NEW SYNTHESIS METHODS OF DECACARBONYL DITECHNETIUM-99

Babitova E.S.1, Sakhonenkova A.P.1, Miroslavov A. Ye.1, Brechalov A.A.1

¹ St. Petersburg State University, St. Petersburg, Russia 1st year master student st064214@student.spbu.ru

Also $M_2(CO)_{10}$ (M = Re, Mn) are precursors in many reactions, including the synthesis of metal cluster compounds, their analog, ${}^{99}Tc_2(CO)_{10}$, remains poorly studied. This is probably due to the complexity of its preparation: the synthesis of ${}^{99}Tc_2(CO)_{10}$ requires so far high pressure of a carbon monoxide (up to 350 atm) and a temperature of 220°C [1]. It is known that, salts of technetium acid - pertechnetates, as well as technetium dioxide are used as starting compounds for preparing ${}^{99}Tc_2(CO)_{10}$. However, the yield of ${}^{99}Tc_2(CO)_{10}$ prepared from these precursors is not high probably due to their low solubility in organic solvents.

In this work, we prepared ditechnetium decacarbonyl from a solution of $HTcO_4$, in 1,4-dioxane, 1,2-dimethoxyethane and tetrahydrofuran. The synthesis parameters (temperature, time) were optimized. The highest yield (70%) of ${}^{99}Tc_2(CO)_{10}$ was obtained with 1,2-dimethoxyethane. The product was characterized by IR spectroscopy.

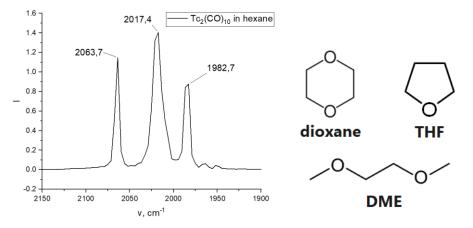


Figure 1. The IR spectrum of decacarbonyl ditechnetium in hexane and solvents used.

References

[1] J. Am. Chem. Soc. 1961, 83, 2953