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RESEARCH ON CONSENSUS AND FIXED-TIME CONTROL METHODS FOR 

MULTI-AGENT SYSTEMS 
 

This work examines consensus and fixed-time control algorithms for 
multi-component systems. The study explores mathematical models using iterative 
consensus and control methods, and proposes a fixed-time approach based on 
nonlinear functions. Numerical experiment results are provided to demonstrate the 
effectiveness of the proposed methods. 

 
Introduction. Modern multi-agent systems (MAS) are a critical area of research, particularly in 

their applications within robotics, autonomous vehicle control, and communication networks. 
Coordinating agents, each following local behavioral rules and interacting with neighbors, presents a 
significant challenge. A key issue is achieving a consistent state (consensus) across all agents in the 
system, despite limited computational resources and time constraints. 

Traditional consensus methods, such as linear information exchange models between agents, were 
introduced in the work of Olfati-Saber et al. [3]. These methods enable asymptotic convergence to a 
common state, making them useful for various practical applications. However, a major drawback of 
these algorithms is the requirement of unlimited time to reach consensus. This limitation reduces their 
effectiveness in systems that require convergence within a finite time. 

To address this issue, fixed-time control (Fixed-Time Convergence, FTC) methods have been 
proposed, ensuring system convergence within a fixed time interval regardless of the agents' initial 
conditions. This approach is based on nonlinear control functions and was thoroughly discussed in the 
works of Polyakov and Parsegov [4]. These methods guarantee rapid state alignment among agents, 
allowing consensus to be achieved in fixed time, which makes them appealing for tasks where 
response speed is critical. 

This study investigates combined consensus and FTC methods for multi-agent systems. 
Specifically, an algorithm is considered that employs nonlinear control functions to accelerate 
convergence. The control expression is written as follows: 
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convergence. Using such control functions enables consensus to be reached faster and within a finite 
time compared to classical approaches. 

This report is focused on examining the effectiveness of combined consensus and fixed-time 
control methods for multi-agent systems. Numerical experiments are presented to demonstrate the 
advantages of the proposed approach in managing systems with limited time resources. 

Problem Statement. We consider a system with  agents, each with a state  at time , where 𝑁 𝑥
𝑖
(𝑡) 𝑡

. The goal is to develop an algorithm that ensures consensus among all agents within a 𝑖 = 1,  2,  ...,  𝑁
fixed time. This implies that there exists a time after which the states of all agents coincide: 𝑇
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The task is to develop a control algorithm that ensures the alignment of all agents' states within a 
finite time , regardless of their initial conditions. 𝑇

Problem Conditions. To solve the problem, it is assumed that agents can interact with a limited 
number of neighbors according to a communication graph. The interactions between agents are 
described by an adjacency matrix , where  indicates a connection between agents  𝐴 = [𝑎

𝑖𝑗
] 𝑎
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and , and  indicates its absence. The dynamics of the agents' state changes are described as 𝑗 𝑎
𝑖𝑗

= 0
follows: 
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where:  and  are positive constants that regulate the rate of convergence. This nonlinear control 𝐾
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function includes two components: the first component, involving the cubic root, is responsible for the 
"soft" alignment of agent states, while the second accelerates the consensus process through the cubic 
difference of states. 

Stability Analysis. To analyze the stability of the system, let us consider the Lyapunov function 
, defined as: 𝑉(𝑡)
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This function characterizes the divergence of agent states and must decrease over time to ensure 
convergence. The time derivative of the Lyapunov function is calculated as: 
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Both terms are decreasing, which confirms the stability of the proposed algorithm and guarantees 
that all agents converge to a single state within a finite time . 𝑇

Conclusion. This study examined various dynamic models for controlling multi-agent systems, 
specifically the consensus protocol, the Round-Robin algorithm, and a modified protocol incorporating 
Fixed-Time Convergence (FTC) elements. The findings indicate that FTC significantly enhances the 
convergence rate of the system due to its adjustable parameters,  and  , which allow for precise 𝐾

1
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control over the consensus achievement time. 

 Optimizing parameters  and  further demonstrated that FTC surpasses traditional 𝐾
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methods in convergence speed. Future research could focus on fine-tuning these parameters through 
adaptive techniques or machine learning approaches. It is also crucial to investigate the application of 
FTC in the context of partially connected agent networks and under resource constraints. 

 In summary, this work illustrates the efficacy of FTC algorithms for achieving rapid 
consensus, and continued research will likely extend their applicability to more complex systems. 
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