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Abstract—In this paper, we examine a class of multicriteria choice problems where the decision maker’s pref-
erences are modeled using interval-valued second-order fuzzy relations. We formulate foundational axioms
of reasonable choice that, among other things, enable us to justify the Edgeworth–Pareto principle within this
context. We introduce the concept of a quantum of interval fuzzy information, as well as the notion of a con-
sistent set of such quanta. We establish a criterion for the consistency of a set of quanta and present a frame-
work for utilizing interval fuzzy information to reduce the Pareto set. To illustrate the proposed approach, we
analyze a detailed example.
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INTRODUCTION
Optimal choice problems involving multiple

numerical criteria form a broad and practically signif-
icant class of decision-making tasks. The objective in
solving a multicriteria selection problem is to identify
the best option from a set of feasible alternatives or,
alternatively, to determine a subset of such alterna-
tives. A fundamental tool in solving this class of prob-
lems is the Edgeworth–Pareto principle, which posits
that only Pareto-optimal solutions can be considered
best. However, the Pareto set is typically extensive,
and final selection within this set often proves chal-
lenging. This gives rise to the problem of narrowing the
Pareto set [1], which cannot be resolved without addi-
tional information from the decision maker (DM).

The primary source of this additional information
lies in the preferences of the DM, which are expressed
in the form of so-called quanta of information [1]. In
the simplest case, possessing such a quantum allows
the DM to eliminate one of two compared alterna-
tives, thereby simplifying the selection process. By
adopting certain axioms that regulate the selection
procedure, the use of a single quantum can signifi-
cantly reduce the set of Pareto-optimal options. When
a set of quanta is available, a substantial narrowing of
the Pareto set becomes possible, thereby greatly sim-
plifying the decision-making process.

The identification of quanta of information typi-
cally takes place through dialogue with the DM, but
this process can present certain challenges. When mul-
tiple criteria are involved, determining which of two
alternatives is preferable can often be difficult for the
DM. On the one hand, one option may exhibit several

advantages over the other, offering a strong basis for
considering it a good choice within the pair. On the
other hand, the same option may have drawbacks that
render its selection questionable, relegating it to the
category of bad options. In other words, for the DM,
classifying potential choices as simply good or bad
may be overly simplistic in such situations. A more
flexible and useful approach involves fuzzy set theory,
where the DM is asked to assign a specific value from
the interval [0,1] to a pair of alternatives. This value
represents the degree of confidence that one option is
clearly preferable to the other.

Recently, second-order fuzzy sets have acquired
significant traction in applied research, with a sub-
stantial body of work devoted to their study and appli-
cation [2–6]. Of particular interest is a simpler class of
these sets—interval second-order fuzzy sets [7–10].
First introduced in [7], these sets are frequently used
in various applied studies [11–12].

In this paper, we assume that the DM’s preference
relation is modeled as an interval second-order fuzzy
relation. Such a relation allows for the modeling of
uncertain situations, where the DM’s confidence that
one option is preferable to another is blurred due to
measurement inaccuracies or other factors and thus
falls within a certain range.

Section 1 introduces the fundamental concepts of
fuzzy set theory, including fuzzy sets and second-
order fuzzy relations. In Section 2, we formulate the
multicriteria choice problem with an interval second-
order fuzzy preference relation, alongside the axioms
of rational choice and the Edgeworth–Pareto princi-
ple for this class of problems. Section 3 introduces the
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Fig. 1. Example of an IVFR2 on a numerical axis.
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central concept of this work—the quantum of interval
fuzzy information regarding the DM’s preference rela-
tion. This section also outlines the process of using
one or several quanta to narrow the Pareto set. Section
4 defines what constitutes a consistent set of quanta
and provides the necessary and sufficient conditions
for such consistency. The article concludes with Sec-
tion 5, which presents an illustrative example of using
quanta of interval fuzzy information to narrow the
Pareto set according to the proposed framework.
Proofs of the Edgeworth–Pareto principle and the
consistency criterion are included in the Appendix.

1. FUZZY SET INFORMATION
A fuzzy set (first order) X within a universal set A is

defined by its membership function, .
For each element , the value  is interpreted
as the degree of membership of  in the fuzzy set X.
A fuzzy set can be viewed as a collection of ordered
pairs , where  and . This is
often how fuzzy sets are formally defined.

When А corresponds to the set of real numbers
, the fuzzy set is referred to as a fuzzy number.

A fuzzy set is considered normal if the supremum of its
membership function  over the set A equals 1. A
fuzzy number is, by definition, a normal convex fuzzy
set. Convex fuzzy sets are characterized by the property
that their α-level sets, defined as ,
form bounded convex subsets of the real line.

For a crisp set, unlike a fuzzy set, the membership
degree is either  or . Therefore, if  is
a crisp set, then , and  if .
However, for a fuzzy set X, the membership degree can
take any intermediate value between 0 and 1. The
greater the membership degree , the less
uncertainty that , belongs to .

In practice, there may be situations where, due to a
high level of uncertainty, it becomes difficult to assign
a precise membership degree for any element . In
such cases, instead of assigning a specific number, one
may use a first-order fuzzy number to represent the
degree of membership. If the membership degree of an
element x in set A is itself a fuzzy number defined on

: [0,1]X Aλ →
x А∈ ( )X xλ

x

( , ( ))Xx λ ⋅ x A∈ ( ) [0,1]X xλ ∈

A = R

( )Xλ ⋅

{ | ( ) }Xx x∈ λ α≥R

x X∈ x X∉ x X∈
( ) 1X xλ = ( ) 0X xλ = x X∉

( ) (0,1)X xλ ∈
( )X xλ x X∈

X
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, then X is called a second-order fuzzy set (2FS).
Formally, 2FS X is defined as a set of triples

, where  and
. The value u is called the primary

membership degree, while  is the secondary
membership degree that is associated with element x.
According to this definition, each element  is
assigned a function  that is defined on [0,1] and
takes values within the same interval. This function
describes the type of uncertainty related to the mem-
bership of x in the 2FS X.

An 2FS X is referred to as an interval-valued fuzzy
set (IVFS) if, for each element  there exist two
values , denoted as the lower and
upper bounds, such that the secondary membership
degree  can be represented as:

Another name for IVFS is an interval-valued fuzzy
set [8]. An IVFS X is fully characterized by its lower
and upper bounds,  and , which assign to
each element  a range  of
possible values representing the degree of membership
of x to the set X (Fig. 1).

The greater the difference , the
higher the uncertainty associated with the second-
order fuzziness of element x membership to set X. In
the case of a first-order fuzzy set, there is no difference
between the lower and upper bounds: .

Set-theoretic operations such as intersection and
union, as well as the inclusion relation for IVFS, are
defined as follows (for each ):

• intersection 

• union 

• inclusion A  B 

It is easy to see that applying these operations
results in another IVFS. In other words, the class of IVFS
is closed under standard set-theoretic operations.

A first-order fuzzy binary relation is defined as a fuzzy
subset of the Cartesian product . Its membership
function takes two arguments: .

An interval-valued fuzzy relation of the second order
(IVFR2) s defined by two components—the upper
bound  and the lower bound , which
assign to each pair  a set

[0,1]

( , , ( , ))Xx u x uλ , [0,1]x A u∈ ∈
( , ) [0,1]X x uλ ∈

( , )X x uλ

x A∈
( , )X xλ ⋅

x A∈
( ), ( ) [0,1]X Xx x− +λ λ ∈

( , )X xλ ⋅

if ( ) ( )
( , )

1,    ,
0,  otherwise

X X
X

x u x
x u

− +λ ≤ ≤ λ
λ

 
=  
 

( )X x−λ ( )X x+λ
x A∈ [ ( ), ( )] [0,1]X Xx x− +λ λ ⊂
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x A∈
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( ) min{ ( ); ( )};A B A Bx x x+ + +
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( ) max{ ( ); ( )},A B A Bx x x− − −
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( ) max{ ( ); ( )};A B A Bx x x+ + +
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 ⊂ ⇔
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 of possible confidence values
that element  is in relation to element . It is assumed
that  for all pairs .

IVFR2 is called
• irreflexive if there does not exist any , for

which ;

• Asymmetric if  for all , such
that ;

• transitive if  and

 for all .
It is easy to verify that every irreflexive and transi-

tive interval-valued fuzzy relation is also asymmetric,
just as in the crisp case.

2. MULTICRITERIA CHOICE
PROBLEM WITH IVFR2

Let the DM be tasked with selecting one or more
options from a crisp set of alternatives X of arbitrary
nature. Let C(X) denote the set of selected alternatives,
which constitutes the solution to the multicriteria
choice problem and is to be determined.

The distinctive feature of a multicriteria choice
problem, as opposed to a single-criterion problem, is
that there is no single, universally accepted idea of a
solution. This distinction arises because the set C(X) is
usually formed in the decision-making process and
depends not only on X, but also on various factors
directly related to the DM. We do not introduce a
strict definition of the set of selected alternatives
because such a definition does not exist universally.
Nevertheless, the following exposition remains math-
ematically consistent.

Each potential alternative in the set  is evaluated
using a set of numerical criteria , that is
defined on this set. Without loss of generality, we
assume that each criterion should be maximized. It is
clear that the best alternative, from a practical per-
spective, would be one that maximizes all m criteria
simultaneously. However, such an alternative is rarely
feasible, and the DM must typically reach a compro-
mise to conclude the decision-making process. This
compromise is entirely dependent on the DM and
their individual preferences, which is why there is no
single universally accepted solution concept for all
potential DMs in a multicriteria selection problem.

To capture the preferences of the DM for the set X,
we introduce an asymmetric binary relation  called
the DM’s preference relation. In the case of a crisp
preference relation, the expression  for two
alternatives  signifies that the DM would choose
x' over x''. In this work, we consider the situation where
the preference relation is represented by an interval-

[ ( , ), ( , )] [0,1]A Ax y x y− +μ μ ⊂
x y

( , ) ( , )A Ax y x y− +μ ≤ μ ( , )x y A A∈ ×

x A∈
( , ) 0A x x+μ =

( , ) 0A x y+μ = ,x y A∈
( , ) 0A y x−μ >

( , ) min{ ( , ), ( , )}A A Ax z x y y z− − −μ ≥ μ μ

( , ) min{ ( , ), ( , )}A A Ax z x y y z+ + +μ ≥ μ μ , ,x y z A∈

X

1 2, ,..., mf f f

X�

' "Xx x�

', "x x
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valued fuzzy relation of the second order (IVFR2).
This allows us to formalize the DM’s preferences by
specifying bounds within which the degree of confi-
dence that one option is preferable to another can vary.
Such situations often arise due to inaccuracies or
uncertainties in the DM’s understanding of their own
preferences.

Let  and  denote the lower and upper
bounds of the IVFR2 preference relation . Because
the preference relation , in the multicriteria selec-
tion problem IVFR2 is considered, it is natural to
assume that the set of selected alternatives  also
has an analogous nature, i.e., it is an interval-valued
fuzzy set of the second order (IVFS2). We denote its
lower and upper bounds by  and , respec-
tively.

The following four axioms prescribe, in a certain
sense, the rational behavior of the DM during the
decision-making process:

Axiom 1. The inequalities 

and  hold for .
In the crisp case, Axiom 1 requires that an alterna-

tive not selected from a pair (i.e., when
) should not be selected from

the entire set of possible alternatives (i.e.,
). In the fuzzy case, such cate-

gorical distinctions are softened due to the uncertainty
that arises from the fuzziness of the preference relation.

For each element , its image
f(x)  is called its feasible
vector, and  is

the set of all feasible vectors. Here,  represents an
arithmetic space of m-dimensional vectors with standard
vector addition and scalar multiplication operations.
This space is referred to as the criterion space.

The relation  induces a corresponding preference
relation  on the set Y as follows:

with , where  is the set of equivalence

classes on , induced by the equality relation on .

Axiom 2. Across the entire space , there exists an
irreflexive and transitive IVFR2 relation with compo-
nents , whose restriction to the set Y coincides
with с .

This axiom asserts that the fuzzy irreflexive and
transitive relation  can be extended to the entire cri-
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X
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terion space  while preserving the properties of irre-
flexivity and transitivity.

Axiom 3. For any pair of vectors , such that

 for some  and  for all other

, it holds that .
This axiom reflects the DM’s interest in maximiz-

ing each of the given criteria.
Axiom 4. The IVFR2 relation  is invariant under

any positive linear transformation, i.e.,

for all  and every .

Recall that the Pareto relation  on the space  is
defined by the equivalence:

The (crisp) set of Pareto-optimal alternatives is then:

Pareto Axiom. The inequality  implies

.
It is easy to see that the Pareto Axiom implies

Axiom 3, though the converse is not true.
Edgeworth–Pareto Principle. Acceptance of Axiom 1

and the Pareto Axiom guarantees that for any IVFS2
C(X) the inclusion C(X)  Pf (X) holds. In terms of mem-
bership functions, this is expressed by the inequality:

(1)

where λP(x) is the characteristic function of the Pareto set.
For fuzzy second-order relations, this principle was

established in [13]. Here, it is formulated and proven
(see the Appendix) for the case of IVFR2. This princi-
ple plays a crucial role in multicriteria choice prob-
lems. According to it, for a sufficiently broad class of
multicriteria delete problems—specifically, those that
comply with Axiom 1 and the Pareto Axiom—any
selection must lie within the Pareto set. It is notewor-
thy that transitivity of the preference relation is not
required for the Edgeworth–Pareto principle to hold.

3. QUANTA OF FUZZY INFORMATION
AND THE SCHEME OF THEIR USE

Assuming Axioms 1–4 are satisfied, we can now
introduce the key concept of this work.

Definition 1. Let A and B be two non-empty, non-
overlapping subsets of the index set of criteria

. We say that a quantum of IVFR2 informa-

mR

, ' my y ∈ R

'i iy y> {1,2,..., }i m∈ 'j jy y=
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⊂
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{1,2,..., }I m=
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tion is specified with these groups of criteria and two sets
of positive parameters  for all  and  for along

with a confidence interval  if

, , where the vector 
has components:

(2)

In this definition, group  is considered to
be more important than group B .

As noted, IVFR2 plays a central role in this defini-
tion, with its existence guaranteed by Axiom 2. The
lower and upper components of this relation are
denoted by  and .

According to Definition 1, any vector

with components that are defined by equation (2) can
form a quantum of IVFR2 information, provided that

 and  hold for some values of

. For instance,

 and  define the
simplest quantum of interval fuzzy information can
specify that criterion 1 is more important than crite-
rion 2 for the DM, with parameters  and
a confidence range .

Let us discuss the potential use of quanta of interval
fuzzy information to reduce the Pareto set. In the case
of a single quantum, we rely on the following result,
which addresses the use of first-order fuzzy preference
information. For this, we must define the set of selected
vectors  with a membership function

and the set of Pareto-optimal vectors 
with a characteristic function:

where  denotes the set of equivalence classes that are

induced by the equality relation on .
Theorem 1 [1]. Let a quantum of first-order fuzzy

preference information be given, with non-empty, non-
overlapping groups of criteria indices , , positive
parameters  for all  and a confidence
level . Then, for any first-order fuzzy set of

selected vectors with a membership function  the fol-
lowing inequalities hold:

iw i A∈ jw
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where  is the characteristic function of the Pareto-

optimal set, and  is the membership function,
defined by:

Here, , 
, the vector  (and likewise ) consists of com-

ponents , (correspondingly,
), while the remaining components

are  (correspondingly, ) for all
.

The formulation of Theorem 1 demonstrates that,
to construct a first-order fuzzy set with membership
function , and thereby narrow down the Pareto
set based on a quantum of first-order fuzzy informa-
tion, two multicriteria problems need to be solved.
More precisely, we need to determine the Pareto sets
in two multicriteria problems. We begin by construct-
ing the Pareto set for a multicriteria problem with a
vector function f and a set of possible alternatives .
Once the Pareto set is identified, each vector in the set
should be assigned a membership degree of 1, while all
other vectors receive a membership degree of 0. Next,
we solve another multicriteria problem on the same set
X, but this time with a new (recalculated) p-dimen-
sional vector function whose components are  for all

 and  for all . Any vec-
tor from the old Pareto set that does not belong to the
new Pareto set will now receive a membership degree
of 1− . In this way, we achieve a reducing of the
Pareto set, where the final set of selected vectors will lie.

If the set of frasible vectors  is infinite, construct-
ing the function  as per Theorem 1 can be compu-
tationally challenging. However, for the finite set ,
the task is considerably simplified. The Pareto set can
be found by exhaustively comparing all pairs of feasi-
ble vectors and evaluating them according to the
Pareto relation.

Based on the formulas that define the function ,
it is evident that the consideration of a single quantum
of interval-valued fuzzy information of the second
order can be reduced to a two-step application of The-
orem 1. Specifically, one first applies it to one compo-
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Y M y y Yλ ⋅ ≤ λ ≤ ∈

( )P
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nent of the interval fuzzy relation, for instance, using
, in Theorem 1, and then to the other compo-

nent, using . As a result, each element of the set

of feasible vectors is assigned two values,  and ,
where the former provides the lower bound of the
membership degree, and the latter provides the upper
bound. This process yields an upper estimate for the
set of selected vectors  in the form of an interval-
valued fuzzy set of the second order, characterized by

the components .

If this upper estimate turns out to be overly broad,
making the final selection for the DM difficult, the
resulting interval-valued fuzzy set of the second order
can be defuzzified to a first-order fuzzy set. This can
be done by taking, for example, the average of the val-

ues  and  as the degree of membership. After-
ward, a heuristic approach as presented in [16] is rec-
ommended. This approach involves appending the
membership function of the resulting first-order fuzzy
set to the existing set of criteria, followed by applying a
suitable scalarization method for the multicriteria
problem. This process allows for the completion of the
final selection.

When the DM has access to a set of quanta of inter-
val-valued fuzzy information, the aforementioned
considerations remain applicable. However, instead of
using Theorem 1, one should employ a theorem suit-
able for this context from [1] or the general algorithm
described in [17].

4. CONSISTENCY OF A SET OF FUZZY 
INFORMATION QUANTA

According to Definition 1, each vector  of
the form (2) constitutes a quantum of interval-valued
fuzzy information if it is deemed preferable to a null
vector with a certain degree of confidence. When con-
sidering a set of such vectors individually, each clearly
represents a corresponding quantum. However, ana-
lyzing them collectively may reveal inconsistencies
with the foundational system of Axioms 1–4. In such
cases, the sets of vectors cannot be used for narrowing the
Pareto set and will be referred to as inconsistent sets.

Suppose there is a set of vectors ,
, along with a set of pairs of numbers

 such that , ,

, for each .
Without loss of generality for subsequent discussions,
let .

−μ = μ
+μ = μ

M
−λ M

+λ

( )C Y

,M M
− +λ λ

M
−λ M

+λ

mu ∈ R

1 2, ,..., k mu u u ∈ N
1k ≥

, (0, 1]i i
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+ + +≥ μ ≥ μ ≥ ≥ μ >
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Definition 2. A set of vectors 

together with a set of numbers 

, , forms a
consistent set of interval-valued fuzzy information quanta if
there exists an IVFR2 relation with components

, that satisfies Axioms 2–4 and also meets

the conditions ,
. Otherwise, the set of vectors is termed

inconsistent.

Definition 2 is a direct generalization of the defini-
tion of a consistent set of first-order fuzzy information
quanta provided in [1].

Let  represent a unit vector in space ,
. We introduce precise polyhedral cones

, , generated by the set of vectors

 along with vectors , . It is evi-
dent that .

The following theorem establishes the criterion for
the consistency of a set of interval-valued fuzzy infor-
mation quanta.

Theorem 2. Suppose Axioms 2–4 hold, and

. The set of vectors

 with the set of numbers

 ,

 is consistent if and only
if the system of linear equations

(3)

has no solution 

 and additionally, each cone ,

, contains only vectors , for which

 and .

The proof of this result, which can be found in the
Appendix, generalizes the consistency condition for
first-order fuzzy relations, previously derived by the
author [1]. As in the case of precise relations, standard
linear programming algorithms can be applied to ver-
ify this condition (see Theorem 4.3 [1]). The second
consistency condition in Theorem 2, related to the
cone , can also be reduced to solving a specific linear
programming problem since fulfilling this condition
means representing a given vector as a non-negative
linear combination of the set of vectors that form the
cone .
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For problems of small dimensionality, one can ver-
ify the consistency of a given set of vectors without
resorting to linear programming techniques.

It is worth noting that in [14], the concept of a con-
sistent set of information quanta was introduced for
the general case of second-order fuzzy relations,
including a general approach outlined for using it to
narrow the Pareto set [15]. The definition introduced
here differs from that in [14] as it takes into account
the specificity of interval-valued fuzzy relations,
which, in the author’s view, makes it more suitable for
the considered problems involving IVFR2.

5. ILLUSTRATIVE EXAMPLE
Let us consider an example involving the applica-

tion of a set of interval-valued fuzzy information
quanta, assuming that Axioms 1–4 hold. Suppose

, where:

In this case, the set of Pareto-optimal vectors consists
of three elements, with the characteristic function

,  0.
Vectors that are not Pareto-optimal can be excluded
from further consideration, as the Edgeworth–Pareto
principle dictates that they should not be selected.

Suppose the DM provides the information that the
first criterion is more important than the second with
parameters  0.4,  and with a confidence
degree in the range [0.6, 0.8]. Additionally, the first
criterion is considered more important than the third

with parameters  0.5,  and a confidence
interval of [0.4, 0.7].

First, we verify the consistency of this information.

Here, , , and the
system of linear equations (3) takes the form:

If we assume that this system is consistent, then
considering the non-negativity of all variables, the
first equation implies that . Then,
from the other two equations, we find that the remain-
ing variables are also equal to zero: .
Therefore, the system (3) does not have any non-zero
nonnegative solutions.

Next, we check the fulfillment of the second con-
dition in Theorem 2. We have  and

{ }1 2 5 3, ,...,Y y y y= ⊂ R

( ) ( ) ( )
( ) ( )

1 2 3

4 5

4,3,5 , 5,2,3 , 4,3,3 ,

5,2,7 , 2,5,5 .

y y y

y y

= = =
= =

( ) ( ) ( )1 4 5 1P P P
Y Y Yy y yλ = λ = λ = ( ) ( )2 3P P

Y Yy yλ = λ =

1'w = 2' 0.6w =

1"w = 3
" 0.5w =

1 (0.4, 0.6,0)u = − 2 (0.5,0, 0.5)u = −

1 1 2

2 1

3 2

0.4 0.5 0;
0.6 0;
0.5 0.

λ + ξ + ξ =
λ − ξ =
λ − ξ =

1 1 2 0λ = ξ = ξ =

2 3 0λ = λ =

1 0.8 0.6> >
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, and also . In
this case, the cone  is generated by vectors

. It does not contain the vector  since the
linear system of equations:

has no nonnegative solutions.
To incorporate the given fuzzy information, Theo-

rem 2 is not applicable, as we are dealing with two
quanta. Instead, we use Theorem 7.6 from [1], which
addresses similar situations involving two quanta.
According to this theorem, and using its notations for the
new second criterion, we obtain: .
Thus, the representatives of the new set of Pareto-
optimal vectors are:

Here, the Pareto set consists of two vectors—the
first and the fourth. According to the recommenda-
tions of Theorem 7.6 [1], for the lower bound, we assign:

Next, following the same theorem, we introduce a pair
of new (second and third) criteria ,

, and also form an additional fourth
criterion . We find the cor-

responding new image (excluding ):

Here, the Pareto-optimal vector is . As a result,
we derive the following upper estimate for the lower
bound of the unknown fuzzy set of selected vectors:

Similarly, for the upper bound, we get:

The resulting IVFR2 set  is a narrowed version
of the initial Pareto set, using the specified two quanta
of interval-valued fuzzy information. It is evident that
the best candidate for selection is the fourth vector, as
its degree of membership equals 1. The first vector fol-
lows, then the fifth. The remaining vectors should not
be part of the selected set under any circumstances
since they are not Pareto-optimal.
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CONCLUSIONS
Information regarding the interval-valued fuzzy

preference relation of the DM in the form of corre-
sponding quanta can be utilized when solving multi-
criteria decision-making problems. For this purpose,
the DM must accept four axioms of reasonable choice,
for which the corresponding fuzzy variant of the Edge-
worth–Pareto principle holds. Further narrowing of
the Pareto set is proposed using quanta of interval-val-
ued fuzzy information of the second order, following the
described scheme, which allows leveraging previously
obtained results based on first-order fuzzy quanta.

A criterion for the consistency of a finite set of
interval-valued fuzzy quanta has been established, and
its verification, in general, can be performed using lin-
ear programming methods. The illustrative example of
a low-dimensional multicriteria decision-making
problem demonstrates the possibility of accounting for
multiple quanta of interval-valued fuzzy information
without resorting to complex calculations or employ-
ing linear methods of programming.

Appendix

PROOF
OF THE EDGEWORTH-PARETO PRINCIPLE

Assume that inequality (1) is violated for some
 meaning . In the right-hand side

of the inequality, the characteristic function of the
Pareto set is written. It can only take two values—0 or 1.
The second value is not possible in this case, so we
arrive at the equality , indicating that the
element  is not Pareto-optimal. Consequently,

 and for  here exists an element such 
that . From this, according to the Pareto
Axiom, we obtain , and subsequent appli-
cation of Axiom 1 immediately leads to equality

, which contradicts the previously obtained

inequality . This contradiction establishes
the validity of inequality (1).

PROOF OF THEOREM 2

Necessity. Let the set of vectors 
together with the set of numbers  
form a consistent set of interval-valued fuzzy informa-
tion quanta in the sense of Definition 2. Consider a first-
order fuzzy relation with membership function .
This relation satisfies Axioms F2–F4 [1] and, together
with the numbers, defines a consistent set in the sense

x X∈ ( ) ( )C Px x+μ > λ

( ) 0P xλ =
x

( ) 0C x+μ > x 'x X∈
( ') ( )f x f x≥

( ', ) 1x xμ =
�

( ) 0C x+μ =
( ) 0C x+μ >

1 2, ,..., k mu u u ∈ N

(0, 1],i
−μ ∈ 1,2,..., ,i k=

(, )+μ ⋅ ⋅
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of Definition 7.2 [1]. Considering the inequalities
, we apply Theorem 7.2 [1].

According to this theorem, the system of linear equa-
tions (3) has no solution

 More-

over, each cone ,  does not contain

vectors  for which . This means that each

such cone contains only vectors  for which .

Consider a first-order fuzzy relation with member-

ship function . Due to ,

each cone Cl contains only those vectors  for which

, .

Sufficiency. Suppose the system of linear equations
(3) has no solution 

 and each cone ,

 contains only those vectors  for

which  and .

Consider a first-order fuzzy relation with membership
function . According to Theorem 7.2 [1], taking into

account the inequalities , the

set of vectors  together with the set of num-
bers   form a consistent set of
first-order fuzzy information quanta in the sense of
Definition 7.2 [1].

Similarly, one can consider a first-order fuzzy rela-

tion with membership function  and conclude

that the set of vectors  together with the set

of numbers ,  also form a consis-
tent set of quanta in the sense of Definition 7.2 [1].

Since both first-order fuzzy relations satisfy Axi-
oms F2–F4 [1], the IVFR2 with components ,

 satisfies Axioms 2–4, with ,

, . Therefore, the set of vec-

tors  together with the set of numbers

,  form a consistent set of
quanta in the sense of Definition 2.
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