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Abstract—The aim of this study was to investigate the functional role of the TAAR1 receptor, one of the
representatives of trace amine-associated receptors (TAARs). The behavior of TAAR1-KO knockout
mice and wild-type (WT) mice were studied in tests reflecting the anxiety and depressive-like conditions.
In the Novelty-Suppressed Feeding test, it was shown that in TAAR1-KO mice the average time to
approach the bait was significantly shorter than in WT mice. No statistically significant differences were
found for all other parameters of feeding behavior (latency before the start of eating, duration of food
consumption, number of approaches with sniffing the bait, number of meals). In the tail suspension test
and the Porsolt forced swimming test, the LP of the first immobilization was significantly higher in
TAAR1-KO mice. In the Porsolt test, TAAR1-KO mice showed a lower duration of immobilization
compared to WT mice.
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INTRODUCTION

Much attention is currently being paid to eluci�
dating the role of the trace amine system in the ver�
tebrate central nervous system [1, 2]. Trace amine-
associated receptors (TAARs) belong to the class of
G-protein-coupled receptors identified in humans
and other vertebrates and invertebrates. Of the fam�
ily of TAARs, the TAAR1 receptor is the best stud�
ied.

In the mammalian brain, the TAAR1 receptor is
expressed in the cortical and striatal projections of
dopaminergic neurons and in the corticolimbic pro�
jection sites of 5-HT neurons; the TAAR1 receptor is
found in many limbic and mesolimbic structures:
Hippocampus, hypothalamus, amygdala, bed
nucleus of the striatum terminalis, ventral tegmental
area, dorsal raphe nucleus and medial prefrontal

cortex [3]. TAAR1 is known to play an important
role in the regulation of dopaminergic, serotoniner�
gic and glutamatergic transmission and is therefore
widely implicated in many brain functions [1, 4].
Trace amines are structurally similar to classical
monoamines, and disorders in this system are associ�
ated with a wide range of pathologies including
depression, schizophrenia, neurodegenerative dis�
eases and attention deficit hyperactivity disorder [2,
3, 5].

The data accumulated to date indicate that the
TAAR1 receptor is a promising target for pharmaco�
logical action in the treatment of a number of dis�
eases. This has generated considerable interest in the
functional role of the TAAR1 receptor and stimu�
lated the search for selective agonists of the TAAR1
receptor for the therapy of psychiatric disorders [6,
7, 8].
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A number of drugs that act through the TAAR1
system are in clinical trials for the treatment of
schizophrenia spectrum disorders and negative
symptoms of schizophrenia [9, 10]. The TAAR1
agonist RO 5263397 has been shown to alleviate dys�
kinesia induced by the choline acetyltransferase
inhibitor α-NETA [11]. It is thought that TAAR1
deficiency or impairment may enhance dopamine-
dependent behaviors and functions, whereas TAAR1
agonists attenuate them [12]. Systemic administra�
tion of TAAR1 receptor agonists reduces the dura�
tion of immobilization in the forced swim test in rats
and has anxiolytic effects in models of stress-induced
hyperthermia in mice [7, 13, 14].

Data on the effect of TAAR1 receptor knockout
on animal behavior are unclear and sometimes con�
tradictory. Studies in recent years have increasingly
shown similar behavioral signs in TAAR1-KO ani�
mals with some manifestations of depressive and
anxiety states: increased locomotor activity,
decreased grooming and increased aggression against
a background of no changes in testosterone levels,
pronounced dominant behavior in the resident-
intruder test in males [15, 16]. TAAR1-KO females
show an absence of the early component of the
behavioral response to acute immobilization stress in
contrast to wild-type animals [17]. Studies of anxiety
levels in the elevated-plus maze test showed no sig�
nificant differences in motor and exploratory behav�
ior and anxiety levels between TAAR1-KO and WT
males [15, 18]. In the elevated-zero maze test, anxi�
ety levels were higher in TAAR1-KO females com�
pared to WT females and motor levels were lower
[17]. A change in anxiety levels was also found in
TAAR1-KO mice with aging [19]. In addition,
TAAR1-KO mice showed reduced response in the
prepulse inhibition test [15] and reduced sensory
gating [20], which may indicate abnormalities in
sensorimotor filtering mechanisms characteristic of
patients with schizophrenia and a number of other
brain disorders.

As the data on the behavioral characteristics of
TAAR1-KO mice are rather scarce and ambiguous,
it was decided to study the behavior of TAAR1-KO
and WT males in tests in which they had not previ�
ously been studied: the Novelty-Suppressed Feeding
test and the Tail suspension test. The Porsolt test was
also used as a comparative test for depressive-like
behavior.

MATERIALS AND METHODS

Study object. The study was carried out in male
TAAR1-KO mice (n = 20), with wild-type (WT)
males (n = 15) used as controls. The WT and
TAAR1-KO strains were based on 129S1/Sv and
C57BL/6 mice. Animals were obtained from the
Resource Centre of the Vivarium of the Science Park
of St. Petersburg State University at the age of
3.5 months. The mean weight of the animals was
26.7 ± 0.3 g for TAAR1-KO and 27.2 ± 0.5 g for WT
mice. All animals were housed under standard con�
ditions with ad libitum access to food and water and
a 12-hour light/dark cycle indoors. Animals were
housed in individual transparent plastic boxes with
perforated walls (30×15×17 cm). Animals were kept
in the laboratory for 14 days prior to the start of the
work and were subjected to a handling procedure to
prevent the occurrence of a stressor response to
being held by hand during the experiment.

Apparatus and methods. Novelty-Suppressed
Feeding test (NST) (novelty-induced hypophagia or
hyponeophagia). This test assesses the suppression of
food intake under the influence of a potentially nox�
ious novel environment [21]. Anxiolytics and antide�
pressants (when used chronically) are known to
reduce hyponeophagia in this test [22, 23], so it is
assumed that the results of the NST test reflect the
level of anxiety. There are two ways of performing
this test. Animals are either deprived of food for 8–
16 h prior to the test [24], or they are pre-treated
with a new palatable food [25], which is then offered
during the test in an unfamiliar environment. The
palatable food option prevents a possible pre-test
stress response in mice due to food deprivation and
was therefore chosen for this study. Three days
before the test, the animals were given dried meal�
worm larvae (Tenebrio molitor) in their home cage
for 2 consecutive days to introduce them to new
food. The time to eat the larvae in the home cage on
day 2 was less than 60 s for all mice, with no statisti�
cally significant differences between the TAAR1-KO
and WT mouse groups. On the day of the experi�
ment, TAAR1-KO and WT mice were individually
placed in an unfamiliar setup (30 × 20 × 5 cm) with
dried mealworm larvae on a plastic plate in the mid�
dle for 5 min. The animals were familiar with both
the plate and the larvae, but not with the NST test
set-up. The latent period (LP) of approach to the
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bait was considered to be the approach to the larvae
with a sniffing response, as this response was consid�
ered to be an important component of feeding
behavior. Two independent observers analyzed the
following behavioral components from the video
recordings: the LP of approach to the larva and the
number of times the mouse sniffed the bait, the LP
of food initiation and the duration of food intake. If
the mouse did not approach or eat the bait for 300 s,
the test was terminated and the LP for 300 s was
counted.

The tail suspension test was performed in a setup
with walls of red organic glass, the size of the setup
being 20 × 40 × 60 cm. The mouse was placed at a
distance of 150 mm from the walls of the chamber.
Each mouse was suspended by its tail at a height of
60 cm above the floor of the chamber using adhesive
tape placed less than 1 cm from the tip of the tail.
The duration of the test was 5 min. A 2.5 cm plastic
cylinder was placed on the tail to prevent attempts to
climb out using the tail. The behavior of the mice
was analyzed by two independent observers using
video recording to determine the following parame�
ters: number of immobilization episodes, total
immobilization time, LP of first immobilization.

Porsolt test. The forced swim test was used as a
model of depression-like behavior in accordance
with existing protocols [26, 27]. The apparatus con�
sisted of a glass cylinder with a diameter of 20 cm
and a height of 45 cm. The cylinder was filled with
water (temperature 23–25°C) to a height of 20 cm so
that the animal placed in the cylinder would swim
without being able to get out of the cylinder. The
duration of the test was 6 minutes. The total time the
animal was immobilized, the number of immobiliza�
tions and the LP of the first immobilization were
recorded. Each behavioral test was performed on all
animals on one day between 13:00 and 17:00 h. The
behaviors studied in all experiments were recorded

by a video camera. All tests were performed sequen�
tially on the same animals with a one-day interval.
After completion of the handling procedure, behav�
ioral tests were performed in the following order:
NST, tail suspension test, Porsolt test.

The non-parametric Mann–Whitney test for
independent samples was used for statistical analysis
and to assess the reliability of the differences. This
criterion was chosen because of the small size of the
groups compared and the impossibility of assessing
the nature of the distribution. The critical signifi�
cance level was set at p < 0.05. Results are presented
as mean and standard error of the mean (M ± SEM).

RESULTS

Assessment of anxiety levels in TAAR1-KO mice
in a NST showed statistically significant differences
in the LP duration of the first approach to the food.
In TAAR1-KO mice, the mean approach time to the
food was 21.0 ± 6.6 s, which was significantly differ�
ent from the LP duration in WT mice, which was
56.7 ± 15.8 s (p = 0.035) (Fig. 1a).

Although TAAR1-KO mice approached the bait
relatively quickly, they did not start eating immedi�
ately but continued to move around actively in the
new environment. No statistically significant differ�
ences were found between animals in the two groups
for all other parameters of eating behavior (LP
before initiation of eating, duration of eating, num�
ber of sniffing approaches to the bait, number of
food intake) (Table 1).

The tail suspension test showed statistically signif�
icant differences in the latency of the first immobili�
zation response. In TAAR1-KO mice, the first
immobilization response was observed significantly
later (68.8 ± 13.7 s) compared to WT mice (40.8 ±
5.3 s) (Fig. 1b). The total duration of immobilization
tended to increase in WT mice compared to TAAR1

Fig. 1. The latency of reaction. (a) The latency of the approach to food in Novelty-Suppressed feeding test, (b) the latency of the first
immobilization in the tail suspension test, (c) the latency of the first immobilization in the Porsolt test. Horizontally: groups of ani�
mals, vertically: the latency in seconds (s). The white mouse bars are TAAR1-KO, the black ones are WT. * p < 0.05, ** p < 0.01.
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KO group animals, but did not reach the level of sta�
tistical significance. The number of immobilized acts
during the entire experimental period did not differ
between animals in the two groups (Table 2).

Porsolt test. TAAR1-KO mice had a significantly
longer latency for the first immobilization response
(99.0 ± 17.0 s) compared to WT mice (39.0 ± 4.5 s)
(Fig. 1c). In addition, TAAR1-KO mice had a
shorter duration of immobilization over the entire
test period (85.5 ± 10.7 s) compared to WT group
mice (123.0 ± 11.9 s) (Table 3). The number of
immobilizations was similar in both groups.

DISCUSSION

Behavior in a NST revealed that TAAR1-KO

mice had a significantly shorter mean approach time
to the food compared to WT mice. All other compo�
nents of feeding behavior, including LP of food initi�
ation, were not different in them compared to wild-
type animals. The shorter LP of food onset in this
test is usually interpreted as evidence of lower levels
of anxiety [22, 28]. The latency to start eating was
not significantly different between groups. This indi�
cates the same suppression of eating behavior in the
novel environment, and this fact can be interpreted
as the absence of differences in anxiety levels
between TAAR1-KO and WT mice. On the other
hand, mice from the knockout group start exploring
the new environment much earlier, approach the
food more quickly, but do not start eating immedi�
ately, but continue to move around and explore the

Table 1. Behavior profile of TAAR1–KO and WT mice in the Novelty-Suppressed Feeding test

TAAR1-KO (n = 20) WT (n = 15)

Latency to approach food (s) 21.0 ± 6.6 56.7 ± 15.8, p = 0.035

Latency to eat (s) 189.0 ± 19.3 208.0 ± 22.5

Number of approaches to food (sniffing food) 5.6 ± 0.8 4.0 ± 0.9

Duration of food intake (s) 13.0 ± 3.5 17.8 ± 8.7

Number of food intake 1.5 ± 0.3 1.1 ± 0.3

Data are presented as mean ± SEM (Mann–Whitney U-test).

Table 2. Behavior profile of TAAR1–KO and WT mice in the tail suspension test

TAAR1- KO (n = 20) WT (n = 15)

Latency to immobility (s) 68.8 ± 13.7 40.8 ± 5.3, p = 0.049

Total time spent immobile (s) 124.7 ± 11.2 137.6 ± 12.6

Number of immobilized acts 15.0 ± 1.2 15.4 ± 1.5

Number of fecal boluses 0.7 ± 0.2 1.2 ± 0.4

Data are presented as mean ± SEM (Mann–Whitney U-test).

Table 3. Behavior profile of TAAR1–KO and WT mice in Porsolt test

TAAR1-KO (n = 20) WT (n = 14)

Latency to immobility (s) 99.0 ± 17.0 39.0 ± 4.5, p = 0.001

Total time spent immobile (s) 85.5 ± 10.7 123.0 ± 11.9, p <0.05 

Number of immobilized acts 19.1 ± 1.5 18.0 ± 2.2

Number of fecal boluses 2.4 ± 0.3 2.6 ± 0.4

Data are presented as mean ± SEM (Mann–Whitney U-test).
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environment for some time. Thus, the observed dif�
ferences in the behavior of the knockouts may be
related to a change in orienting and exploratory
behavior and/or an increase in the general level of
motor activity. In the elevated plus maze (EPM)
test, increased orienting and exploratory behavior (as
measured by the number of rears) has already been
observed in female TAAR1-KO mice compared to
wild-type mice [17].

The EPM and elevated zero maze (EZM) tests are
also currently used to study the neurobiological basis
of anxiety and to screen anxiolytic drugs. It has pre�
viously been shown that no significant behavioral
differences were found between male TAAR1-KO
and WT mice in the EPM test [15, 18], and the same
results were obtained when comparing female
TAAR1-KO and WT mice [17]. At the same time, in
the EZM test, which is widely used together with the
EPM, the anxiety level of female TAAR1-KO mice
was higher compared to WT mice in a number of
parameters (distance travelled in open arms, dura�
tion of stay in open arms, number of entries into
open arms, number of head dips) [17]. It can be
speculated that, in addition to sex differences, this
may be due to differences in the sensitivity of the
tests. In particular, the EZM test has been shown to
be more sensitive than the EPM in assessing the
effects of benzodiazepines in mice [29, 30].

Overall, our finding of no differences in anxiety
levels, initially obtained by comparing the behavior
of TAAR1-KO and WT mice in a Novelty-Sup�
pressed Feeding test, is consistent with most findings
on TAAR1-KO anxiety levels using other tests.

The tail suspension test and the Porsolt test are
widely used animal models for testing potential anti�
depressants. The state of immobilization that occurs
during the performance of these tests is considered to
be the development of a depression-like state with a
refusal to fight, known as “despair behavior” [31,
32]. The use of antidepressants in mice leads to a
reduction in the duration and an increase in the LP
of immobilization [33–35], and after stressors in
rodents, a reduction in the LP of the first immobili�
zation and an increase in the duration of immobili�
zation are observed [36–40].

In this study, it was shown for the first time that in
the tail suspension test, the LP of the first immobili�
zation response was significantly longer in TAAR1-
KO mice compared to WT mice, while other param�

eters (total duration and number of immobilizations)
did not differ between the two groups.

The data obtained in these tests are similar in
many respects to those obtained in the NST. The
main index of depression-like behavior, the duration
of immobilization, did not differ, while the LPs of
the first immobilization response were significantly
longer in the knockouts, which can also be explained
by an increase in the general level of motor activity
rather than a greater tendency to develop a depres�
sive state.

In the Porsolt test, male TAAR1-KO mice not
only had a longer initial immobilization LP, but also
a shorter total immobilization duration over the
entire test period. It should be noted that it was pre�
viously shown that TAAR1-KO females also had a
longer LP of first immobilization compared to WT
females, while the duration of total immobilization
was not significantly different between them [17].

There are two possibilities to explain the differ�
ences in the manifestation of immobilization in the
Porsolt test. One interpretation of these changes is
the development of a depressive-like state with
refusal to fight—“despair behavior” [31, 32]. How�
ever, the transition to passive behavior may reflect an
adaptive strategy of coping with stress to conserve
energy rather than a refusal to try to find a way out of
the situation [41, 42].

For example, comparing the behavior of male
TAAR1-KO and WT mice in tests that assess the
level of anxiety and depressive-like behavior shows
that baseline indicators of anxiety levels and the
development of depressive-like states remain
unchanged after TAAR1 receptor knockout. The main
differences between TAAR1-KO and WT mice are
observed in the early stages of the tests and are mani�
fested by increased motor activity in TAAR1-KO mice
when exposed to a stressful situation. The observed
changes in motor activity in knockouts can be
explained by the close interaction of TAAR1 recep�
tors with the dopaminergic system in the brain [3,
43], which plays an important role in the regulation
of motor activity.

CONCLUSIONS

It was found that in all three tests performed, the
main parameters reflecting the level of anxiety and
depression-like behavior in TAAR1-KO mice did



VINOGRADOVA  et al.

JOURNAL OF EVOLUTIONARY BIOCHEMISTRY AND PHYSIOLOGY   Vol.  61  No. 1  2025

246

not differ from those in wild-type mice. At the same
time, for the first time, very well expressed behav�
ioral traits of TAAR1-KO mice were detected, asso�
ciated with increased motor activity of the animals
when exposed to a stressful situation. In the Porsolt
and tail suspension tests, a pronounced increase in
motor activity in the initial phase leads to a signifi�
cant increase in the LP of the first immobilization.
In the Novelty-Suppressed Feeding test, the
increased motor activity is manifested in a shorten�
ing of the LP of approach to the food, TAAR1-KO
mice start to explore the environment faster, show a
kind of motor restlessness, move around the cham�
ber actively all the time, but abstain from eating.

For the first time, we obtained comparative data on
the behavior of TAAR1-KO and WT mice in the nov�
elty-suppressed feeding test and the tail suspension test.
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