure) to enhance SOC retention, as
evidenced by the reference site’s success. However, pure peat applications risk oxidation
unless integrated with mineral soils.

For a more detailed investigation of the post-agrogenic transformation processes of
SOM in soils of the Subarctic, it is essential to continue studies on its structure through
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deeper fractionation of SOM—separation of the total SOM pool into Particulate Organic
Matter (POM) and Mineral-Associated Organic Matter (MAOM), in conjunction with the
analysis of the mineral composition of the clay fractions of these soils. In the long term, this
approach will allow for the identification of the peculiarities of organo-mineral interactions
under the harsh conditions of the Arctic.

Subarctic agricultural abandonment raises significant risks to SOM persistence, which
requires proactive management strategies to mitigate carbon loss. Long-term fertilization
emerges as a viable approach to sustain soil health, emphasizing the need for policies
that support organic input regimes in Arctic agriculture. This work contributes to global
understanding of SOM dynamics in cold climates, offering critical insights for carbon
management in the face of rapid Arctic warming.
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Appendix A

Table A1. Bulk soil parameters used in this paper, obtained previously (S5–S1) [31]. Characteristics
of bulk soil of Yamal experimental agricultural station (S10), obtained by methods similar to those
described in the article [31]. BD—bulk density, SOC—soil organic carbon, TN—total nitrogen, P—
mobile phosphorous, K—mobile potassium, N-NH4—ammonia nitrogen, N-NO3—nitrate nitrogen
(means ± SDs).

Soil BD Clay pH SOC TN C:N P K N-NH4 N-NO3

Units g cm−3 % - % % - mg kg−1 mg kg−1 mg kg−1 mg kg−1

S5 1.07 5.26 ± 0.26 4.4 ± 0.2 2.73 ± 0.07 0.17 ± 0.01 18.63 ± 1.28 1115.67 ± 22.94 1145.33 ± 20.13 302.41 ± 19.95 16.70 ± 2.01
S6 1.20 7.53 ± 0.20 4.3 ± 0.2 3.86 ± 0.16 0.18 ± 0.01 25.54 ± 1.23 322.67 ± 6.81 43.67 ± 1.53 15.92 ± 9.26 12.54 ± 3.02
S8 1.12 7.00 ± 0.35 5.3 ± 0.1 2.95 ± 0.05 0.15 ± 0.01 22.74 ± 1.50 944.33 ± 32.01 55.33 ± 5.03 9.01 ± 0.56 0.61 ± 0.21
S4 1.18 7.81 ± 0.46 4.5 ± 0.5 2.81 ± 0.04 0.13 ± 0.01 25.71 ± 0.74 248.00 ± 25.94 37.00 ± 5.20 12.85 ± 0.99 0.81 ± 0.25
S2 1.12 10.38 ± 0.34 4.0 ± 0.2 3.15 ± 0.02 0.15 ± 0.01 24.55 ± 0.19 365.67 ± 16.26 40.67 ± 2.52 12.50 ± 0.53 1.42 ± 0.31
S3 0.98 10.70 ± 0.60 4.2 ± 0.1 2.80 ± 0.03 0.13 ± 0.01 24.40 ± 0.86 409.00 ± 6.24 46.67 ± 14.50 17.39 ± 0.75 0.28 ± 0.07
S1 1.29 12.46 ± 0.88 4.1 ± 0.1 2.21 ± 0.06 0.12 ± 0.01 22.09 ± 0.18 215.33 ± 11.50 50.67 ± 6.51 14.31 ± 0.43 1.05 ± 0.61

S10 1.25 14.80 ± 1.03 4.8 ± 0.3 3.67 ± 0.14 0.22 ± 0.01 19.78 ± 0.79 977.33 ± 29.87 80.33 ± 9.07 13.62 ± 0.63 32.32 ± 1.78
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