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Abstract—We study the possibility of using machine-learning algorithms to optimize the prediction of
state-to-state (STS) dissociation rate coefficients in modeling nonequilibrium air f lows. A rigorous but
computationally complex theoretical model of reaction-rate coefficients, which considers the elec-
tronic and vibrational excitation of all reaction participants (products and reagents), is taken as a basis.
Several algorithms are considered for predicting the STS dissociation rate coefficients of air compo-
nents: k-nearest neighbors (k-NN) and decision tree (DT) regression, as well as neural networks; their
accuracy and efficiency are analyzed. It is shown that the use of regression (k-NN and DT) algorithms
is inappropriate for our problem, while neural-network algorithms have clear advantages over classical
regression algorithms in terms of time and scalability. Validation of the neural-network approach is
carried out by considering the example of solving the problem of vibrational-chemical relaxation
behind a shock wave. A satisfactory agreement with the experiment and almost complete coincidence
of the results with the solution obtained by theoretical methods without the use of machine learning
are shown. The approach to data representation and processing proposed in this paper is easily scalable
to more complex models taking into account the excitation of internal degrees of freedom. Thus, when
taking into account the electronic excitation of a molecule, acceleration of about 1–2 orders is
achieved without significant loss of accuracy. As a result, this study demonstrates that the use of neu-
ral-network methods makes it possible to predict state-specific reaction-rate coefficients with a high
degree of accuracy without performing direct calculations using resource-intensive theoretical formu-
las directly in the working code. The approach scales as the complexity of the formulation increases
(as is shown in the case of taking into account the electronic-vibrational excitation of the reagents),
which allows us to reduce the time required to perform the calculations. At the same time, such a result
is achieved through serious preliminary work and requires the development of large arrays of prelimi-
nary data. If we automate this process using a neural network, we can obtain a computationally effi-
cient tool for systematic predictions of state-to-state reaction-rate coefficients.
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1. INTRODUCTION

Simulations of high-temperature nonequilibrium gas f lows are of great importance for aerospace
research. Thus, for example, to design the thermal-protection systems of reentering vehicles, it is import-
ant to predict with a high accuracy the rates of chemical reactions of dissociation, recombination, and
exchange that occur near its surface. The application of molecular dynamics, quantum mechanical, and
quasi-classical trajectory (QCT) calculations [1–5] provides the most accurate data; however, these
approaches cannot be directly integrated into computational f luid dynamic codes, since the direct calcu-
lation of state-to-state reaction rates depending on temperature and all possible vibrational states of
reagents and products requires a lot of time and computational resources. Therefore, in practice, theoret-
ical models of reaction-rate coefficients [6–9] are widely used. It is typical for modern models [8, 9] to
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have a high accuracy and satisfactory agreement with QCT data, however, they contain resource-consum-
ing computational parts, which significantly slow down calculations and limit the class of problems which
can be solved by using these models. In this context, the problem of obtaining reaction-rate coefficients
by using more rapid and efficient methods arises.

Methods of machine learning and neural networks are powerful tools to predict, generalize, and accel-
erate calculations of different types, which had earlier rather a theoretical character. The first attempts to
use machine learning for solving state-to-state kinetics problems were performed in [10–14] to calculate
vibrational relaxation rates and transport coefficients. In our study, machine-learning methods are used
for approximate calculation and speed-up of the calculation of dissociation-rate coefficients in air with
possible further scaling of the program modules obtained for predictions of the rates of physical-chemical
processes to arbitrary reactions and temperatures.

2. THEORETICAL MODEL

Numerous studies are devoted to investigation of the rates of chemical reactions in the state-to-state
approximation [1–5]. The majority of them consider only the states of a decaying or exchanging molecule
without consideration of the states of other participants of the collision or reaction products. In Aliat’s
work [7], a theoretical model of chemical reactions considering the electronic-vibrational excitation of a
reagent molecule is presented. Unfortunately, this model is not widely used because of misprints in the
initially published text, which were found and corrected in [15]. In further studies, based on the model of
[8], a generalized formula was obtained to calculate the chemical-reaction rate coefficients in the state-
to-state approximation with the possibility of taking into account the vibrational and electronic excitation
of any number of reagents and reaction products [9]; in addition, it was shown that the Marrone—Treanor
and Aliat formulas are particular extreme cases of this generalized formula.

According to [9], the generalized formula for calculating the dissociation- and exchange-reaction rate
coefficients  taking into account the vibrational and electronic excitation of all the reaction partici-
pants is expressed in the form of the product of the thermally equilibrium reaction-rate coefficient keq(T)
and the nonequilibrium factor (T, Vr, Vp):

(1)

(2)

(3)

where k is the Boltzmann constant; Vr and Vp are the internal states of the reaction reagents and products
(in the model, both the molecules and atoms in arbitrary excited states are considered); εr and εp are the
corresponding energies; Θ(x) is the Heaviside function; εa is the reaction activation energy; T is tem-
perature; U is the model parameter that has a dimension of temperature; the thermally equilibrium
reaction rate coefficient keq(T) is determined according to the Arrhenius equation [9]; and B is the nor-
malizing factor:

(4)

Mr is the number of reagents,  is the equilibrium molar fraction of the corresponding state of the

lth reagent described by the Boltzmann distribution with the temperature T.

As is seen from the presented formula, when calculating the normalizing factor, it is necessary to sum
the exponents of energy and temperature over the entire set of energy states of reaction participants. If
we consider only the vibrational excitation of a dissociating diatomic molecule, the number of summed
exponents will be several tens; however, when considering polyatomic molecules as well as the vibra-
tional and electronic excitation of all the reaction participants (reagents and products), it will be nec-
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Fig. 1. Scheme of the ML model in the case of consideration of all vibrational levels of one reagent.
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essary to consider the entire Cartesian product of electronic-vibrational states, which will give us,
respectively, thousands and millions of terms. Therefore, acceleration of the calculation of the normal-
izing factor B (or the nonequilibrium factor ) with the help of machine learning (ML) methods is of
great practical interest.

The first step in solving this problem with the aim of testing various ML algorithms is investigation of
the simple extreme case, namely, the dissociation reaction taking into account the vibrational excitation
of the decaying molecule alone. It is shown in [9] that formula (2) in such a case can be reduced to the
well-known Marrone—Treanor formula [6]:

(5)

where εi is the energy of the ith vibrational level, Zvibr(T) is the equilibrium partition function, and
Zvibr(‒U) is obtained by substituting the parameter –U for temperature. It is obvious that this model is not
too complicated from the computational point of view. However, it can be successfully used for testing ML
algorithms, since it reflects the main peculiarities of the behavior of the state-to-state reaction-rate coef-
ficients as functions of temperature.

3. IDEA OF USING ML MODELS IN THE PROBLEM 
OF CALCULATING COEFFICIENTS

When modeling complex mixtures with a large number of different molecules, the number of dissoci-
ation-rate coefficients for each calculation cell is hundreds; in the case of complex molecules, tens of
thousands. For each temperature, it is necessary to calculate the complete set of coefficients, which
requires summing exponents over all states. In the case of choosing another model of the energy spectrum
(for example, using an anharmonic oscillator instead of a harmonic oscillator, changing the number of
levels) or changing the values of model parameters, it is necessary to recalculate all the coefficients. There-
fore, it seems to be useful to obtain the method for predicting the dissociation rate coefficients with suffi-
cient accuracy without performing direct calculations for all possible values of temperature.

This problem can be reduced to the problem of neural networks and nonlinear regression. In the one-
dimensional case, it is proposed to use as the input data the reaction temperature, reaction type (O2 + O,
O2 + O2, N2 + N, N2 + O, N2 + N2, NO + N, or NO + O), as well as the values of the zero vibrational
level of the energy of molecules O2, NO, and N2 (see Fig. 1). The use of the zero level of the vibrational
energy ε0 instead of all the energy values is preferable for training ML algorithms, since the pairwise cor-
relation of energies εi may lead to the incorrect zero gradient in the process of neural-network training,
thus, there is a chance to obtain the values of weights that do not reflect the actual dependence in the data.

When the electronic-vibrational states of molecules and the excitation of reaction products are taken
into account, the data dimension increases according to the number of reaction participants for which we
consider the electronic state.

To fit hyperparameters and enhance the reliability of the models of nonlinear regression from the
sklearn library [16], the cross-validation method keeping the data out of the learning process was used.
The recommended models are as follows:

—k-Nearest neighbors (k-NN) with the parameter of the number of neighbors k = 3 is an algorithm
based on the assumption that for close objects in the feature space, there are similar output labels. Calcu-
lation and the model idea are quite simple, however, the time spent on prediction increases in accordance
with the size of the trained data.
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Fig. 2. Schemes of neural-network models considering data specifics.
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—Decision tree (DT) with parameters max_depth = 5, min_samples_leaf = 3, splitter = “random,”
max_features = “auto” is the algorithm representing a tree structure and does not require preliminary data
normalization.

When applying the neural-network approach, the PyTorch library [17] was used; with the help of
this library, a single-layer architecture Feedforward Neural Network (FNN) was realized; it is shown in
Fig. 2a with 100 neurons in the hidden layer. As was noted above, in the case of consideration of elec-
tronic-vibrational excitation, the dimension of the investigated data increases: there is a unique value of
energy for each electronic and each vibrational state of the chosen molecule. In such a case, it is possible
to f latten the data (the Flatten transformation) or use the multi-head approach [18], which conserves the
ideas of the one-dimensional case, however, uses in the last layer several outputs corresponding to the
electronic states of the molecule (see Fig. 2b).

4. DATA ACQUISITION AND CHOICE OF METRICS

To generate the data set for training, a script was written in the Python 3.9, which calculates the set of
state-to-state dissociation-rate coefficients depending on the set parameters: gas temperature, reaction
type in terms of the set of reagents involved, and the spectrum of the vibrational energy for O2, NO, and
N2 molecules. The data were obtained in accordance with the exact theoretical model (1)–(2). At this
stage, the script considers the excitation of one of the participants of the reaction, however, our approach
is scalable for use in other mixtures or for corresponding data (energies of the vibrational levels, dissocia-
tion energies, etc.). Temperatures were considered within an interval from 1000 to 10000 K (the right
boundary can be increased, for example, up to 15000 K without loss of model accuracy); in total, 
vectors were obtained with a subsequent division of this set into training and test sets, where n is the num-
ber of parameters which depends on the complexity of the theoretical model (for example, in the case of
consideration of vibrational excitation alone, n = 3).

Data generation for considering the electronic excitation of molecules was performed in accordance
with the anharmonic oscillator model and spectroscopic data for the electronic terms from [19].

Usually, the data preparation process for the model requires preliminary processing (except for DT).
In our case, this is the min-max scaling of the input vectors and finding the logarithms of the target vec-
tors. The latter is related to the fact that the physical values of the dissociation-rate coefficients vary within
the interval from 10–70 to 10–14 m3/s. The operation of ML models with such small values can be subjected
to the problem of incorrect fitting of weights by the algorithm, which leads to high error values. The reac-
tion type required special preliminary processing: since it is a categorial rather than numerical feature,
each reaction type in air was represented in the form of an embedding vector [20] (here, representation
through 0 and 1 according to the one-hot encoding [21] principle can also be suitable).

−( 1)100 n
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Fig. 3. Relative error of FNN predictions with (on the left) and without (on the right) taking into account temperatures
lower than 2000 K in the case of vibrational excitation.
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Fig. 4. Relative error of FNN predictions for the electronic state 1 (on the left) and electronic state 2 (on the right) for the
case of electronic-vibrational excitation.
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Working with values of small and rapidly changing orders, it is reasonable to consider the percent met-
rics to estimate the approximation quality; therefore, the mean absolute percent error was chosen:

(6)

where yi is the theoretically calculated value and  is the value predicted by the model.

5. ESTIMATION OF ERROR AND TIME CONSUMPTION OF PREDICTION

Figure 3 shows the graph of the relative error of the values predicted by the FNN model. On the whole,
it is possible to note that at temperatures higher than 2000 K, the built model demonstrates satisfactory
agreement with the theoretical data. The results are similar in the case of taking into account electronic
excitation (see Fig. 4). The increase in the error at low temperature values and at lower vibrational levels
is associated with a physically abrupt change in the order of magnitude of the reaction-rate coefficients;
this problem was considered in detail in [9]. To reduce the error at low temperatures (lower than 2000 K),
it is possible to train an additional regression model. Nevertheless, when solving the majority of applied
problems, the built model should provide a satisfactory accuracy, since an error of 10–15% in the vanish-
ingly small reaction-rate coefficients at T < 2000 K does not influence the macroparameters of the non-
equilibrium flow.

=

−= 
�

1

100%MAPE ,
n

i i

i i

y y
n y

�iy
VESTNIK ST. PETERSBURG UNIVERSITY, MATHEMATICS  Vol. 57  No. 4  2024



PREDICTION OF STATE-TO-STATE DISSOCIATION RATE COEFFICIENTS 589

Table 1. Comparison of the mean test efficiency of calculating the coefficients in the case of the vibrational excitation
of one molecule

Model Time, ms Acceleration, times log10(kdiss) MAPE, % kdiss MAPE, %

Theoretical 0.184 – – –
k-NN 0.349 0.53 0.001 0.015
DT 0.057 3.20 1.259 20.487
FNN 0.070 2.63 0.002 4.453

Table 2. Comparison of the mean test efficiency of calculating the coefficients in the case of the electronic-vibra-
tional excitation of one molecule

Model Time, ms Acceleration, times log10(kdiss) MAPE, % kdiss MAPE, %

Theoretical 1.155 – – –
k-NN (Flatten) 0.346 3.33 0.001 0.093
DT (Flatten) 0.060 19.16 2.676 47.562
FNN (Flatten) 0.072 16.04 0.041 11.831
FNN (Multi-head) 0.130 8.88 0.016 6.893
Tables 1 and 2 present estimates of the accuracy and computational efficiency of the models: the mean
general-system execution time (using a machine with x64 CPU IntelCore i7-9750H processor in the sin-
gle-stream mode) of the block of code in Python 3.9 to obtain one desired vector. It is seen that k-NN
algorithm and the FNN model give a good accuracy of prediction of the coefficients. It would be pos-
sible to solve the problem of the high DT algorithm error by ensembling basic models (random forest,
gradient boosting [16]); however, this is not reasonable, since such an algorithm would significantly
increase the computation time. When applying the k-NN regression, the computation time increases
depending on the amount of data generated for training; therefore, if our aim is to speed-up the calcu-
lation, it is better to use FNN in this problem, which is confirmed by the results presented in Table 1.
On the whole, we can come to the conclusion that for a simple model of calculation of the dissociation-
rate coefficients (5), when we consider only the vibrational excitation of one participant of the reaction,
the use of ML algorithms does not give a significant increase in the computational speed (Table 1) and
is not recommended.

When considering the electronic excitation of the dissociating molecule (Table 2), the achieved speed-
up is 1–2 orders of magnitude without significant losses of accuracy, which is evidence that it is reasonable
to use ML algorithms when solving two- and three-dimensional problems of nonequilibrium gas dynam-
ics. As was noted above, in the Flatten approach to data processing, one vector is predicted, which consists
of the “flattened” matrix in which, at the intersection of the ith row and jth column, there is the dissoci-
ation-rate coefficient of the corresponding vibrational and electronic state of the molecule. In such an
approach, the continuity of the predicted vector is lost, therefore, the error appears to be larger in com-
parison with that in the multi-head approach, where in the last layer, for each electronic state, there is a
separate output from the FNN. Therefore, for the coefficient-prediction problem with consideration of
the electronic excitation of reagents, it is recommended to use the multi-head approach.

It should be noted that the neural-network approach to data representation and processing described
in this work is easily scalable to both the case of the electronic-vibrational excitation of all the participants
of the reaction and the case of mixtures of polyatomic molecules, when the number of the reaction-rate
coefficients required for each calculation cell is tens of thousands. The use of the neural-network
approach when modeling nonequilibrium flows of such mixtures seems to be especially promising.

6. VALIDATION IN SIMULATIONS

The chemical-reaction rate coefficients are of interest, for simulations of gas mixture f lows in the state-
to-state kinetics approximation, when the necessity arises to solve systems of equations for macroparam-
eters. For validation of the proposed approach, let us consider the f low behind a shock-wave in the state-
to-state approximation [22].
VESTNIK ST. PETERSBURG UNIVERSITY, MATHEMATICS  Vol. 57  No. 4  2024
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Fig. 5. Temperature profile behind the shock-wave front. O2/O, p∞ = 0.8 Torr, M∞ = 13.46, T∞ = 299 K.
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The coefficients obtained with the help of the neural-network approach were integrated into the code
for modeling the relaxation zone behind the shock wave in the O2/O and N2/N mixtures. Figure 5 shows
the temperature profile of the gas behind the shock-wave front in the O2/O mixture under the conditions
of the experiment [23, 24]. The conditions in the free stream are as follows: p∞ = 0.8 Torr, M∞ = 13.46,
T∞ = 299 K. The vibrational-relaxation rate coefficients were calculated based on the theory of a forced
harmonic oscillator [25]; the theoretical dissociation-rate coefficients were calculated according to the
model [9]. The results obtained with the help of the neural-network approach nearly coincide with the
theoretical results [9] (MAPE is 0.28%). It should also be noted that there is a satisfactory agreement of
temperature with the experimental data.

7. CONCLUSIONS

As a result of this study, it is established that the use of machine-learning methods allow values of state-
to-state chemical-reaction rate coefficients with a high accuracy to be obtained without performing direct
calculations using labor-intensive theoretical formulas in the working code. Such an approach is scalable
as the complexity of problem setting increases (as is shown in the case of taking into account the elec-
tronic-vibrational excitation of reagents), which makes it possible to significantly reduce the calculation
time. At the same time, such a result is achieved by performing serious preliminary work and requires the
development of large arrays of data describing all the variants of using the formulas (instead of one uni-
versal model, we need to create tens of new models). If this process is automated with the help of neural
networks, it is possible to obtain a tool with a high calculation efficiency for performing systematic calcu-
lation of a similar type and preliminary estimations for the results of modeling f lows in the state-to-state
approximation.
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