
ISSN 1063-7788, Physics of Atomic Nuclei, 2024, Vol. 87, Suppl. 3, pp. S477–S482. © Pleiades Publishing, Ltd., 2024.

ELEMENTARY PARTICLES AND FIELDS
Theory

Dynamical O(4)O(4)O(4)-Symmetry in the Light Meson Spectrum
within the Framework of the Regge Approach

Sergey Afonin1, 2* and Alisa Tsymbal1**

1Saint Petersburg State University, St. Petersburg, 199034 Russia
2National Research Center Kurchatov Institute—PNPl, St. Petersburg, 123098 Russia

Received November 27, 2024; revised November 27, 2024; accepted December 13, 2024

Abstract—The light mesons tend to cluster near certain values of mass. As was noticed some time ago,
the emergent degeneracy is of the same type as the dynamical O(4)-symmetry of the Coulomb potential in
the hydrogen atom. The meson mass spectrum can be well approximated by the linear Regge trajectories
of the kind M2 = al + bnr + c, where l and nr are angular momentum and radial quantum numbers and
a, b, c are parameters. Such a spectrum arises naturally within the hadron string models. Using 2024 data
from the Particle Data Group, various fits for M2(l, nr) were performed. Our analysis seems to confirm
that a ≈ b in the light non-strange mesons, i.e., their masses depend on the sum l+ nr as prescribed by the
hydrogen-like O(4)-symmetry. Using the semiclassical approximation, we discuss which kind of hadron
string models are more favored by the experimental data.
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1. INTRODUCTION

The light hadron spectrum has been extensively
studied since the appearance of the Quark Model
60 years ago. A large interest in this topic is
not surprising—the search for possible theoretical
models describing the spectrum of the simplest bound
states of quarks is tightly related with unveiling the
nature of non-perturbative strong interactions and
may lead to discoveries of new manifestations of
strong interactions. The light meson spectrum is es-
pecially interesting in this quest since such particles
consist of u- and d-quarks, just like nucleons.

The discrete spectrum of light meson resonances
is somewhat simple: almost all known excited meson
states included in the Particle Data Group (PDG)
Tables [1] are clustered near certain values of mass.
Apparently, there are four such clusters, see Table 1.

The degeneracies in the spectrum of light meson
excitations was broadly discussed about 15 years ago
(see, e.g., [2–9]). The following relation between the
mass of a hadron and its quantum numbers can be
written,

M2 = al + bnr + c, (1)
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where l and nr are the angular momentum and the
radial quantum number, and a, b and c are some
constants of dimensionality [M2]. It is important to
notice that although the separation of total angu-
lar momentum J into orbital angular momentum L
and intrinsic quark–antiquark spin S is not Lorentz-
invariant, the spin–orbital correlations seem to be
highly suppressed inside excited light mesons be-
cause their typical lifetime is much less than the typi-
cal time required for noticeable effects of spin–orbital
interactions. As a result, the standard quantum-
mechanical relationship, J = L+ S, is fulfilled with
good accuracy. The qq̄ pairs can form either singlet or
triplet states with S = 0 or S = 1, respectively. How-
ever, it appears that the observed degeneracy is inde-
pendent of S, and both singlet and triplet states are
clustered together, with the positions of the clusters
depending only on the angular momentum number l.

Long ago, Chew and Frautschi observed that
there exist linear Regge trajectories for angularly
excited mesons. Later, it was observed that the
daughter Regge trajectories are almost equidistant,
i.e., the radial meson trajectories are approximately
linear as well [10]. The analysis of the experimental
data showed that the slopes of angular and radial
trajectories are almost the same as predicted by the
Veneziano-like dual amplitudes and related hadron
string models [4, 5]. In view of the appearance of
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new data in the last 15 years, it is interesting to
reanalyze the experimental data and check to what
extent they are compatible with the aforementioned
exciting pattern of string-like spectrum.

The paper is organized as follows. The modern
light meson spectrum is briefly discussed in Sec-
tion 2. In Section 3, we describe a simple semiclassi-
cal hadron string model which will be used later. The
theoretical models describing the spectrum are pre-
sented in Section 4, and the last Section 5 contains a
short summary and some conclusions.

2. THE MESON SPECTRUM

For our analysis, the PDG tables [1] were used.
Since there is not enough basic data, we used not
only the main meson table but also included reso-
nances from the “Further States” section. Most of
the mesons in that section were detected in the Crys-
tal Barrel experiment and need further confirmation.

The internal quark structure of some meson reso-
nances is not known yet. For example, we know for
sure that the π-mesons contain either u or d-quarks
and antiquarks. We also know that the isosinglet uū,
dd̄ and ss̄ states are mixed together. For example,
in the case of isosinglet vector mesons, IG(JPC) =
0−(1−−), the mixing angle is close to 35.3◦. Hence,
the ω and φ mesons can be considered as almost pure
uū-dd̄ and ss̄-states. In most cases, the mixing angle
is not known, so we have to make some assumptions
about the amount of the ss̄-component.

There are other difficulties related to the intrinsic
structure of observed resonances. Some of the states
that are seen in the experiment look more complicated
than just a bound state of a quark and an antiquark.
They might represent a tetraquark, a meson molecule,
a glueball, or something else. A detailed discussion of
each state will be given elsewhere. The resonances
that are of interest should, first, be of a meson nature
and, secondly, be a mixture of light quarks and anti-
quarks, without any hidden strangeness.

Some states, such as f1(1285) and f1(1420) or
h1(1170) and h1(1415), have relatively close masses

Table 1. The approximate positions of clusters of light
non-strange mesons

N M , MeV Amount

1 ≈1300 11 states

2 ≈1600 8 states

3 ≈2000 22 states

4 ≈2250 24 states

(a typical excitation energy in hadrons is about
500 MeV), and all the quantum numbers are the
same. As soon as we do not know for sure the
internal quark structure of the mesons, we may
assume that these two states represent a mixture
of two components, the uū-dd̄-one and the ss̄-one,
with an unknown mixing angle. The heavier state is
believed to contain a bigger ss̄-part. In some cases,
the difference between the “heavy” and “light” states
is close to the doubled mass of the s-quark.

The first task is to assign two quantum numbers,
nr and l, to each observed state depending on its
mass. The results of our prescriptions are shown in
Fig. 4. Then, using the multiple linear regression
method, several fits for Eq. (1) were performed, with
results shown in Table 2. Masses of resonances in
the PDG tables are known with different precision.
Thus, weights in the fit should be different for them,
depending on the reliability of the point included in
the analysis.

The data is presented in two datasets. The first
one includes only resonances with I = 1, because
they should not contain ss̄ component by definition
of isospin. The second dataset contains all the res-
onances from the first dataset and additionally all
the mesons with I = 0, which are believed to have
relatively small ss̄-component. The results obtained
are slightly different for these two cases. In the second
dataset, the slope for the angular trajectory is a bit
smaller than for the radial one. The difference, how-
ever, lies within the experimental uncertainty.

The first regression was done for the “raw” masses
without any weighting. In the second and the third fit,
the weight of the resonance is defined as wi =

1
σ2
i

. The

parameter σi can be the experimental error ΔM2
exp,

known from the PDG table, or the difference ΔM2

between the average mass squared in every cluster
and the observed mass squared for each state. In the
last fit, the weighting function is introduced manually,
satisfying the following conditions.

Firstly, if the resonance is well-established and its
mass is known with high precision, the weight must
be close to 1. Secondly, the weighting function should
not fall off too rapidly. By changing the parameter A,
we can obtain slightly different weight distributions.

The ground states with nr = l = 0 were excluded
in all fits.

The obtained average slopes for l and nr turned out
to be very close, numerically (in GeV2)

a = 1.09 ± 0.02, b = 1.14 ± 0.02

for the first dataset,

a = 1.13 ± 0.05, b = 1.15 ± 0.07

for the second one.
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Fig. 1. Classification of the light unflavored mesons used in the present analysis. The missing states are marked with a
question. The poor-known states are shown on the pale background.

Thus we can conclude that, at least in the first ap-

proximation, the whole spectrum seems to depend on

a linear combination of nr + l as prescribed by the

O(4)-symmetry. As in the hydrogen atom, we can
introduce the principal quantum number N ,

N ≡ l + nr, M2 ≈ 1.14 ·N + 0.5,
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Table 2. Examples of fits for the relation M2 = al + bnr + c

I Weight a b c χ2/DoF

1 none 1.08± 0.03 1.13± 0.03 0.69± 0.09 0.0052

1/(ΔM2
exp)

2 1.10± 0.03 1.16± 0.03 0.63± 0.03 0.0050

1/(ΔM2)2 1.113± 0.005 1.126± 0.005 0.62± 0.01 0.0051

exp

(
−A

ΔM2
exp

M2

)
, A = 7 1.08± 0.03 1.13± 0.03 0.69± 0.09 0.0051

0 and 1 none 1.13± 0.20 1.15± 0.04 0.58± 0.03 0.0045

1/(ΔM2
exp)

2 1.14± 0.03 1.13± 0.04 0.51± 0.03 0.0057

1/(ΔM2)2 1.12± 0.11 1.16± 0.09 0.52± 0.03 0.0051

exp

(
−A

ΔM2
exp

M2

)
, A = 7 1.13± 0.08 1.15± 0.03 0.56± 0.08 0.0045

where M2 is given in GeV2. Strictly speaking, N =
nr + l+ 1 in the hydrogen atom, but here it is conve-
nient to start N with zero value.

3. HADRON STRING MODELS

Various hadron string models are often exploited
for the description of radially and angularly excited
mesons. The idea is to consider a quark and antiquark
as massless string ends bonded together with a glu-
onic flux tube. Then, the radial excitation of this string
can be compared to the radially excited meson state,
and the same may be done for the angular excitations.

Using hadron string models, the spectrum as in
Eq. (1) can be obtained. In the reference frame in
which the meson is at rest, the meson mass operator
M̂ equals the hamiltonian Ĥ . For two ultrarelativistic
quarks with small masses, the Bethe–Salpeter equa-
tion may be written, which is a relativistic analog of
the Schrödinger equation:(√

p̂2 +m2
q +

√
p̂2 +m2

q̄ + V (r)

)
ψ = Eψ.

The quark masses are much smaller than their mo-
menta, mq

|p| � 1, and are considered equal, mq = mq̄.
The relativistic kinetic term is then√

p2 +m2
q +

√
p2 +m2

q̄ ≈ 2p.

In the above relation, the momentum operator con-
tains both radial and angular parts, p̂ =√

− d2

dr2
+ l(l+1)

r2
. The potential part of the hamilto-

nian is the Cornell potential,

V (r) = σr − CF
αs

r
+ c.

The first term here is the linear confining poten-
tial which dominates at large distances between the
quark and the antiquark. In further analysis, it will
play the main role, since it coincides with the typical
potential of the string with tension σ. The second
term describes the Coulomb-like interaction between
quarks, which comes into play at short distances
when quarks undergo a gluonic exchange. αs is the
strong running coupling, and the fact that it is not
a constant should entail some complications. How-
ever, in the further analysis, the Coulomb-like term
will always be negligible compared to the linear one.
The constant CF depends on the number of colors,
CF ≡ (N2

c − 1)/2Nc, that yields CF = 4/3 for Nc =
3. The last term in the Cornell potential is a negative
constant c. The necessity to add c is dictated by the
nonrelativistic limit of the Bethe–Salpeter equation,
and numerically it depends on the type of interacting
quarks. Like with the Coulomb-like term, this con-
stant will not play a role in the further analysis.

3.1. The Radial Quantum Number

For simplicity, we set l = 0 and consider only ra-
dial excitations of a hadron string. In this case, the
momentum operator contains only the radial part p̂ ≡
p̂r. The potential part of the hamiltonian, as discussed
previously, consists of three terms. At large distances,
the linear term σr dominates, as if it were a classic
string. Then, the meson mass is given by the relation

M = 2pr + σr.

The constant σ is the effective string tension. If the
maximal flux tube length is 	, then the total mass of
the string can be calculated as M = σ · 	. The linear
trajectories corresponding to the radial excitations
can be derived using the semiclassical approximation.
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In the semiclassical approximation, the quark
wave function may be written in the form

ψ(r, t) = Const · eiEte−i
∮
p(r)dr.

This wave function is antisymmetric due to the
fermionic nature of quarks. Taking this into account,
the Bohr–Sommerfeld quantization condition reads
as ∮

pr(r)dr = 2

�∫
0

pr(r)dr = π(nr + γ).

Substituting the momentum in the form pr =
M−σr

2 one obtains the expected linear relation M2 =

2πσ(nr + γ). The constant γ is of order of unity, and
it depends on the turning points of the system, which
are the ends of the string. For example, in the case of
potentials that possess the central symmetry, γ = 1

2 .

The antisymmetry of the wave function discussed
above is important [11]: in most of the previous works
(for example, [5, 12, 13]), this was not taken into
account, as a result the obtained slope between M2

and nr was equal to 4πσ instead of 2πσ.

There is another way to derive the needed linear
relation between M2 and nr. In this approach, the
radial excitation is believed to be due to the collective
gluon excitation the quarks are exchanging with (a
pomeron, for example) at a constant separation. The
kinetic term is now twice smaller. This collective
excitation is believed to be a boson. Then, the quan-
tization condition takes the form∮

p(r)dr = 2

�∫
0

p(r)dr = 2π(n+ γ).

Although this approach is conceptually different from
the previous one, the result is the same,

M2 = 2πσ(nr + γ).

Either way, the slope for the radial Regge trajectories
should be equal to 1

2πσ .

3.2. The Angular Momentum

The spectrum of the rotating relativistic string is
known to be well described by the Chew–Frautschi
formula,

M2 = 2πσl.

Consider a gluonic flux tube as a solid body of
known length 	, rotating at the speed v(r) = 2r/	.

The total mass M and the angular momentum l of
such a tube may be calculated as

M = 2

�/2∫
0

σdr√
1− v2(r)

=
πσ	

2
,

l = 2

�/2∫
0

σrv(r)dr√
1− v2(r)

=
πσ	2

8
.

Then, combining these two equations, one gets the
Chew–Frautschi formula. This nice result was first
derived by Nambu [14]. The coefficient between M2

and the angular momentum is the same as for the
radial excitation, 2πσ, and this equality agrees well
with the experimental data as discussed in the previ-
ous section.

There is another way to obtain the linear relation
between M2 and the angular momentum using semi-
classical methods, although the Regge slope happens
to be different. If two quarks remain in circular or-
bits, then the quark wave function should not change
within the phase changing to ΔΦ = 2πrp = lh. The
Bohr–Sommerfeld quantization condition reads as∮

p(r)dr = l�. (2)

The quarks moving on circular orbits undergo the
centripetal acceleration a = v2

r . The second Newton
law is then

∂V (r)

∂r
= F = ma

=
mv2

r
=

mv2

2

2

r
= Ekin ·

2

r
.

As before, consider the linear part of the Cornell
potential that gives ∂V (r)

∂r = σ, and

σ = p
2

r
⇒ p =

σr

2
. (3)

Combining (2) and (3), we obtain a similar formula
for the angular momentum,

l = rp = 2 · r
2
p = 2 · σr

2
· r
2
=

σr2

2
.

After a simple calculation that includes squaring of
the relation M = 2p+ σr and some substitutions, we
finally get

M2 = 8σl.

As predicted by the experimental data, there is
a linear dependence of M2 on the angular momen-
tum. The slope, however, is different from the one
for the radial quantum number. Nevertheless, there
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are reasons to doubt the adequacy of this second
semiclassical model. In reality, when a meson res-
onance appears, its typical lifetime is too short for a
quark–antiquark pair to have time to complete a full
“revolution” around a common center of mass. Thus,
the second model looks unrealistic. On the other side,
when quarks move past each other, the forming gluon
string between them must actually “turn” through a
certain angle as it happens within the Nambu string
picture. Thus, the first model should better capture
the underlying physics.

4. CONCLUSIONS
Our new Regge analysis of experimental data con-

firms the existence of a broad mass degeneracy in the
light unflavored mesons.

In the first approximation, this spectrum depends
linearly on the radial quantum number nr and the
orbital number l, with

M2 = al + bnr + c.

The analysis of the experimental data shows that
a ≈ b ≈ 1.14 GeV2. This means that the considered
meson mass spectrum must depend on a single quan-
tum number N = nr + l. This leads to the O(4)-like
degeneracy of the same kind as in the hydrogen atom.

The observed degeneracy has a simple qualitative
explanation within the framework of semiclassical
hadron string approach resulting in the relation a =
b = 2πσ for the frequencies of orbital and oscillatory
motions.
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