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Abstract—We study shadowing properties of differentiable mappings in Banach spaces in neigh-
borhoods of attractors. The properties of oriented shadowing of a pseudotrajectory are defined. A
pseudotrajectory ξ = {xk : k ∈ Z} belonging to an attractor A of a mapping f is called elementary
if the set of indices Z can be decomposed into a finite family of intervals I1, . . . , In so that for any
set Im there exist two fixed hyperbolic points p and q such that the set of points {xk : k ∈ Im} of the
pseudotrajectory belongs to a trajectory lying in the intersection of the unstable manifold of the point
p and the stable manifold of the point q. The main results of the paper state that if f is gradient-
like with hyperbolic nonwandering set in A, then f has the properties of oriented shadowing by
elementary pseudotrajectories belonging to A and to a neighborhood of A. As an application, we
consider semigroups generated by parabolic PDEs.
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1. INTRODUCTION

Attractors are one of the basic objects in the global theory of dynamical systems, and a lot of research
is devoted to their study.

We work with the following standard definition of an attractor for a continuous mapping f of a metric
space (X, dist ). A subset A ⊂ X is called an attractor of f if

(A1) A is compact and positively f-invariant (i.e., fk(x) ∈ A for x ∈ A and k ≥ 0);
(A2) A is Lyapunov stable, i.e., for any neighborhood U of A there exists a neighborhood V of A such

that fk(V ) ⊂ U , k ≥ 0;
(A3) there exists a neighborhood W of A such that

dist
(
fk(x),A

)
→ 0, x ∈ W, k → +∞.

A general theory of attractors for semigroups in various functional spaces is developed in the book [2].
A property important both for the “internal” theory of dynamical systems and for applications is the

shadowing property (see, for example, [9]).
Let us recall that for d > 0, a sequence ξ = {xk ∈ X : k ∈ Z} is called a d-pseudotrajectory of a

continuous mapping f : (X, dist) → (X, dist), where (X, dist) is a metric space, if

dist(f(xk), xk+1) < d, k ∈ Z.
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The mapping f has the (standard) shadowing property if for any ε > 0 there exists a d > 0 such that
for any d-pseudotrajectory ξ there is a point x such that

dist
(
fk(x), xk

)
< ε, k ∈ Z.

In this case, one says that the pseudotrajectory ξ is ε-shadowed by the trajectory of the point x.
The shadowing property near attractors for mappings of Banach spaces has been studied in the book

[9]. In this book, the author considered a global attractor A of a smooth mapping f generated by a
parabolic PDE and found conditions under which f has the Lipschitz shadowing in a neighborhood of
A, i.e., there exists a neighborhood U ′ of A and constants L′ and d′ such that any d-pseudotrajectory ξ
with d ≤ d′ in U ′ is L′d-shadowed by the trajectory of some point.

It was assumed in [9] that the system has a so-called inertial manifold, i.e., an exponentially
attracting, smooth, finite-dimensional, invariant manifold containing the global attractor. Now, a lot
of conditions for the existence of inertial manifolds are known (see, for example, [5]). A crucial step in
the proof in [9] was projecting to the inertial manifold, which reduced the shadowing problem to a finite-
dimensional one. At the same time, it is known [2] that there exist systems generated by PDEs for which
compact finite-dimensional global attractors do not belong to any finite-dimensional submanifolds of the
phase space.

Thus, it is important to develop methods for establishing shadowing properties in the infinite-
dimensional setting without the assumption that an inertial manifold exists. This is the main goal of
the present paper.

In [9], the author studied mappings f of class C1 of a Banach spaceX that have gradient-like Morse–
Smale structure on an attractor A, i.e., mappings having the following properties (MS1)–(MS3).

(MS1) A contains hyperbolic fixed points π1, . . . , πN .
Recall that a fixed point p of f is called hyperbolic if the spectrum of the derivative Df(p) does not

intersect the unit circle. In other words, all the operators

(Df(p)− λI)−1, λ ∈ C, |λ| = 1

exist and are bounded. Here I is the identical operator.
If a fixed point is hyperbolic, then it has the stable and unstable manifolds W s(p) and W u(p) defined

as follows:

W s(p) =
{
x ∈ X : fk(x) → p, k → +∞

}
.

Since the mapping f is not assumed to be invertible, the definition of the unstable manifold of p is
more complicated; W u(p) is defined as the set of points x for which there exists a sequence {xk : k ≤ 0}
such that x0 = x, f(xk) = xk+1 for k ≤ −1, and xk → p, k → −∞.

It is known [2] that W s(p) and W u(p) are immersed submanifolds of X of class C1.
It follows from the Lyapunov stability and compactness of A that for any fixed point

πi ∈ A, W u(πi) ⊂ A.

(MS2) The mapping f is invertible on A and the inverse map f−1 : A �→ A is smooth. The trajectory
fn(x) of any point x ∈ A tends to one of the points πi as n → ±∞ (thus, A is the union of a finite family
of unstable manifolds of the points π1, . . . , πN ).

(MS3) The stable and unstable manifolds of the points π1, . . . , πN are pairwise transverse.
In this paper, we study a mapping f of class C1+α, α > 0, of a Banach space having an attractor A

on which f belongs to a different class of mappings. It is assumed that f has properties (MS1), (MS2),
and the following property.

(LF) There exists a continuous function (Lyapunov function) V on A such that V (f(x)) < V (x) if x
is not a fixed point of f .

It is easily seen that if f has properties (MS1), (MS2), and (LF), then the chain recurrent set of
the restriction of f to A consists of fixed points of f . At the same time, we work with a class of systems
essentially different from gradient-like Morse–Smale systems since it is not assumed that f has property
(MS3).
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It is natural to call such mappings f with properties (MS1), (MS2), and (LF) gradient-like with
hyperbolic nonwandering set in A; let us denote the class of such mappings by GLHNS(A).

In this paper, we introduce a weakened variant of the shadowing property (note that the approach
based on a close notion for flows has been developed in the paper [12]).

We say that a pseudotrajectory ξ = {xk : k ∈ Z} is oriented ε-shadowed by the trajectory of a point
x if there exist two mappings h−, h+ : Z → Z such that

h−(k) ≤ h+(k) = h−(k + 1)− 1, k ∈ Z,

and

dist
(
f i(x), xk

)
< ε, i ∈ [h−(k), h+(k)], k ∈ Z.

A similar definition is applied in the case of a segment ξ(l,m) = {xk : k ∈ [l,m]} of a pseudotrajec-
tory, in which case we consider mappings h− and h+ defined on [l,m] with obvious modifications for
infinite l or m. Obviously, this part of the pseudotrajectory will correspond to the interval [h−(l), h+(m)]
of the exact trajectory.

Also, we say that a pseudotrajectory ξ = {xk : k ∈ Z} is oriented ε-shadowed by a pseudotrajectory
η = {yk : k ∈ Z} if there exist two mappings h−, h+ : Z → Z such that

h−(k) ≤ h+(k) = h−(k + 1)− 1, k ∈ Z,

and

dist (yi, xk) < ε, i ∈ [h−(k), h+(k)], k ∈ Z.

Clearly, if a pseudotrajectory ξ is oriented ε-shadowed by a pseudotrajectory η = {yk : k ∈ Z} and the
pseudotrajectory η is oriented ε-shadowed by the trajectory of a point x, then the pseudotrajectory ξ is
oriented 2ε-shadowed by the trajectory of the point x.

Let us introduce an important class of pseudotrajectories for a mapping of the class GLHNS(A) (here
we note that a similar class of pseudotrajectories for flows was studied in [8]).

A pseudotrajectory ξ = {xk : k ∈ Z} belonging to the set A is called elementary if the set of indices
Z can be decomposed into a finite family of intervals I1, . . . , In so that for any set Im there exist two fixed
points p and q such that the set of points {xk : k ∈ Im} of the pseudotrajectory belongs to a trajectory
lying in the intersection of the unstable manifold of the point p and the stable manifold of the point q.
In this definition, we do not exclude the case where p = q. In this case, the set {xk : k ∈ Im} coincides
with the fixed point p.

Note that the existence of a Lyapunov function on the attractor implies that the intersection of the
stable and unstable manifolds of a fixed point p ∈ A coincides with the point p.

Remark 1. The oriented shadowing by elementary pseudotrajectories is quite similar to the property
of piecewise shadowing for flows (see Section 3 of [8]).

Our main result (Theorem 2.1) states that if f ∈ C1+α(X ) is a mapping of the class GLHNS(A),
then for any ε > 0 there exists a d > 0 such that any d-pseudotrajectory ξ ⊂ A is oriented ε-shadowed
by an elementary pseudotrajectory.

Remark 2. The assumption that f ∈ C1+α(X ) is applied in the description of stable and unstable
manifolds of hyperbolic fixed points.

The structure of the paper is as follows. We prove Theorem 2.1 in Section 2. Section 3 contains proof
of an analog of our main result for pseudotrajectories belonging to a neighborhood of the attractor. In
Section 4, we give an example of the application of our results to a semigroup generated by a parabolic
PDE.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 45 No. 12 2024



ORIENTED SHADOWING BY ELEMENTARY PSEUDOTRAJECTORIES 6541

2. ORIENTED SHADOWING BY ELEMENTARY PSEUDOTRAJECTORIES
ON AN ATTRACTOR

For a pseudotrajectory ξ = {xk : k ∈ Z} and a number k ∈ Z we denote ξ(k) = xk; for numbers
k1 < k2 we denote

ξ(k1, k2) = {xk : k1 ≤ k ≤ k2},
and ξ(−∞, n), ξ(n,∞) denote the sets {xk : k ≤ n}, {xk : n ≤ k}, respectively.

For a > 0 and x ∈ X we denote by B(a, x) the open a-ball centered at x.
We take a number ρ > 0, define, for a fixed point p ∈ A of f , U(p) := B(ρ, p), and assume that the

following statements are valid:
• If p and q are different fixed points in A, then U(q) ∩B(2ρ, p) = ∅;
• f has the Lipschitz shadowing property in U(p) (the possibility of such a choice of ρ is established

in [9]).
We define local stable and unstable manifolds of a hyperbolic fixed point p as follows. Let, for

definiteness, p = 0.
It is known (see [2, Theorem 1 of Section V.3]) that one can introduce coordinates (ζ, η) (where

coordinate ζ has the dimension of the unstable manifold of p) near the origin and find a number r0 > 0
and mappings H and Z of class C1 defined for |ζ| < r0 and |η| < r0, respectively, such that

H(0) = 0,
∂H

∂ζ
(0) = 0, Z(0) = 0,

∂Z

∂η
(0) = 0,

and the sets M+ and M− given by the equalities

M+ : η = H(ζ), |ζ| < r0, and M− : ζ = Z(η), |η| < r0,

have the following properties:
• if x ∈ M+, then f(x) ∈ M+;
• if x ∈ M−, then there exists a point y ∈ M− such that x = f(y) (thus, negative semitrajectories of

points in M− belong to M−);
• there exist numbers K ≥ 1 and μ ∈ (0, 1) such that∣∣∣fk(x)− fk(y)

∣∣∣ ≤ Kμk|x− y|, x, y ∈ M+, k ≥ 0, (1)

and ∣∣∣f−k(x)− f−k(y)
∣∣∣ ≤ Kμk|x− y|, x, y ∈ M−, k ≥ 0;

• if fk(x) ∈ B(r0, p) for k ≥ 0, then x ∈ M+;

• if fk(x) ∈ B(r0, p) for k ≤ 0, then x ∈ M−.
Assume that the number r0 is chosen so that∣∣∣∣

∣∣∣∣
∂H

∂ζ
(ζ)

∣∣∣∣
∣∣∣∣ < 1, |ζ| < r0, (2)

and ∣∣∣∣
∣∣∣∣
∂Z

∂η
(η)

∣∣∣∣
∣∣∣∣ < 1, |η| < r0.

We assume that 2ρ < r0 and define the local stable manifold of size 2ρ of the hyperbolic fixed point p
by the formula

W s
loc(p) = M+ ∩B(2ρ, p)

and the local unstable manifold of size 2ρ of the hyperbolic fixed point p by the formula

W u
loc(p) = M− ∩B(2ρ, p).
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In what follows, we fix a ρ having the above properties and the corresponding sets W s
loc(p) and

W u
loc(p).
Now we formulate several known or obvious statements. We emphasize that in these statements

2.1–2.4 we consider only pseudotrajectories and fixed points belonging to the attractor A.
Statement 2.1. If U1 is any open set containing all the fixed points of f , then there exist

numbers d∗1 and T ∗
1 such that if ξ is a d∗1-pseudotrajectory and ξ(u, v) ∩ U1 = ∅ for some u < v,

then v − u ≤ T ∗
1 .

This statement is proved in [10].
Statement 2.2. For any neighborhoods U2(p) ⊂ U(p) there exist d∗2 and δ∗2 such that if ξ is a

d∗2-pseudotrajectory, u < v, ξ(u) ∈ B(δ∗2 , p), and ξ(v) /∈ U2(p), then ξ(k) /∈ B(δ∗2 , p) for any k ≥ v.
This statement is proved in [10].
Statement 2.3. For any ε > 0 and T > 0 there exists a d∗3 such that if ξ is a d∗3-pseudotrajectory,

n ∈ Z, y ∈ A, and |y − ξn| < d∗3, then

|fk(y)− ξ(n+ k))| < ε, −T ≤ k ≤ T.

This statement follows from the continuity of f and compactness of A.
Statement 2.4. For any indices −∞ ≤ u < v < w ≤ +∞, any pseudotrajectory ξ, and any

ε > 0, the following holds: if ξ(u, v) and ξ(v,w) are oriented ε-shadowed by elementary pseu-
dotrajectories, then ξ(u,w) is oriented ε-shadowed by an elementary pseudotrajectory.

This statement obviously follows from the definition.
Lemma 2.1. For any T > 0 and Δ > 0 there exists a Δ1 > 0 such that if p and q are fixed

points, f−T (y) ∈ W u
loc(p) (hence, y ∈ A), z ∈ W s

loc(q), and |y − z| < Δ1, then there exists a point
x ∈ W u(p) ∩W s(q) such that |x− y| < Δ.

Proof. Since A contains a finite number of fixed points, it is enough to prove our statement for a fixed
pair p, q.

Assume that the statement does not hold. Then, there exist T0 > 0 and Δ0 > 0 such that for any
n > 0 there are points yn and zn such that f−T0(yn) ∈ W u

loc(p), zn ∈ W s
loc(q), and |yn − zn| < 1/n,

while there is no point x ∈ W u(p) ∩W s(q) satisfying the inequality |x− yn| < Δ.
Since yn ∈ A and A is compact, passing to a subsequence, if necessary, we may assume that

yn → y ∈ A. We claim that y ∈ W u(p). Otherwise, for any N there exists an index s > N such that
|f−s(y)− p| > ρ.

On the other hand, for any s > 0 and y′n = f (−T0+s)(yn) ∈ W u
loc(p) with an arbitrary n we have

the inequality |f s(y′n)− p| < ρ. This implies that |f−t(y)− p| ≤ ρ for any t > T0. The obtained
contradiction proves the claim.

Since zn → y, a similar reasoning shows that y ∈ W s(q). Thus, y ∈ W u(p) ∩W s(q), and the
contradiction with the relation |yn − y| → 0 completes the proof of our lemma.

Lemma 2.2. Let U ′(r) be some neighborhoods of fixed points r and let p �= q be two selected
fixed points. For any ε > 0 there exist numbers d∗ = d∗(p, q) and δ∗ = δ∗(p, q) such that if ξ ⊂ A is
a d∗-pseudotrajectory, u < s,

ξ(u) ∈ B(δ∗, p), ξ(s) ∈ B(δ∗, q), (3)

and

ξ(u, s) ∩

⎛
⎝ ⋃

r �=p,q

U ′(r)

⎞
⎠ = ∅,

then ξ(u, s) is oriented ε-shadowed by the trajectory of some point x ∈ W u(p) ∩W s(q).
Proof. In the following proof, we select small numbers d0, d1, . . . and δ1, δ2, . . . ; at every step, it is

assumed that δk+1 is less than the previously chosen δk and dk is not greater than δk.
Finally, we take as d∗ and δ∗ the smallest dk and δk chosen in the proof. By the choice of the

neighborhoods U(p) and U(q), f is Lipschitz shadowing in U(p) and U(q); fix constants d0 and L such
that any d-pseudotrajectory in U(p) and U(q) with d ≤ d0 is Ld-shadowed.
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Find indices u < m < n < s such that

ξ(u,m) ⊂ U(p), ξ(m+ 1) /∈ U(p),

and

ξ(n, s) ⊂ U(q), ξ(n− 1) /∈ U(q),

then by Statements 2.1 and 2.2 there exists a d1 and a constant T = T (p, q) such that if ξ is a d1-
pseudotrajectory, then n−m ≤ T .

Apply condition (3) with a small δ = δ1 < min (d0/2, ρ/2) to find a point ξ(u) of the pseudotrajectory
ξ such that |ξ(u) − p| < δ.

Let ξ(u) = (ζu, ηu) in coordinates applied to define the local stable and unstable manifolds of p. Then,
|ζu| < δ, and it follows from estimate (2) that |H(ζu)| < δ. Hence, for the point yu = (ζu,H(ζu)) ∈ M−,
the inequality |yu − p| < 2δ < ρ holds, and yu ∈ W u

loc(p).

Due to inequalities (1), |fk(yu)− p| ≤ 2Kδ for k ≥ 0, and if 2Kδ1 < ρ, then fk(yu) ∈ U(p) for k ≤ 0.
Construct a sequence ξ1(k) for −∞ < k ≤ m by setting

ξ1(u− k) = f−k(yu), k > 0, and ξ1(k) = ξ(k), u ≤ k ≤ m.

Since

|ξ(u)− yu| = |ηu −H(ηu)| ≤ 2δ,

we get the estimates

|f(ξ1(u− 1)) − ξ1(u)| = |yu − ξ(u)| ≤ 2δ

(we take into account that d ≤ δ). Thus, the sequence ξ1 is a 2δ-pseudotrajectory in U(p) with 2δ < d0,
and there exists a point Y such that

|fk−m(Y )− ξ1(k)| ≤ Dp(δ) := 2Lδ, −∞ < k ≤ m.

Note that

|ξ1(k)− p| ≤ K|ξ1(u)− p| = K|ξ(u)− p| ≤ Kδ, k ≤ 0,

and

|ξ1(k)− p| = |ξ(k)− p| ≤ ρ, u < k ≤ m;

hence, we can estimate

|fk−m(Y )− p| ≤ |fk−m(Y )− ξ1(k)|+ |ξ1(k)− p| ≤ Dp(δ) + max(Kδ, ρ), k ≤ m,

and if Dp(δ1) + max(Kδ1, ρ) < 2ρ, then the negative semitrajectory of Y lies in B(2ρ, p); thus, Y ∈
W u

loc(p).
Finally,

|Y − ξ(m)| = |Y − ξ1(m)| ≤ Dp(δ). (4)

In a similar way, we construct a pseudotrajectory ξ1(k) for k ≥ n by finding a point zs ∈ W s(q) such
that |zs − ξ(s)| < δ ≤ δ2 with a proper δ2 and setting

ξ1(s+ k) = fk(zs), k ≥ 0, and ξ1(k) = ξ(k), n ≤ k < s.

Since

|f(ξ1(s − 1)) − ξ1(s)| = |f(ξ(s− 1))− zs| ≤ |f(ξ(s− 1))) − ξ(s)|+ |ξ(s)− zs)| ≤ d+ δ,

and since d ≤ δ, the sequence ξ1 is a 2δ-pseudotrajectory in U(q) with 2δ < d0, and the same reasoning
as above shows that there exists a point Z ∈ W s

loc(q) such that

|fk−n(Z)− ξ1(k)| ≤ Dq(δ), n ≤ k < ∞, (5)

where Dq(δ) → 0 as δ → 0.
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To complete the proof, fix an ε > 0. Since ξ ⊂ A, it follows from Statement 2.3 that there exists a
Δ > 0 such that if t ∈ A and |t− ξ(n)| < Δ, then

|fk(t)− ξ(n+ k)| < ε

2K
, m− n ≤ k ≤ 0. (6)

Apply Lemma 2.1 to find a Δ1 > 0 (depending only on Δ and T and not depending on y and z) such
that if f−T (y) ∈ W u

loc(p), z ∈ W s
loc(q), and |y − z| < Δ1, then there is a point x ∈ W u(p) ∩W s(q) with

|x− y|, |x− z| < Δ

2
.

Since ξ ⊂ A and Y ∈ A, it follows from Statement 2.3 and (4) that there is a δ3 > 0 such that if
δ < δ3, then

|fk(Y )− ξ(m+ k)| < Δ1

2
, 0 ≤ k ≤ n−m,

in particular,

|fn−m(Y )− ξ(n)| < Δ1

2
. (7)

Take y = fn−m(Y ) ∈ W u(p) and z = Z ∈ W s(q) (note that f−T (y) ∈ W u
loc(p) and z ∈ W s

loc(q)); by
(5) with k = n and (7),

|y − z| < Δ1

2
+Dq(δ),

which gives us a point x ∈ W u(p) ∩W s(q) with |x− ξ(n)| < Δ if Δ1/2 > Dq(δ3). Then, relations (6)
with t = x and k −m− n are satisfied, and

|fm−n(x)− Y | < ε

2K
+Dp(δ).

Denote χ = fm−n(x). Note that

|χ− p| ≤ |χ− Y |+ |Y − p| < ε

2K
+ 2Dp(δ) + ρ < 2ρ

if
ε

2K
+ 2Dp(δ) < ρ

(which we assume to hold for δ < δ4).
Since χ, Y ∈ W u

loc(p), ∣∣∣fm−n−k(x)− f−k(Y )
∣∣∣ ≤ ε

2
+KDp(δ), k ≤ 0,

and ∣∣∣ξ(m− k)− f−k(Y )
∣∣∣ ≤

∣∣∣ξ1(m− k)− f−k(Y )
∣∣∣+ δ ≤ Dp(δ) + δ, 0 ≤ k ≤ m− u;

we see that there exists a δ5 such that if

KDp(δ) +Dp(δ) + δ < ε/2

for δ < δ5, then ∣∣∣fm−n−k(x)− ξ(m− k)
∣∣∣ < ε, 0 ≤ k ≤ m− u.

A similar estimate holds for ξ(n+ k) for 0 ≤ k ≤ s− n, which, combined with estimate (6), com-
pletes the proof.

Let p and q be two different fixed points of f . We write p � q if W u(p) ∩W s(q) �= ∅. Note that the
relation p � q implies the inequality V (p) > V (q). Hence, the “no cycle” condition is satisfied: relations

p � r1 � · · · � rm � p
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are impossible, and we can define the number L(p, q) as the maximal number m for which there exist
fixed points r1, . . . , rm−1 such that

[p � r1 � · · · � rm−1 � q]

If such points r1, . . . , rm−1 do not exist, we set L(p, q) = +∞.
It is easily seen that if L(p, r) < +∞ and L(r, q) < +∞, then L(p, q) < +∞ and L(p, q) ≥ L(p, r) +

L(r, q).
Lemma 2.3. There exist numbers d∗4 and δ∗4 such that if ξ ⊂ A is a d∗4-pseudotrajectory, p and q

are different fixed points, and

ξ(u) ∈ B(δ∗4 , p), ξ(v) ∈ B(δ∗4 , q)

for some u < v, then L(p, q) < +∞.
Proof. To get a contradiction, assume that for any natural k there exist 1/k-pseudotrajectories

ξk ⊂ A, different fixed points pk and qk, and numbers uk < vk such that L(pk, qk) = +∞,

ξk(uk) ∈ B(1/k, pk), and ξk(vk) ∈ B(1/k, qk).

Without loss of generality, we may assume that pk = p and qk = q for all k.
Recall that U(p) is a neighborhood of p containing no other fixed points. Denote

mk = min {t ∈ [uk, vk] : ξk(t) /∈ U(p)} .
Since A is compact, passing to a subsequence, we may assume that ξk(mk) → zp ∈ A. Then, zp ∈
W u(p). Besides, there exists a fixed point r1 such that zp ∈ W s(r1). If r1 = q, then L(p, q) < +∞, and
we get a contradiction with the relation L(p, q) = +∞. Otherwise, we find indices wk ∈ [uk, vk] such
that |ξk(wk)− r1| → 0 and repeat the above process getting a fixed point r2, and so on.

Due to the “no cycle” condition, this process cannot be infinite, and finally we get a fixed point rm = q,
so that L(p, q) < +∞. This contradiction completes the proof.

Lemma 2.4. For any ε > 0 and fixed points p �= q there exist d∗5(p, q) > 0 and δ∗5(p, q) > 0 such
that if ξ ⊂ A is a d∗5(p, q)-pseudotrajectory,

ξ(u) ∈ B(δ∗5(p, q), p), and ξ(v) ∈ B(δ∗5(p, q), q) (8)

for some v > u, then ξ(u, v) is oriented ε-shadowed by an elementary pseudotrajectory. In
particular, in this case, V (p) > V (q).

Proof. Let d∗4 and δ∗4 be given by Lemma 2.3.
If p �= q and L(p, q) = +∞, let d∗5(p, q) = d∗4 and δ∗5(p, q) = δ∗4 , then such a d∗5(p, q)-pseudotrajectory

cannot exist, and the statement of the lemma obviously holds. In what follows, we only consider p �= q
such that L(p, q) < +∞ and a d∗4-pseudotrajectory ξ satisfying relations (8) for some u < v. Note that
in this case, V (p) > V (q).

We prove the result using induction on L(p, q). Fix an ε > 0 and take the balls B(δ∗4 , πi) as the
neighborhoods U ′(πi) in Lemma 2.2 to get the corresponding values d∗ and δ∗ (assuming, in addition,
that d∗ < d∗4 and δ∗ < δ∗4).

For any pair of distinct fixed points p and q with L(p, q) = 1 set d∗5(p, q) = d∗ and δ∗5(p, q) = δ∗.
Assume that ξ ⊂ A is a d∗-pseudotrajectory satisfying (8).

If there exists a fixed point r different from p and q and such that ξ(u, v) ∩B(δ∗4 , r) �= ∅, then
Lemma 2.3 implies that L(p, q) ≥ L(p, r) + L(r, q), and we get a contradiction. Thus, our statement
is proved by Lemma 2.2 in the case L(p, q) = 1.

Take a natural l > 1 and assume that we have constructed all the desired values d∗5(p, q) and δ∗5(p, q)
for all fixed points p, q with L(p, q) < l. Now we consider the case of points p, q with L(p, q) = l.

Take d′5 = min{d∗5(p, q) : L(p, q) < l} and δ′5 = min{δ∗5(p, q) : L(p, q) < l}. Applying Lemma 2.2
with the fixed ε and U ′(πi) = B(δ′5, πi), we find the corresponding d∗ and δ∗ (assuming that d∗ < d′5 and
δ∗ < δ′5) for which the conclusion of Lemma 2.2 holds.

For any p �= q with L(p, q) = l set d∗5(p, q) = d∗ and δ∗5(p, q) = δ∗. Let ξ ⊂ A be a d∗(p, q)-
pseudotrajectory that satisfies relation (8) with indices u < v.
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If there exists a fixed point r �= p, q such that ξ(w) ∈ B(δ′5, r) for some w ∈ (u, v), then Lemma 2.3
impies the relation l = L(p, q) ≥ L(p, r) +L(r, q). In this case, L(p, r),L(r, q) < l, and by the induction
hypothesis, both ξ(u,w) and ξ(w, v) are oriented ε-shadowed by elementary pseudotrajectories. In this
case, ξ(u, v) is oriented ε-shadowed by an elementary pseudotrajectory by Statement 2.4.

Otherwise,

ξ(u, v) ∩

⎛
⎝ ⋃

r �=p,q

B(δ′2, r)

⎞
⎠ = ∅,

and the conclusion of our lemma follows from Lemma 2.2.
Now we prove the main result of the paper.

Theorem 2.1. Under the conditions formulated in Section 1, for any ε > 0 there exists a d > 0
such that any d-pseudotrajectory ξ ⊂ A is oriented ε-shadowed by an elementary pseudotrajec-
tory.

Proof. Fix an ε > 0 and find the numbers d∗5(p, q) and δ∗5(p, q) given by Lemma 2.4 for this ε and for
pairs p, q of different fixed points. Let d∗4 and δ∗4 be given by Lemma 2.3.

Denote

d∗5 = min{d∗5(p, q) : p �= q ∈ {π1, . . . , πN}} and δ∗5 = min{δ∗5(p, q) : p �= q ∈ {π1, . . . , πN}}.

Take U2(πi) = B(ε/2, πi) in Statement 2.2 and find the corresponding d∗2 and δ∗2 . Set δ =
min(δ∗2 , δ

∗
4 , δ

∗
5). Take

U1 =
N⋃
k=1

B(δ, πk)

in Statement 2.1 and find the corresponding d∗1 and T ∗
1 . Let d = min(d∗1, d

∗
2, d

∗
4, d

∗
5). Let ξ ⊂ A be a

d-pseudotrajectory. Denote by

p1, . . . , ps ∈ {π1, . . . , πN}, 1 ≤ s ≤ N,

all the different fixed points πi such that ξ ∩B(δ, πi) �= ∅. By Statement 2.1, s ≥ 1. Fix indices uj such
that

ξ(uj) ∈ B(δ, pj), j = 1, . . . , s.

Without loss of generality, we assume that u1 < u2 < · · · < us. By Lemma 2.3, this implies that
V (p1) > · · · > V (ps).

We consider the following two cases.

Case 1: s = 1. We claim that ξ ⊂ B(ε/2, p1). Otherwise, there exists an index v such that
ξ(v) /∈ B(ε/2, p1). First, we assume that v > u1. By Statement 2.2, ξ(k) /∈ B(δ, p1) for k ≥ v. Then,
it follows from Statement 2.1 that there exists a fixed point q such that ξ(v,+∞) ∩B(δ, q) �= ∅. By
Lemma 2.3, V (p1) > V (q), which contradicts the assumption that s = 1. The case v < u1 is considered
similarly.

Case 2: s ≥ 2. Similarly to the proof of Case 1, we can show that ξ(us,+∞) is oriented ε-shadowed
by the trajectory of ps and ξ(−∞, u1) is oriented ε-shadowed by the trajectory of p1. We prove only the
second statement.

We claim that ξ(−∞, u1) ⊂ B(ε/2, p1) from which our statement follows. Otherwise, there exists
a v < u1 such that ξ(k) /∈ B(δ, p1). Then, it follows from Statement 2.2 that ξ(k) /∈ (δ, p1) for k ≤ v.
Now Statement 2.1 implies that there exists a fixed point q such that ξ(−∞, v) ∩B(δ, q) �= ∅. Then,
V (q) > V (p1) by Lemma 2.3, which contradicts the choice of p1.

Applying Lemma 2.4, we conclude that ξ(u1, us) is oriented ε-shadowed by an elementary pseudo-
trajectory. To complete the proof, it remains to apply Statement 2.4.
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3. ORIENTED SHADOWING BY ELEMENTARY PSEUDOTRAJECTORIES
IN A NEIGHBORHOOD OF AN ATTRACTOR

Now we study how pseudotrajectories in a neighborhood of an attractor can be shadowed by
trajectories belonging to the attractor.

Given an ε > 0, we define the ε-neighborhood of the attractor A in a standard way:

Nε(A) = {x ∈ X : dist(x,A) < ε}.

The set A is compact, so for any neighborhood U of A there is an ε > 0 such that Nε(A) ⊂ U .
Besides, all the sets Nε(A) are bounded.

If the space X is finite-dimensional, any attractor A of an invertible mapping f has a neighborhood
U0 such that if x ∈ U0 \ A, then the negative semitrajectory of x leaves U0. A similar statement holds
true in many infinite-dimensional cases. Meanwhile, it is easy to construct pseudotrajectories that stay
in a small neighborhood of A.

Lemma 3.1. Assume that the mapping f is uniformly continuous in a neighborhood of A.
Then, for any ε > 0 there exist δ > 0 and d > 0 such that for any d-pseudotrajectory {xk ∈ Nδ(A) :
k ∈ Z} there exists a sequence {yk ∈ A : k ∈ Z} such that

dist(xk, yk) < ε (9)

and

dist(f(yk), yk+1) < ε. (10)

Proof. Let Nδ0(A) be a neighborhood of A in which f is uniformly continuous. Fix an ε > 0
and find a δ < min(ε/4, δ0) such that for x, y ∈ Nδ0(A), the inequality dist(x, y) < δ implies that
dist(f(x), f(y)) < ε/4.

Let {xk ∈ Nδ(A) : k ∈ Z} be a d-pseudotrajectory of f with d < δ. Find for any point xk a point
yk ∈ A such that dist(xk, yk) < δ. Then, inequalities (9) obviously hold and

dist(f(yk), yk+1) ≤ dist(xk+1, yk+1) + dist(f(xk), xk+1) + dist(f(yk), f(xk)) < δ + d+
ε

4
< ε,

which proves (10).
To say more about the shadowing near an attractor, one has to impose some sharper conditions on

the rate of convergence to A. In fact, we follow the idea of Theorem 3.4.1 of [9].
Assume that there exists a positive number B and a nonnegative function a(b, n) defined for b ∈ [0, B)

and n ≥ 0 and having the following properties:
(a1) The function a is bounded, i.e., there exists an α > 0 such that a(b, n) ≤ α for b ∈ [0, B) and

n ≥ 0;
(a2) if x ∈ NB(A), then

dist(fn(x),A) ≤ a((dist(x,A), n), n ≥ 0;

and
(a3) for any δ > 0 there exists an n0 = n0(δ) such that

a(b, n) ≤ δ, b ∈ [0, B), n ≥ n0.

In the often-studied case of so-called exponential attractors, one takes

a(b, n) = a0bμ
n with a0 ≥ 1, μ ∈ (0, 1).

Lemma 3.2. Assume that a mapping f is Lipschitz continuous in a the ε-neighborhood Nε(A)
of the attractor A and there exist a B ∈ (0, ε) and a function a defined for b ∈ [0, B) and n ≥ 0
and having properties (a1)–(a3). Then, there exists a number B1 > 0 such that for any δ > 0
we can find a d > 0 with the following property: If Y is a d-pseudotrajectory of f belonging to
NB1(A), then Y is 2δ-shadowed by a (2δ(l + 1) + d)-pseudotrajectory belonging to A, where l is
a Lipschitz constant of f in Nε(A).
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Proof. Take B1 = min(B,B/(2α)). Clearly, if y ∈ NB1(A), then

dist(fk(y),A) ≤ αB1 < B, k ≥ 0. (11)

Let Y = {yn} be a d-pseudotrajectory in NB1(A) (and hence in NB(A)). Take an arbitrary δ > 0 and
an index n ∈ Z and set m = n− n0, where n0 = n0(δ). Then,

dist (fn0(ym),A) ≤ a(B,n0) ≤ δ.

Since yk ∈ NB1(A) for k ≥ m and inequalities (11) hold

dist(fn0(ym), yn) ≤ d1 := d
(
1 + l + · · · + ln0−1

)
. (12)

Then,

dist(yn,A) ≤ dist (fn0(ym),A) + dist (fn0(ym), yn)) ≤ δ + d1.

This inequality holds for any n. Since n0 only depends on δ, it follows from (12) that we can find a d (also
depending only on δ) such that

dist (yn,A) < 2δ, n ∈ Z.

Find a point xn ∈ A such that |xn − yn| ≤ 2δ. Then,

|f(xn)− xn+1| ≤ |f(xn)− f(yn)|+ |f(yn)− yn+1|+ |yn+1 − xn+1| ≤ δ1 := 2δ(l + 1) + d.

Thus, the pseudotrajectory Y is 2δ-shadowed by a δ1-pseudotrajectory on the attractor.
Now the following statement is an obvious corollary of Theorem 2.1 and Lemma 3.2.
Theorem 3.1. If a mapping f satisfies the assumptions of Theorem 2.1 and Lemma 3.2, then

there is a neighborhood U of the attractor A with the following property: for any ε > 0 there
exists a d > 0 such that any d-pseudotrajectory of f belonging to U is oriented ε-shadowed by
an elementary pseudotrajectory.

4. APPLICATION TO SEMIGROUPS GENERATED BY PARABOLIC PDES

As an application of our main result, we consider the infinite-dimensional semigroup generated by a
parabolic PDE.

In this section, we refer to the results of the books [6, 7] and papers [3, 4]. We consider the boundary-
value problem for a parabolic partial differential equation

ut = uxx + F(u), u ∈ R, t > 0, x ∈ [0, 1], (13)

with the Dirichlet boundary conditions

u(0, t) = u(1, t) = 0 (14)

assuming that F ∈ C2([0, 1]) and that

uF(u) ≤ C (15)

for some C > 0.
Let H1 = H1([0, 1]) be the space of functions in L2([0, 1]) having the derivative belonging to

L2([0, 1]) and endowed with the standard norm

||v||H1 =

⎛
⎝

1∫

0

|v|2dx

⎞
⎠

1/2

+

⎛
⎝

1∫

0

|vx|2dx

⎞
⎠

1/2

.

Let H := H1
0 be the closure in H1 of the set of functions from C∞

0 ([0, 1]) (the C∞ smooth functions v
satisfying the condition v(0) = v(1) = 0).

It was shown in [7] that condition (15) implies the existence of a semigroup ϕ : R+ ×H �→ H which
represents the semiflow of the considered boundary value problem.
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Moreover, that semiflow is gradient-like: the energy functional

1∫

0

(
1

2
u2x − G(ϕ(x))

)
dx

is decreasing along any non-constant trajectory of the flow ϕ. Here

G(u) =
1∫

0

F(s)ds.

This is a Lyapunov function satisfying condition (LF).

We relate to the semigroup ϕ a mapping f of the space H by setting f(v) = ϕ(1)v (the time-1 shift
mapping). Since φ(t) is of class C2 for t > 0 (which is well-known), f is of class C2 as well.

If condition (15) is satisfied, the semigroup ϕ (and the mapping f ) has a compact global attractor A
in the space H [6]. It is also known that, under our conditions, ϕ(t)u0 (t > 0, u ∈ H) admits the Fréchet
derivative with respect to u0. Moreover, for any fixed t > 0 and any bounded set X ⊂ H, there exists a
c(t,X) such that

|ϕ(t)v − ϕ(t)v0| ≤ c(t,X)|v − v0|

for any v, v0 ∈ X. Thus, the mapping f satisfies a Lipschitz condition in a neighborhood of the attractor.

To apply our previous results to the mapping f , let us recall some known statements.

A fixed point p = p(x) of ϕ is a solution of the boundary-value problem

pxx + F(p) = 0, p(0) = p(1) = 0. (16)

Observe that p is also a fixed point for the mapping f . Clearly, all these fixed points of ϕ (and also of
f ) belong to the global attractor A.

A fixed point p of ϕ is hyperbolic (in the sense of Section 1) if and only if 0 is not an eigenvalue of the
linear variational operator

Ψ :=
d2

dx2
+ F ′

u(p(x))

with the Dirichlet boundary conditions (observe that all the eigenvalues of that operator are real, of
multiplicity 1, and tend to −∞). Clearly, a fixed point p of ϕ is hyperbolic if it is a hyperbolic fixed point
of f .

Given a positive integer k ≥ 2, denote by G the space of Ck smooth functions from R to R with the
strong Whitney Ck-topology.

Let us mention the result of Corollary 3.2 of [3] (note that we have slightly changed the original
formulation).

Theorem 4.1. There is a residual set G1 in G such that for any F ∈ G1, all fixed points of ϕ are
hyperbolic.

This result implies that the mapping f satisfies condition (MS1) for a residual subset of functions F .

Let p be a hyperbolic fixed point of ϕ (and of f ). The stable manifold W s
ϕ(p) and the unstable manifold

W u
ϕ (p) for the semigroup ϕ obviously coincide with the corresponding manifolds W s

f (p) and W u
f (p) for

the mapping f (let us denote them simply by W s(p) and W u(p), respectively).

It follows from the stability of the global attractorA that for any fixed point p of f , its unstable manifold
W u(p) is a subset of A.
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The compactness of the global attractor A implies that for any fixed point p of f , its unstable manifold
W u(p) is finite-dimensional.

The spectrum of the operator Df(p) is{
· · · < eλ2t < eλ1t < eλ0t

}
,

where {λ0 > λ1 > λ2 > . . .} are the eigenvalues of Ψ. In this case, only a finite number of eigenvalues
of Ψ is positive, say N . Clearly, N coincides with the index of p, i.e., the dimension of W u(p).

The manifold W u(p) is diffeomorphic to R
N , where N = N(p), and the semiflow on W u(p) (the

restriction of ϕ) is conjugate to that generated by a C1 vector field on R
N denoted by F . Identify p with

with the origin in R
N , then the linear part of F at p, F ′(p), has eigenvalues λ0 > λ1 > · · · > λN−1 > 0.

Consequently, the flow ϕ can be reduced to a finite-dimensional flow generated by an autonomous
system of ordinary differential equations on any unstable manifold W u(p). Evidently, such a flow is
invertible, hence it is invertible on the whole attractor A.

We have shown that all the assumptions (A1)–(A3), (MS1), (MS2), and (LF) of Section 1 are
satisfied for mappings f related to a residual set of the functions F . Therefore, for a typical function F ,
the time-1 shift for the semigroup ϕ of the problem (13)–(14) satisfies the conditions of our Theorem 2.1
(and, hence, of Theorem 3.1).

At the end of this section, we make a short comment concerning the transversality condition (MS3).
It is well-known that for the semiflow generated by the parabolic equation (13) (as well as by some more
general equations) with scalar variable u, the stable and unstable manifolds of two hyperbolic fixed points
are always transverse (see, for example, [1]).

At the same time, Poláčik have constructed in [13] an example of a parabolic equation ut = Δu+
F(u) with the Dirichlet boundary condition on a bounded domain Ω ⊂ R

2 such that its semiflow has two
hyperbolic fixed points whose stable and unstable are not transverse. In this paper, we do not discuss
this example in detail.
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4. P. Brunovský and P. Poláčik, “The Morse–Smale structure of a generic reaction-diffusion equation in higher

space dimension,” J. Differ. Equat. 135, 129 (1997).
5. C. Foias, G. R. Sell, and R. Temam, “Inertial manifolds for nonlinear evolutionary equations,” J. Differ. Equat.

73, 309 (1988).
6. J. K. Hale, Asymptotic Behaviour of Dissipative Systems, Vol. 25 of Mathematical Surveys and

Monographs (Am. Math. Soc. Providence, RI, 1988).
7. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Vol. 840 of Lecture Notes in Mathe-

matics (Springer, Berlin, 1981).
8. M. Li and X. Liu, “Oriented and orbital shadowing for vector fields,” Discrete Contin. Dyn. Syst. 42, 5087

(2022).

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 45 No. 12 2024



ORIENTED SHADOWING BY ELEMENTARY PSEUDOTRAJECTORIES 6551

9. S. Yu. Pilyugin, Shadowing in Dynamical Systems, Vol. 1706 of Lecture Notes in Mathematics (Springer,
Berlin, 1999).

10. S. Yu. Pilyugin and K. Sakai, “C0 transversality and shadowing properties,” Proc. Steklov Inst. Math. 256,
290 (2007).

11. S. Yu. Pilyugin, K. Sakai, and O. A. Tarakanov, “Transversality properties and C1-open sets of diffeomor-
phisms with weak shadowing,” Discrete Contin. Dyn. Syst. 16, 871 (2006).

12. S. Yu. Pilyugin and S. B. Tikhomirov, “Vector fields with the oriented shadowing property,” J. Differ. Equat.
248, 1345 (2010).
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