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Abstract: Tobacco BY-2 cell culture is one of the most widely used models in plant biology. The
main advantage of BY-2 suspension cultures is the synchronization of cell development and the
appearance of polar elongation. In batch culture, BY-2 cells passed through the lag, proliferation,
elongation, and stationary phases. During this process, the composition of the growth medium
changed dramatically. Sucrose was rapidly eliminated; hexose first accumulated and then depleted.
The medium’s pH initially decreased and then rose with aging. As a result of the crosstalk between
the internal and external stimuli, cells pass through complicated systemic rearrangements, which
cause metabolomic alterations. The early stages were characterized by high levels of amino acids and
sterols, which could be interpreted as the result of synthetic activity. The most intense rearrangements
occurred between the proliferation and active elongation stages, including repression of amino acid
accumulation and up-regulation of sugar metabolism. Later stages were distinguished by higher
levels of secondary metabolites, which may be a non-specific response to deteriorating conditions.
Senescence was followed by some increase in fatty acids and sterols as well as amino acids, and
probably led to self-destructive processes. A correlation analysis revealed relationships between
metabolites’ covariation, their biochemical ratio, and the growth phase.

Keywords: BY-2; Nicotiana tabacum; metabolomics; plant cell culture; elongation growth; metabolite
mapping; batch culture; plant senescence

1. Introduction

Cell cultures originated from higher plants have been in use for more than half a
century. Such cultivation became possible after phytohormones, as important growth
regulators, were discovered [1]. The employment of these compounds allowed undiffer-
entiated actively proliferating cells to be obtained, regardless of their initial specialization
in the mother plant. In the early 1960s, Toshio Murashige and Folke Skoog developed
the composition of a culture medium. Its various modifications are widely used nowa-
days [2]. Initially, callus cultures, representing conglomerates of undifferentiated cells, were
derived [3]. Cell suspensions were obtained by transferring callus to a liquid medium with
agitation. [4]. These have a number of important advantages: greater uniformity, a higher
growth rate, and ease of scaling. Along with the possibility of maintaining cultures under
controlled aseptic conditions, they allow for highly reproducible results. In this regard,
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suspension cell cultures have become the models of plant biology [4–7]. The successes of re-
cent years in the design of cell lines originated from different plant species have found wide
application in biotechnology as producers of biologically active secondary compounds [8,9]
and heterologous proteins [10,11]. Moreover, there is a potential for using plant cells in
the food industry as producers of raw materials for food production [12,13], as well as for
cryopreservation and vegetative reproduction of plants [14,15].

Arabidopsis cell cultures [8] and tobacco [16,17] have acquired the greatest importance
as model objects. Among tobacco cell lines, BY-2 is the most popular. The history of using this
line goes back more than 50 years [18]. BY-2 has exceptional advantages—synchronization
of the cell cycle under suspension culture conditions and preservation of polar elongation
growth [19–21]. The development of BY-2 cell cultures can be divided into four stages.
During the lag phase, the cells adapt to the new environment and prepare for division. In
the proliferation phase, cells undergo numerous divisions without increasing in volume.
After that, the cells grow by elongation, increasing in cell length and volume. After growth
completion, cells enter a stationary phase finishing in death [20].

In the process of culture development, cells undergo systemic morphophysiological
changes that are associated with corresponding transcriptional, proteomic, and metabolomic
rearrangements. It was found that the activity of aerobic respiration of heterotrophic to-
bacco cells reaches a maximum during the growth period [22], which corresponds to a
greater number of mitochondria and peroxisomes [23]. The shape of mitochondria also
changes: after subculturing, they acquire a spherical shape, and as they age, they become
elliptical. The shape of plastids changes differently. After passaging, plastids become
strongly elongated and then fragment, becoming elliptical [24]. Even though BY-2 cells
have lost their ability to photosynthesize, plastids continue to play an important physiolog-
ical role. One of the functions of plastids is the deposition of starch. In the stationary phase,
a greater number of starch grains is observed in plastids [23].

The results of transcriptomic analysis of BY-2 cells confirm the large-scale metabolic dif-
ferences between the lag, log, and stationary phases. The lag and proliferation phases were
characterized by high expression of genes associated with DNA translation and replication.
Genes associated with lipid synthesis showed expression patterns with maxima both at
the beginning of development and in the stationary phase [25]. Cultures of different ages
also differ in the accumulation of metabolites. Thus, the key trait of growing VBI-0 cultures
compared with senescent ones is a greater accumulation of amino acids and phosphates of
sugars and fewer carboxylates and complex sugars [26]. Nitrogen metabolism also changes
with age. During BY-2 proliferation, the content of amines in the cells—spermine and
spermidine—increases, and putrescine decreased [27]. In addition, after subculturing, a
decrease in pH is observed, which is probably the result of organic acid secretion [28,29].

BY-2 cells have lost their ability to photosynthesize; as a result, they are obligately
heterotrophic and are maintained in the dark using sucrose as a substrate [16]. Sucrose
metabolism begins with cleavage, which is carried out by two types of enzymes: invertases
and sucrose synthases. The contribution of these enzymes may vary depending on external
and internal factors. Moreover, the cleavage of sucrose can be carried out both in intracel-
lular compartments in the cytosol and vacuole and by extracellular enzymes. The latter
leads to the accumulation of hexoses in the medium, which can be absorbed [30]. Sucrose
hydrolysis products can be catabolized through glycolysis, the tricarboxylic acid (TCA)
cycle, and the pentose phosphate pathway (PPP), directed to the synthesis of amino acids
or lipids, or deposited in the form of starch. Obviously, during the culture growth, the
substrate is exhausted and starvation develops. The first consequence of starvation consists
in physiological activity slowdown [31,32]. In addition, the mobilization of reserves is
observed during cell starvation [31,33,34]. High proteolytic activity occurs since amino
acids can also be a source of carbon during starvation. This corresponds to an increase in
the expression level of enzyme genes associated with amino acid catabolism [35], especially
with branched amino acid catabolism [36]. Amino acid catabolism entails a restructuring
of nitrogen metabolism [37]. However, starvation of heterotrophic cultures can only last
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for a very limited period of time. The depletion of nutrients and other environmental
changes give rise to a complex of physiological processes that are commonly attributed to
senescence, ending in the death of the culture.

The assimilation of the substrate and the metabolic response to its deficiency are
primarily associated with central metabolism. A set of primary metabolites, represented
mostly by small molecules such as C2–C7 carboxylic acids, amino acids, monosaccharides,
fatty acids, etc., represents a specific metabolic profile characterizing the state of a biological
object. A sensitive method for metabolic profiling is gas chromatography coupled with mass
spectrometry (GC-MS), which is widely employed for systemic metabolomics analysis [38].
In this work, the metabolites of BY-2 suspension cultures of different ages were profiled.
Cells were sampled during the lag phase (the period between inoculation to fresh medium
and proliferation), the proliferation phase (the time of active cell division), the expansion
growth phase (when the cell elongates after the divisions), and the stationary phase (the
period between the end of elongation and death), including the “death” phase (when the
number of dead cells rapidly increases). The metabolomic data were compared with data
on cell growth, biomass, and substrate uptake.

2. Results
2.1. Growth and Sucrose Uptake

The BY-2 cultures demonstrated a logarithmic increase in the density of fresh biomass,
with a maximum of about 350 mg/mL by the end of culture growth (Figure 1A, Table S3).
The dynamics of the dry biomass density were described by an S-shaped curve with a
maximum of about 11 mg/mL. The proportion of dry biomass increased to 7% in the first
two weeks, then decreased to 3% at the death phase. In the first week, there was almost no
increase in fresh biomass, but dry biomass almost doubled. Between the second and third
days, the cells began to proliferate, and their length began to decrease (Figure 1B). It should
be noted that in the first two days, the concentration of sucrose in the incubation medium
decreased by half, and at the 7th day, less than 10% of its initial concentration remained
(Figure 1C). After the first day, there was an increase in the levels of fructose and glucose in
the medium. At the same time, the pH decreased to 5.1 in the first two days (Figure 1D),
but then the pH level began to rise, reaching 6.3 at the death phase. At the 6–7th day,
proliferation was completed and the cells began to grow by elongation (Figure 1B). The
elongation growth consisted of a sharp increase in the cell length, and the growth rate of
fresh biomass. After 18 days, the cells reached their maximum length and the elongation
ended. At the 10th day, the sucrose in the medium was exhausted, but hexoses were present
(Figure 1C). The hexose content began to decrease after about two weeks and dropped to
zero by the beginning of culture death.

2.2. Metabolomics: General View

As a result of GC-MS analysis, metabolite profiles were obtained, including about
360 compounds. More than a hundred (110) were identified. A chemical class was anno-
tated for another 90 (Figure 2). Sugars and their derivatives (about 90 in total), including
pentoses, hexoses, sugar alcohols, sugar acids, phosphates, disaccharides, and various
glycosides, were the most numerous in the metabolite profiles obtained. The profiles also
included 27 amino acids and about three dozen carboxylic acids, with intermediates of
energy metabolism among them. About a dozen free fatty acids and their derivatives and
phytosterols were annotated.

A PCA (principal component analysis) revealed that the samples were grouped accord-
ing to the age of the culture (Figure 3). Two separate clusters were formed by cultures in
the periods 1–7 days (lag phase, proliferation, and initiation of elongation) and 14–26 days
(active elongation growth, stationary phase, and cell death). A further examination of
these groups showed that sub-groups according to age were determined within them.
For instance, the cultures at the lag phase (1–2 days) differed from the proliferating ones
(4–7 days), while three-day cells had an intermediate position. Cultures, starting at two
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weeks and ending at 23 days, formed close sub-groups. While the profile on day 26, in
dying cells, was different.
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Figure 1. Parameters of the growth of the Nicotiana tabacum BY-2 suspension batch culture: Biomass
(fresh weight (FW), dry weight (DW), accumulation and its ratio) (A); violin plots of cell length
distribution changes (B); sugars concentration in the medium (C); and pH of the medium (D).
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2.3. Changes in the Development Process
2.3.1. Differences in the Lag Phase and Proliferation

At the next stage, the dynamics of the cultures’ metabolite profiles were analyzed
in detail with OPLS-DA (orthogonal partial least squares—discriminant analysis). The
result of the selection of differentially accumulated metabolites is shown in Figures 4 and 5.
The parameters of the obtained models are shown in Supplementary Table S2. First, we
determined what changes occur in the period after passaging (during the lag phase).
Thus, a comparison of 21–23-day cultures (the time point of subculturing) and newly
transferred 1–2-day cultures was performed. This showed that 39% of the variance was
associated with the predictive component. As shown in Figure 4, newly transferred cells
accumulated sterols during the lag phase, including stigmasterol, which is a key metabolite
for plants. The increase in level was typical for many amino acids, including aromatic
ones: phenylalanine, tyrosine, and tryptophan. On the contrary, several amino acids were
characterized by a slight decrease in their level, including GABA (γ-aminobutyric acid)
and proline. The content of intermediates of energy metabolism changed. The pool of
intermediates from the second part of the TCA cycle, fumarate and malate, increased,
while the initial intermediates, citrate, succinate, and pyruvate, showed a reduction. The
level of glycolate, a metabolite associated with the glyoxylate cycle, was also elevated.
There were serious changes in carbohydrate metabolism. Despite the active metabolism of
sucrose, its content in cells showed a downward trend, as did the accumulation of fructose,
glucose, and its phosphorylated forms. Also, there was a noticeable redistribution in the
accumulation of glycosides, and a decrease in the accumulation of FFAs (free fatty acids).
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A sharp increase in the level of ACC (1-Aminocyclopropanecarboxylic acid), a precursor of
ethylene, deserves special attention.
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Figure 4. Alterations in metabolite accumulation at early stages of culture development. Violin plots
of normalized metabolite content. Colors represents days after inoculation that are mentioned in
each plot. Bar plots above are VIPs: gray line marks VIP = 1; stars mark adjusted p-values from
MMW test for lag phase and transition to proliferation and from t-test for transition to expansion
(*** for p < 0.001, ** for p < 0.01, * for p < 0.05, ˙ for p < 0.1). Dark blue bars correspond to higher VIP
values. Compound names colored same as in Figure 2.
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Figure 5. Alterations in metabolite accumulation at later stages of culture development. Heat maps 
of loadings (p) of predictive component from OPLS-DA models for sequential pairwise compari-
son: red upward arrows refer to positive p, which correspond to level increasing. Blue downward 
arrows represent negative p, which correspond to level decreasing. Size of arrows represent 
strength of alterations. Saturated colors correspond to VIP > 1, pale colors to 0.9 < VIP < 1. 
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Figure 5. Alterations in metabolite accumulation at later stages of culture development. Heat maps
of loadings (p) of predictive component from OPLS-DA models for sequential pairwise comparison:
red upward arrows refer to positive p, which correspond to level increasing. Blue downward arrows
represent negative p, which correspond to level decreasing. Size of arrows represent strength of
alterations. Saturated colors correspond to VIP > 1, pale colors to 0.9 < VIP < 1.

A subsequent analysis of the metabolomic changes during the proliferation and initia-
tion of growth was carried out based on a comparison of 1–2-day with 4–7-day cultures.
The time points were selected based on the grouping of samples during the PCA (Figure 3).
In the resulting model, 31% of the variance was associated with the predictive component.
As shown in Figure 4, cultures in the first 2 days are characterized by a relatively high
content of amino acids with hydrophobic side chains, including the aromatic tyrosine and
tryptophan, aliphatic ones such as leucine and isoleucine, and sulfur-containing methionine.
Accumulation of pyroglutamate and asparagine was also noted. Higher levels of aromatic
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amino acids were consistent with bigger pools of aromatic glycosides. However, a large
number of other glycosides were also elevated in the first two days. Further on, at 4–7 days,
the content of alanine, serine, aspartate, and glycine increased. Also at this stage, there was
a tendency to increase the levels of non-standard C4 amino acids: GABA, 2-aminobutanoic
acid, and β-aminoisobutyrate. Among other nitrogen-containing compounds, a decrease
in the content of inosine and xanthine and, conversely, an increase in putrescine should
be highlighted. A striking difference between the 4–7-day and 1–2-day cultures is the
higher accumulation of carboxylates. Herewith, the only intermediate of the TCA cycle
was present among them—citrate. Another distinctive feature of the 4–7-day cultures
is the increased content of FFAs and acylglycerols, as well as glycerol and glycerol-3P.
Interestingly, the levels of sucrose, fructose, and glucose showed an increase and reached
a maximum at this stage. There were changes in the composition of glycosides. MSEA
revealed (Figure 6) that between 1–2 and 4–7 days, fatty acid and lipid metabolism is
activated while the metabolism of aromatic amino acids and glucosinolates is suppressed.

Plants 2024, 13, x FOR PEER REVIEW 11 of 30 
 

 

 
Figure 6. Metabolite set enrichment analysis based on OPLS-DA loadings. The size of the triangles 
represents the absolute NES (normalized enrichment score) value, which reflects the strength of the 
effect. Upward triangles refer to positive NES (generally, up regulated) and vice versa. Pathways 
clustered by a number of common metabolites in the profiles. The colors of the pathways are mixes 
of the compound colors as shown in Figure 2. 

2.3.4.“Death” Stage of Cell Culture 
The difference between the 23- and 26-day-old cultures, when the cultures began to 

die, was slightly more pronounced. In the PLSDA model, 29% of the variance was asso-
ciated with the predictive component. In general, the dying cultures were characterized 
by a reduction in the levels of a large number of metabolites (Figure 5). This reflected the 
repression of sterol metabolism, and the synthesis of secondary compounds and amino 
acids (Figure 6). Some accumulation of acylglycerols, FFAs, and glycerol was observed. In 
addition, a number of carboxylates increased their content, among which fumarate can be 
distinguished. It should be noted that the levels of some sugars were relatively high 
during this period. 

2.4. The Relationship Between the Metabolite Pools Volumes 
To identify the relationships between the metabolite pools in the context of the dy-

namics of physiological status in the process of the culture cells’ development, we 
mapped the metabolites by correlation of the average normalized values of their concen-

1/2→4/7
7→14

14→18
18→21

21→23
23→26

Fructose and mannose metabolism
Galactose metabolism
Starch and sucrose metabolism
Glycolysis / Gluconeogenesis
Pentose phosphate pathway
Ascorbate and aldarate metabolism
Biosynthesis of nucleotide sugars
Lysine degradation
Citrate cycle (TCA cycle)
Glyoxylate and dicarboxylate metabolism
Alanine, aspartate and glutamate metabolism
Arginine biosynthesis
Phenylalanine metabolism
Tyrosine metabolism
Butanoate metabolism
Nicotinate and nicotinamide metabolism
Oxidative phosphorylation
Pyruvate metabolism
Phenylpropanoid biosynthesis
Isoflavonoid biosynthesis
Biosynthesis of various plant secondary metabolites
Flavonoid biosynthesis
Valine, leucine and isoleucine biosynthesis
Valine, leucine and isoleucine degradation
Phenylalanine, tyrosine and tryptophan biosynthesis
2-Oxocarboxylic acid metabolism
Glucosinolate biosynthesis
Tropane, piperidine and pyridine alkaloid biosynthesis
Cyanoamino acid metabolism
Aminoacyl-tRNA biosynthesis
Biosynthesis of amino acids
Carbon fixation in photosynthetic organisms
Pentose and glucuronate interconversions
Biosynthesis of cofactors
Thiamine metabolism
Glycine, serine and threonine metabolism
Lipoic acid metabolism
Glutathione metabolism
Arginine and proline metabolism
D-Amino acid metabolism
Sulfur metabolism
Cysteine and methionine metabolism
Lysine biosynthesis
Glycerophospholipid metabolism
Fatty acid metabolism
Glycerolipid metabolism
Nucleotide metabolism
Purine metabolism
Propanoate metabolism
Pantothenate and CoA biosynthesis
beta-Alanine metabolism
Pyrimidine metabolism
Biosynthesis of terpenoids and steroids
Steroid biosynthesis
Inositol phosphate metabolism
Phosphatidylinositol signaling system

0.01

0.05

0.10
0.15

0.30
0.50

p

upregulation
downregulation

Figure 6. Metabolite set enrichment analysis based on OPLS-DA loadings. The size of the triangles
represents the absolute NES (normalized enrichment score) value, which reflects the strength of the
effect. Upward triangles refer to positive NES (generally, up regulated) and vice versa. Pathways
clustered by a number of common metabolites in the profiles. The colors of the pathways are mixes
of the compound colors as shown in Figure 2.
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2.3.2. Cell Elongation Stage

As shown by the dimension reduction, the most pronounced changes occurred during
the active elongation growth between 7 and 14 days (Figure 3). It is noteworthy that the
culture metabolic profiles at the elongation phase (14 days) formed a very dense group,
which indicated their high homogeneity during this period. A total of 42% of the variance
was associated with the predictive component of the OPLS-DA model. This stage was
characterized by a decrease in the content of numerous sterols (Figure 4), acylglycerols,
and FFAs. Multidirectional trends were identified for carboxylates. Particularly, the
content of fumarate and glycolate was characterized by a decrease, while the lactate and
pyruvate levels increased. A lower accumulation was noted for several standard amino
acids. Among non-proteinogenic amino acids, GABA demonstrated elevation, in contrast
to ACC and β-alanine. There was an increase in the content of nitrogenous bases and
nucleosides. Thus, MSEA has shown (Figure 6) that intensively elongating cells have
a reduction in the metabolism of sterols and fatty acids. Weakening also occurred in
the sulphur-containing and cyanoamino acid exchange pathways. At the same time, a
decrease in the activity of the protein synthesis pathway was also observed. In addition,
the synthesis of secondary compounds was suppressed but the levels of ascorbate, pentose,
and nucleotide metabolism increased.

2.3.3. Elongation Growth Completion and Transition to the Stationary Phase

The next step was the comparison of the metabolic profiles at later stages of growth:
completion of the cell elongation stage (14 day) and transition to the stationary phase
(18 day). A total of 43% of the variance was associated with the predictive component of
the OPLS-DA model. The end of elongation growth was characterized by a radical drop
in the content of carboxylates, amino acids, pentoses, and FFAs (Figure 5). The exception
was succinate, whose level increased. There were multidirectional trends among hexoses:
decreases in glucose, fructose, and myo-inositol occurred. At the same time, the pools of
6-phosphogluconate and inositol phosphates were also reduced. The most intense accu-
mulation was noted for aromatic glycosides. Other glycosides showed multidirectional
changes, among which a further decrease in the sucrose level seems important. Never-
theless, no alterations of sterols and acylglycerols were determined. It is noteworthy that
the AMP level increased. MSEA (Figure 5) demonstrates that against the background of
the repression of various pathways, the synthesis of secondary compounds and glycoside
metabolism are activated. The predictive component of the OPLS-DA model for comparing
18- and 21-day cultures was associated with 38% variance. The completion of elongation
growth and inhibition of biomass growth were marked by the accumulation of carboxylates,
including intermediates of energy cycles (Figure 5): malate, fumarate, citrate, succinate.
Along with them, the levels of a number of amino acids and amines increased. There was
also an increase in the accumulation of sugars, including sucrose, glucose, and fructose,
as well as numerous pentoses. However, a decrease in the pools of a large number of
glycosides was noted. Acylglycerols and fatty acids also accumulated to a greater extent
at the 21st day. The further aging of cultures caused relatively little change in metabolite
profiles between the 21st and 23rd days. In the OPLS-DA model, only 22% of the variance
was associated with the predictive component. A striking feature of this transition was
an increase in the content of lipophilic compounds, including major sterols and fatty acid
derivatives (Figures 5 and 6). Glycosides and pentoses also showed a general tendency
to accumulate. Accumulation of a number of standard amino acids was noted, while the
content of GABA, proline, and nitrogenous bases decreased.

2.3.4. “Death” Stage of Cell Culture

The difference between the 23- and 26-day-old cultures, when the cultures began to die,
was slightly more pronounced. In the PLSDA model, 29% of the variance was associated
with the predictive component. In general, the dying cultures were characterized by a
reduction in the levels of a large number of metabolites (Figure 5). This reflected the
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repression of sterol metabolism, and the synthesis of secondary compounds and amino
acids (Figure 6). Some accumulation of acylglycerols, FFAs, and glycerol was observed. In
addition, a number of carboxylates increased their content, among which fumarate can be
distinguished. It should be noted that the levels of some sugars were relatively high during
this period.

2.4. The Relationship Between the Metabolite Pools Volumes

To identify the relationships between the metabolite pools in the context of the dy-
namics of physiological status in the process of the culture cells’ development, we mapped
the metabolites by correlation of the average normalized values of their concentrations.
A graph was constructed where the metabolites correspond to nodes (Figure 7), which
are connected by edges corresponding to a strong correlation. They pull the nodes to-
gether if the correlation is positive. The metabolites were divided into four clusters by
the k-means method. The dynamics patterns for each cluster were illustrated by a broken
median change. The first larger cluster (no. 1) combined metabolites with the highest
accumulation in young cultures. There were amino acids, sterols, and some intermediates
of energy metabolism. Another large cluster (no. 3) combined metabolites with the oppo-
site trend—accumulation over time. It was dominated by sugars, some carboxylates, and
nitrogen-containing compounds were present. The metabolites of cluster no. 2 had high
levels at the start of culture development and the elongation phase, as well as at the end
of development. These included most of the FFAs and carboxylates. Compounds with a
similar chemical nature and related metabolically are often located close to each other in a
correlation network (Figure 7). This may indicate the effect of metabolic connections on the
pattern of changes in the metabolome. To test this hypothesis, the distribution of the values
of correlations of all metabolites among themselves was considered (Figure 8, “all”). The
values were distributed between −1 and +1 with a median of about 0. Next, the correlation
values were determined for pairs of metabolites belonging to the same group identified by
KEGG (“inside”). The distribution of the obtained correlation coefficients was shifted in a
positive direction, whereas the correlation values for pairs of metabolites that do not have
common groups (“outside”) did not show such a trend. Metabolites in different pathways
showed diverse correlation similarity in the patterns of dynamics. Higher correlations
were observed in the metabolic pathways of fatty acids and sterols, and lower correlations
were observed in the metabolism of pyruvate, sugars, and secondary compounds. Among
the amino acid exchange pathways, those related to pyruvate and TCA and containing
carboxylates as a result showed less connectivity. In contrast, the amino acid exchange
groups, those that were more homogeneous and contained fewer carboxylates, showed
higher correlations.

Then, the random variability in the metabolite content in cultures of different ages
was analyzed. This may be limited by the metabolic links of metabolites. Therefore, its
study can shed light on the structure and regulation of metabolic processes at various
cell developmental stages and culture conditions. The similarities of the dynamics of the
metabolites were estimated by the Canberra distance in the space of their content in every
culture (biological replications) at each time point. Next, the time points were clustered
according to the similarity of distances for pairs of metabolites (Figure 9). It can be seen
that clustering is in good agreement with the development of cells. As in the case of PCA,
the profiles are divided into two large groups: the beginning of development on the one
hand, and further differentiation on the other. The employed method of the clustering
clearly revealed separation of each period. The first one included the lag phase (1–3 days)
and proliferation/initiation of elongation growth (4–7 days). The second one combined
elongation growth (14–18 days) and aging (14–26 days) and continued with cell death
(26th day).
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Figure 7. Metabolite mapping by the correlations of the content. Mapping of metabolites by strong (r > 0.85) correlations of their mean levels at different time points.
Nodes correspond to the metabolites, the edges correspond to a strong correlation: red—positive, blue—negative. Positive correlations contract nodes. Dotted
lines are boundaries of clusters revealed by k-means in coordinates of nodes. In boxes, patterns of dynamics for metabolites: bold line is a median, pies represent
proportion of classes of metabolites in the cluster.
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Figure 8. Relation between biochemical pathways and metabolite level variations. Violin plots of
Spearman’s correlations (r) between all pairs of metabolites (all), inside pathways (inside), outside
pathways (outside), and r calculated for metabolites of the same KEGG pathways. The colors of the
pathways are mixes of the compound colors, as shown in Figure 2.
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Figure 9. Comparative analysis of patterns in individual variability of cultures. The similarity of
metabolite variability was compared by Canberra distance in the space of their normalized stan-
dardized content in independent cultures (heat maps). Colored lines at the sides of heat maps mark
biochemical classes of compounds, as shown at Figure 2. These pair distances were used as a space
for clustering time points by Canberra distance (dendrogram). Numbers—days after inoculation.

3. Discussion
3.1. Cell Culture Is a Dynamically Changing System

Like other cell cultures, tobacco BY-2 suspension culture goes through the stages
of proliferation, then transits into a stationary phase, after which it dies. The exclusive
feature of BY-2 is the elongation growth that occurs after proliferation has completed.
This brings the processes of cell development in the culture closer to those in the whole
plant. The physiological and biochemical trails of culture cells are in accordance with
their development status and alterations in the culture medium. The latter is determined
by the exhaustion of the medium’s resources, an increase in density and, as a result,
in a gas regime, etc. [39,40]. Cells are also known to secrete various metabolites and
proteins into the medium. Thus, the culture medium is considered to be a complex active
biochemical system exhibiting traits of the extracellular compartment [41]. The regulation
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of the process of development of the culture cells seems to be much more complex. And
if metabolic changes in microorganisms are caused by environmental factors that trigger
adaptation processes, then it is assumed that development programs may be preserved,
at least partially, in cells originating from higher plants. These programs are guided by
various endogenous and exogenous stimuli, including hormonal ones. The most important
hormones affecting the state of BY-2 cells are auxins and cytokinins [42–45]. BY-2 cells
are capable of synthesizing cytokinins; in addition, auxin or its analogs are added to
the medium [16]. A shift in hormone levels during culture growth is thought to be one
of the drivers of the physiological changes that occur in cells [17,42]. Analysis of 2,4-D
(2,4-dichlorophenoxyacetic acid, the synthetic analogue of auxin) content in media showed
its decrease in the medium to almost zero by the sixth day of development [28].

The metabolome is one of the integral parameters that reflects the state of the organ-
ism [46–48]. According to our data, the metabolite profiles of tobacco suspension cells
differ at different stages of cultures growth (Figures 2 and 3). It is important that links
between pools of different metabolites are also altered (Figure 9). Similarly, the metabolite
profile changes triggered by aging were earlier determined in plants over longitude experi-
ments [49–52]. Moreover, those changes were specialized according to the developmental
and/or physiological stage of the studied organ or tissue [53–55]. The profile of metabolites
changes significantly during cellular differentiation, including elongation growth. For
example, during the growth of flax fibers [56].

3.2. An Important Role in the Consumption of Sucrose Is Played by Its Extracellular Cleavage

Sucrose is the main source of carbon in heterotrophic cultures and plant organs. It is the
main and universal transport form of carbon in higher plants [57,58]; this explains the pos-
sibility of its metabolization by cell cultures [59–61]. Sucrose uptake is provided by several
transport systems, including SUTs (sucrose transporters), MSTs (monosaccharide trans-
porters), and SWEET (sugars will eventually be exported transporters) [62–65]. Along with
this, the breakdown of sucrose by extracellular invertases may occur, as well as the subse-
quent absorption of the end products. Accumulation of glucose and fructose in the medium
of some cultures, including BY-2, has been observed to be accompanied by a decrease in
the sucrose pool, pointing to the activity of extracellular invertases [40]. In addition, the
maximum specific level of sucrose consumption preceded those of glucose and fructose;
therefore, sucrose hydrolysis was supposed to occur prior to absorption [66]. BY-2 cells
were shown to excrete proteins into the medium, and also acidify it with carboxylic acids,
for example, uronic acid, especially during the lag phase of culture development [29,67].
All these are in agreement with our data. Three stages in the consumption of sucrose
were revealed. At the first day, there was a drop in the level of sucrose, but its hydrolysis
products did not accumulate in the medium. This indicated, apparently, a high absorption
rate of the original substrate (Figure 1A). Then, sucrose hydrolysis took place outside the
cells with the accumulation of hexoses. Both periods were accompanied by a decrease in
pH, which could contribute to the hydrolysis of sucrose. Further on, the hexose was ab-
sorbed for a longer time. A similar pattern of sugar consumption was observed in previous
studies [39,40,68–70]. Hence, a change in substrate nature occurred during the process of
culture growth and thus affected the metabolism. Herewith, the levels of sucrose, fructose,
and glucose in cells began to grow strongly at the 3rd day and reached a maximum at the
4th day, when about 90% of the sucrose had already been absorbed (Figure 1C).

3.3. Proliferation Requires Preparation, Accumulation of ‘Building Blocks’, and Changes in the
Krebs Cycle

After passaging, the cells do not begin dividing immediately. A lag phase for BY-2 cells
lasted about two days, under the conditions of this experiment. For model microorganisms,
the lag phase is known to be a complex dynamic period of systemic preparation for
division. The profiling of BY-2-cell metabolites showed that the lag phase (1–2 DAI)
was well separated from the division phase, finishing with the transition to elongation
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(4–7 DAI) (Figure 3). Previously, the absence of an increase in the DNA level for BY-2
cells was shown for the first two days of cultivation, but this was followed by a dramatic
increase between the 2nd and 4th days [28]. In our experiments, significant changes in
the metabolome occurred during the transition to proliferation. Similarly, it has been
shown that a rapid large-scale metabolic rearrangement due to the preparation for division
involves the following processes: the repair of damage accumulated in the late stages of
the previous culture cycle as a result of stress; the activation of the synthetic apparatus;
the accumulation of primary metabolites, etc. [71]. Our data indicated that from the first
days after subculturing, the BY-2 suspension cultures increased dry biomass as a result of
rapid substrate metabolism (Figure 1A,C). A similar pattern has already been observed
in sucrose-supplied media [72]. This reflects that sucrose is the main specialized form of
carbon transport, and the cells of higher plants constitutively express the components of its
absorption and metabolism. However, this could also reflect a prolonged cell cultivation in
a medium with sucrose, which is supposed to promote the selection of cells with sucrose
utilization mechanisms that are expressed constantly or rapidly induced after transferring to
a new medium. The substrate uptake mechanism can be induced by itself, as is usually the
case with microorganisms [73,74]. In addition, the carbohydrate metabolism is controlled
by crosstalk between carbohydrates and hormonal signaling. Hormones have been shown
to affect both sucrose transport and its metabolism [75,76]. The assumption is that the
trophic behavior of plant cells in suspension mirrored a number of control mechanism that
have been developed at the tissue and whole-organism levels. For example, in angiosperms,
dividing plant cells are organized into meristems, known as the acceptor zones, supplied
with sucrose. Moreover, the tips of asparagus shoots, known for meristematic activity, are
distinguished by a high content of sucrose from the underlying zones, in which cells grow
by elongation, specialize, and senesce [77], as well as culture cells in the proliferation phase
(Figure 4).

The accumulation of dry biomass during the lag phase may be caused by the for-
mation/change of cellular structures that were damaged during the previous cycle of
culture development as a result of cell starvation and aging. The first day after passaging is
accompanied by a drastic elongation of plastids followed by their fragmentation [24,78].
Mitochondria, during the lag and log phases, become granular from being elliptical and
their number increases. These changes are accompanied by active organelle DNA synthe-
sis, which is detected in the first hours after subculturing and precedes the replication of
nuclear DNA, lasting about 5–7 days during the lag and log phases [24,79]. Along with
this, a synthesis and accumulation of metabolites that will be intensively utilized during
proliferation occur. These reserves are needed to maintain a high intensity of metabolic
fluxes during division. The genes encoding proteins that are involved in the processes of
transcription, translation, lipid metabolism, cytoskeleton reorganization, and endomem-
brane formation were shown to be expressed more intensively during the lag and log
phases in BY-2 cells [25]. Similarly, heterotrophic cells of tomato fruits are characterized
by more active synthetic processes during the proliferation period and consist of the ac-
cumulation of amino acids, lipids, nucleic acids, etc. [80–82]. The maximal accumulation
of amino acids, many carboxylates, and short FFAs, are also associated with the growth
of microalgae cultures [83]. A high content of amino acids is observed at earlier stages of
the development of various plants, for example, peas [84] and soybeans [85]. In addition,
the apical meristem of asparagus shoot tips is characterized by high levels of amino acids
such as glutamate, cysteine, histidine, and phenylalanine [77]. In our experiment, the BY-2
tobacco cells accumulated free standard amino acids during the lag phase and maintained
them at a high level during the proliferation period. Nevertheless, a decrease in the levels of
several amino acids accumulated in the lag phase, especially aromatic ones, and methionine
was detected, which probably indicated its participation in the synthesis of proteins and
other compounds. On the contrary, alanine, serine, and aspartate levels increased precisely
at the stage of proliferation. The accumulation of nitrogen metabolism intermediates also
changed during the development of cell cultures. The level of putrescine first dropped
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down during the lag phase and then lifted during division. This finding is consistent with
previous observations that the period of active growth of BY-2 cultures is characterized
by higher levels of free and water-soluble conjugates of amines, such as spermine and
spermidine, and a reduction in putrescine. This is accompanied by changes in the activity
of polyamine synthesis enzymes [27].

Glycolysis and the TCA cycle are closely related to the synthesis of amino acids.
During the lag phase, the levels of pyruvate, citrate, and succinate decreased, in contrast to
the levels of carboxylates of the Krebs cycle end (malate and fumarate) which indicated
an alteration in the operating mode. The first assumption is that the incoming flow in the
TCA cycle was decreasing. However, activation of the glyoxylate shunt and redirection of
TCA cycle intermediates into amino acid synthesis are possible. This is in agreement with
an increase in the level of amino acids, primarily derived from pyruvate and oxaloacetate.
An additional driver of these changes may be a lack of oxygen, since the glyoxylate shunt
cuts off part of the reactions requiring oxidized cofactors. During the transition to division,
the levels of citrate and many carboxylates increased, reflecting a requirement for energy.
Carboxylate pools play an important role in the regulation and stabilization of the TCA
cycle [86–88]. The maximal activation of aerobic respiration of heterotrophic tobacco cells
during the period of active proliferation was revealed previously [22]. This corresponds to
an increase in the number of mitochondria and peroxisomes in culture cells [23].

At the stage of the lag phase of the BY-2 culture, the accumulation of sterols was
noted, as well as elevation of the FFA level during the proliferation period (Figure 2). Both
processes can be associated with the development of membranes. The need to synthesize
these membranes is determined by their previous destruction during the aging process
of the cells. It is intensified by the increase in the number of organelles occurring before
and during the division [78]. An additional reason for the accumulation of FFAs could be
a process preceding elongation growth. Similarly, the accumulation of FFAs and lipids
was shown at the early stages of germination, before the rapid growth of the pollen
tube [89]. The elevation of the sterol level also precedes division. These metabolites have
more complex and prolonged synthesis and play a key role in membrane activity [90,91].
Phytosterols’ importance is associated with maintenance of membrane fluidity, permeability,
organization, and regulation of the activity of transmembrane proteins, including H +

ATPase []. Thus, its role in the regulation of cellular metabolism, as well as in the process
of elongation growth, is assumed. The intensification of membrane protein activity in
the course of both processes may be associated with an increase in the number of rafts.
It has been shown that rafts in tobacco cell membranes contain significant amounts of
phytosterols, predominantly stigmasterol. They contain sitosterol and other sterols in
smaller amounts [92]. Taken together, the phytosterols pool is considered as an indirect
indicator of the raft formation and the stigmasterol/β-sitosterol ratio is an important pointer
of membrane activity [93,94]. In our experiment, this ratio increased during transition to
proliferation and then declined during active elongation (Figure S1).

3.4. Cell Cycle Regulation Is Linked with Ethylene

The accumulation of ACC in the latency and proliferation phases of BY-2 cultures
revealed in our study deserves special attention. Known as a precursor in ethylene syn-
thesis, it has an independent signaling path [95–97]. Plant cell cultures were shown to
synthesize significant amounts of ethylene, especially during the proliferation period [98].
It is supposed that ethylene is associated with the regulation of the cell cycle and cell
elongation [99] but the data are contradictory in a way. The increase in ACC content during
the lag and proliferation stages is consistent with the view that ethylene stimulates the
transition of cells to the S-phase and inhibits elongation [98]. Recently, an ACC content
decrease has been documented for BY-2 culture during senescence, while the level of ethy-
lene increased [72]. The existence of a crosstalk between ethylene and auxin signaling
may also play and important role. In suspension cultures of Ruta graveolens, ethylene
synthesis was stimulated by both the addition of 1-NAA and, to an even greater extent, of
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2,4-D [100]. However, the ACC content increase in BY-2 cultures was upregulated only by
very high concentrations of 2,4-D, while the pattern of ethylene content varied in a more
complex way [28]. Since BY-2 tobacco cells do not synthesize auxins, and 2,4-D is added to
the culture medium, it can trigger the accumulation of ACC and ethylene synthesis after
subculturing. In addition, the level of methionine, a precursor of ACC, also increased at
the beginning of culture development (Figures 2 and 4).

3.5. Active Elongation Growth Is Accompanied by Activation of Carbohydrate Metabolism and
Repression of Synthetic Processes

Elongation growth is one of the most important steps of plant cell differentiation. A
rapid longitudinal increase in cellular size is based on osmotic water absorption. Elongation
growth is rarely determined during cultivation. BY-2 culture cells are among the few that
retain this facility to elongate [20]. After 7 days, the length of the BY-2 cells began the
active increase (Figure 1B). This step was associated with radical changes in metabolism,
which is in agreement with what has been observed in native plants. Similar processes, for
example, occurred during the growth of cotton fibers [56]. According to our study of BY-2
cultures, the period of active elongation growth (7–14 DAI, days after inoculation) and its
finalization (18 DAI) were associated with the most intensive metabolic rearrangements
(Figure 3).

Sugars, especially sucrose, are the main osmotically active metabolites imported by
plant cells and may be accumulated in the central vacuole [101]. In our experiment, cells
increased sucrose content during the lag phase and proliferation, which was accompanied
by its rapid decrease in the medium. Thus, prior to active elongation a large osmotic
sucrose gradient was generated. An important difference between cells growing in a native
plant is the continued supply of sucrose due to the influx from donor cells/tissues. On the
contrary, in BY-2 culture, elongation growth developed when sucrose was exhausted in the
medium (Figures 2 and 3). Thus, the importance of internal sugar reserves is revealed.

Modeling has shown that in tomato pericarp cells, elongation growth in terms of ATP
costs is comparable to cell division in culture [80,82]. Energy metabolism is closely related
to carbohydrate metabolism. During this period, there are still quite a lot of hexoses in
the medium, which can be absorbed and used for various purposes. It was previously
established that elongation growth is associated with high activity of enzymes associated
primarily with the lower part of glycolysis, whereas the flow through the upper part
of glycolysis may decrease [101–103]. In our experiment, high levels of phosphorylated
hexoses and pyruvate, together with a decrease in the content of sucrose in cells and hexoses
in the medium, indicated a high activity of the entire glycolysis pathway. The high content
of hexose phosphates with a low ATP/ADP ratio is probably a mechanism for ensuring
intensive metabolic flow through glycolysis. The flip side of the combination of high energy
costs and carbohydrate catabolism restrictions is the repression of synthetic processes.
During elongation growth, the accumulation of amino acids, sterols, and acylglycerols
decreased (Figures 2 and 3). It can be assumed that at this step the synthesis of new
components stopped and structures and molecular pools accumulated earlier were used.
A similarly high level of accumulation of TCA cycle intermediates and amino acids was
observed in the initiation phase of cotton fiber elongation. When elongation intensified,
their level decreased significantly. At the same time, the accumulation of glucose-6P and
hexokinase transcription increased [56]. Interestingly, the accumulation of carboxylates is
observed during pollen germination and pollen tube growth [89]. In our experiment, the
levels of different carboxylates in tobacco cells decreased directly during the proliferation
period and initiation of elongation (4–7 days). However, during the active elongation
growth, the pattern of alterations in the carboxylic acid pool changed (Figure 4). In addition,
carboxylates are the products of incomplete oxidation of sugars and play a supportive
role in maintaining osmotic pressure [101]. Interestingly, both in cotton fibers and BY-2
cells elongation is accompanied by an increase in GABA content. But this increase was not
observed in mutant cotton defective in fiber growth [56].
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3.6. Elongation Growth Completion Is Associated with the Activation of Specialized Metabolism

Over time, the growing conditions of suspension cultures worsen. An exhaustion of
nutrients, accumulation of metabolic products, deterioration of the gas regime, alkaliniza-
tion, etc., commonly occur. The level of ascorbate is considered as a physiological indicator
of optimal conditions after subculturing. A low level of this metabolite is detected during
the lag phase and proliferation, and then it increases. Similarly, a low level of ascorbate also
characterizes apical meristems, both root and shoot [77,104]. Plant organisms are constantly
improving their adaptation mechanisms to stress factors. This includes the synthesis of
compounds belonging to the group of secondary metabolites of various classes, which
might have a wide application. Cell cultures originated from plants are also actively in use
as producers of such metabolites. Thus, comprehension of the cross interaction between
primary and secondary metabolism during the development of cultures is necessary. One
of the frequent responses under stressful conditions is the synthesis of aromatic compounds
such as phenylpropanoids [105]. An accumulation of aromatic compounds was observed
in senescent cultures, for example, in the case of Cannabis sativa L. [106]. Various glycosides,
originated from the developed carbohydrate metabolism, are precursors for the synthesis
of natural substances. In the metabolic profiles, we detected several dozen compounds
which were annotated as glycosides. But exact identification of these is usually complicated
due to the huge diversity of representatives and the fact that sugar residues give similar
masses in the spectra. According to the mass spectra, we identified those glycosides that
potentially have aromatic groups. The BY-2 cell analysis indicated that the completion
of elongation growth was marked by a large-scale accumulation of glycosides, including
almost all annotated as “phenolic” (Figure 4). It is also important to note the elevation of
the aminated sugars level. All this can be interpreted as a non-specific feedback reaction
to worsening conditions. However, the list of secondary metabolites synthesized in cell
cultures is less diverse than that of native plants. For example, tobacco cells of BY-2 culture
did not contain nicotine and nicotinic acid, in comparison to seedlings analyzed with
similar methods [107]. This fact leads to the assumption that cells in suspension culture
are not under such stressful conditions. Moreover, the nicotine content in tobacco leaves
increases with age, and therefore may represent a programmable developmental trait that
might be absent in suspension [52].

Counting a close interaction between both forms of metabolism through energy and
precursor supply, the intensification of secondary compound synthesis could have an
antagonistic relationship with biomass accumulation. This is consistent with the observed
reduction in primary metabolites, opposite to the glycoside level (Figure 5). But tobacco
cells in this period were characterized by a high content of phosphorylated sugars. Those
compounds are known to be precursors in the synthesis of glycosides. However, phospho-
rylation of sugars with limited catabolism can lead to a metabolic imbalance, associated
with a strong decrease in the NTP level. Thus, the observed increase in AMP content can
be interpreted as a result of a decrease in nucleotide phosphorylation.

3.7. An Alteration in the Composition of the Cell Wall May Be a Driver of Metabolic Changes

The cell wall composition (CW) can be an important sign of carbohydrate metabolism.
It has an important contribution, which is about 30%, in the dry mass of BY-2 cells [67]. The
process of cell division and differentiation is accompanied by intensive alterations in cell
walls. During division, plant cells form a primary CW. Its composition permits regulation
of extensibility and further elongation growth. After completion of these developmental
stages, the cells synthesize a secondary CW enriched with phenolic compounds. Additional
modifications may be formed in the CW as a specialization [108,109]. Hence, analysis of
the cell wall composition of BY-2 cells did not reveal any significant changes during
the initial period of culture growth (2–6 days), when the majority of the polysaccharide
monomers were glucose [67]. In recent studies, it was found that the composition of
the CW varies throughout the culture development cycle [28,29]. After the completion
of BY-2-cell proliferation, the CW was enriched with cellulose, while the proportion of
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glucose in the composition of polymers increased [29]. In our study, the glucose level in
the metabolite profiles was also detected, but after the completion of elongation, between
18 and 21 days (Figure 5). And the observed accumulation of phenolic glycosides at the
end of the cell elongation phase could reflect the formation of secondary CWs. Previously,
it was demonstrated that an important factor in the formation of CWs of tobacco BY-2 cells
is continuous mechanical action due to constant rotating of suspension cultures, which
aimed at preventing cell sedimentation and a possible hypoxic effect. As a result, the pectin
shield appears to increase cell protection [72]. A further increase in culture density would
intensify mechanical stress, causing changes in the synthesis of pectins and hemicelluloses.
In addition, CW carbohydrates are able to absorb water, which may be the reason for an
imbalance between fresh and dry biomass (Figure 1A) and the observation of slimy cells in
the late stages of development.

3.8. Destructive Processes of the Stationary Phase Lead to Secondary Accumulation of Amino
Acids, Sterols, and FFAs

The deterioration of cultivation conditions causes growth arrest and transition to
a stationary phase. Cell senescence within plant organs and culture development, as
well as during starvation, has both common and specific signs. The common ones in-
clude a decrease in physiological activity [31] and the induction of destructive processes.
For example, during the transition of BY-2 cultures to the stationary phase, the number
of mitochondria and peroxisomes in cells decreases [23], and the Golgi apparatus de-
grades [110]. The progressing proteolysis may lead to some accumulation of free amino
acids [111,112]. Catabolism plays an important role in a cell’s energy supply during star-
vation or stress [37,113,114]. Proteolysis and the linked accumulation of free amino acids
during senescence within plant organisms provide remobilization and redistribution of
nitrogen [53,115]. The main mobile form of amino groups is nitrogen-rich glutamine [53].
In our study, glutamine, as well as malate, accumulation occurred at the stationary stage
of BY-2 culture development. An increase in the content of malate and amino acids dur-
ing senescence was also demonstrated by suspension cultures of Arabidopsis thaliana (L.)
Heynh. [35]. Malate accumulation in plant cells is known to be intensive and plays an
important role in balancing metabolism [116]. Its pool is supposed to be the final carbon
stock during the destruction of cellular components, inhibition of respiration, and inability
to export in culture conditions.

At the end of cell culture development, lipid metabolism also undergoes serious
changes. A substantial part of the lipid metabolism genes in BY-2 culture cells were
activated at the stationary phase [25], and they were supposed to be due to membrane
destruction. However, the simultaneous reduction in respiration and the decrease in
peroxisome number [23,117] should prevent beta oxidation of FAs and probably lead
to their accumulation. The metabolic profiles of BY-2 cells obtained in our experiments
showed that at the stationary phase, the level of FFAs increased first, followed by free
sterols. The later accumulation of phytosterols was probably associated with the multistep
destruction of membrane structures, for example, rafts.

3.9. The Death of the Culture Is Accompanied by Catabolism and Weakening of Defense Reactions

Figure 1C shows that the period of cell death in the BY-2 suspension culture corre-
sponded to a drop in the level of hexoses in the medium to a level close to zero. Perhaps
carbon starvation becomes the most important driver during this period. It led to a decrease
in metabolic activity, cell degradation, and subsequent death [37]. The percentage of dry
biomass decreased to a minimum, which indicates the mobilization of reserves (Figure 1A).
Furthermore, the levels of amino acids and sterols exhibited a decline and reached a min-
imum. Nevertheless, the levels of FFAs and acylglycerols remained quite high. This is
probably the result of lipid degradation with a lack of beta oxidation. The protective
reaction associated with the synthesis of glycosides also faded. The detected accumulation
of pyruvate and carboxylates could indicate the activity of the lower part of glycolysis as
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well as catabolism of amino acids and sterols. Nevertheless, resource mobilization cannot
ensure the long-term viability of starving cell cultures originated from angiosperms. This
is in stark contrast to microalgae, which can remain viable during long-term limitations
of external energy and carbon sources [118]. The assumption is that cells of angiosperm
plants metabolize degradation products of lipids and proteins as a carbon source at a much
lower extent and are much more sensitive to the external supply of resources.

3.10. Coregulated Blocks of Metabolites

Many different tools and approaches exist to assess the relationships between metabo-
lites [119]. The main one is the correlation between their content [120]. Since correlation
considers the sum of all metabolic reactions, transport, and regulatory processes, it can be
considered as a property of the entire system [119,121]. One way to represent correlations
is to construct a graph where the edges reflect the presence of a strong correlation. The
analysis of such graphs makes it possible to identify systemic patterns of metabolic changes
occurring in biological objects [122]. Our mapping of strong (r > 0.85) correlations of the
average level of metabolites at all studied time points is presented in the form of a graph
(Figure 7). Biological networks are characterized by a scale-free structure. Such networks
are characterized by heterogeneity and the presence of a small number of nodes with a
high number of connections [123]. The network developed in our study demonstrates
heterogeneity. Observed thickenings reflect the associated accumulation of amino acids,
sterols, and carboxylates (cluster 1). Metabolically, these compounds are far from each
other, but they turn out to be functionally related. Apparently, sterols and amino acids are
actively involved in synthetic pathways at the initial stage and are the result of degrada-
tion at the final stages of cell development. Carboxylic acids are associated with both the
synthesis and breakdown of amino acids and sterols. The association of sucrose, fructose,
and glucose in one cluster (cluster 2) is not surprising. But the inclusion of FFAs in this
cluster requires additional analysis. These metabolites are assumed to be involved in the
processes of elongation growth (from initiation until completion). An important sign of this
stage is the accumulation of sugars in intracellular compartments, the restructuring and
metabolism of carbohydrates, including the synthesis and structural alteration in cell wall
composition, as well as the dynamics of synthesis and reorganization of cell membranes.
Cluster 3 unites metabolites which are characterized by an elevation in their content during
the period of active elongation growth, and during further senescence and death. The
presence of pyruvate, monosaccharides, and glycosides, as well as some carboxylates,
should be noted. Such association of metabolites is probably related to the activation of
sugar metabolism, including glycolysis. A similar pattern was determined for nitrogenous
bases and putrescine.

The revealed common trends of metabolically unrelated compounds may reflect a
global systemic factor. The phenomenon of a high level of correlation for such metabo-
lites has been noted before [119,124]. It is associated with systemic rearrangements of
various metabolic processes during development. Trophic and hormonal signaling path-
ways are assumed to be regulatory integration factors. The resulting network shows an
interesting pattern: some biochemically related compounds are concentrated in the same
or close clusters, as in the case of amino acids, sterols, and FFAs. A similar grouping of
metabolites, according to chemical and metabolic specificity, has already been observed pre-
viously [125,126]. Alternatively, other, biochemically related compounds could be largely
“dispersed” over the network. For example, pyruvate, citrate, and other TCA cycle interme-
diates show rather different patterns of dynamics. Glycosides are also scattered throughout
the clusters. But still the important question arises: how is metabolic proximity associated
with the revealed correlation of accumulation during development?
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3.11. The Relationship Between the Chemical Nature of Metabolites and Correlations of
Their Accumulation

To be able to answer this question, we compare the variability in metabolite content,
its chemical specificity, and affiliation to metabolic pathways. An important observation
is that correlations within metabolic groups are shifted in a positive direction (Figure 8,
“inside”). Thus, the nature of the biochemical pathway contributes to the determination of
correlations of the metabolite representation. The possibility of independent alteration in
the metabolite accumulation is probably limited by metabolic fluxes, compartmentalization,
and dependence on common resources. This supposition is in agreement with a connection
between the network topology reconstructed by correlations and known biochemical
pathways [127–129]. In our study, the distribution of correlations was different in various
pathways (Figure 8). A high level of correlations was shown by a number of specialized
pathways, for example, fatty acid and sterol metabolism. These pathways have a relatively
small number of reactions and include biochemically related metabolites. The direction of
metabolic fluxes into them quickly fills all the pools, although these paths are isolated from
others. The case with amino acids is more complicated. It is noteworthy that the levels of
these metabolites vary more or less consistently, despite the fact that their precursors are
intermediates of the TCA cycle and glycolysis, which show less consistency in changes.
Probably, the key importance shifts from the structure of the metabolic network to functional
regulation associated with the synthesis and degradation of proteins. For some groups of
metabolites, there was no increase in correlations, especially for central metabolic nodes
such as pyruvate metabolism. Possibly, those metabolites are in the cross-interaction of
several active pathways that differ in compartmentalization and complexity of regulation.

3.12. Patterns of Individual Variability Reflect the Functional State of Cells

Random variability in the content of metabolites between individual plants or cell
cultures is rarely considered. According to the experimental data, the accumulation of
metabolites in cell cultures, even under the same conditions and in the same phase of cell
development, show diversity. Correlations in the metabolite accumulation detected in
parallel subculturing reflected the patterns of enzymatic activity and flux intensity that
developed according to the current conditions and previous cultivation. Thus, the pattern
of correlations could be considered as a fingerprint characterizing the state of a biological
system [130]. Those patterns have been shown to be specific to organs and tissues [125,130],
to genotype [125,131], and to environmental conditions [127,129]. Subsequent assessment
of the similarity of the accumulation patterns for pairs of metabolites by Canberra distance
is visualized as heat maps (Figure 9). Significant changes in the patterns during the BY-2
culturing stages were determined. Cluster analysis at different time points based on pat-
tern similarity revealed similarities previously observed when metabolite profiles were
compared. The differences between the lag phase, proliferation, elongation growth, and
aging are traced. Furthermore, the “death” phase exhibited distinct metabolic specificity.
This indicates that development is associated with a cross-interaction between the pools of
metabolites, which is constantly adjusted to varying internal and external factors. Thus, co-
ordinated changes in the metabolite accumulation are an integral property of the biological
system, since they unite all metabolic reactions and regulatory processes [119,121,124].

4. Materials and Methods
4.1. Plant Material

A heterotrophic cell suspension culture of Nicotiana tabacum L. (BY-2, Bright, Yellow;
kindly gifted by Prof. E. Zazimalova). Cultures were maintained in Murashige and Skoog
medium [1] supplemented with 30 g/L sucrose in 250 mL Erlenmeyer flasks containing
50 mL of medium. Cultures were kept in the dark, at a constant temperature of 26 ◦C
and on a rotary shaker (120 rpm). Cells (5 mL) were inoculated in fresh medium every
3 weeks. For experiments, the initial fresh weight density was adjusted to 10–12 mg/L.
Experimental cultures were maintained in 500 mL Erlenmeyer flasks with 110 mL of
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medium. Approximately 200 mg of fresh biomass was sampled by filtration. Samples were
taken from cultures of 1, 2, 3, 4, 7, 14, 18, 21, 23, 26 days after inoculation. The experiment
was conducted in five biological replicates. Samples were rapidly frozen in liquid nitrogen.

4.2. Metabolite Profiling

Cells were disrupted in a ball mill (Tissue Lyser LT, QIAGEN, Hilden, Germany).
Extraction was performed with a chilled mixture of methanol–chloroform–water in the
ratio of 5:2:2. After extraction, samples were cleared of cell debris by centrifugation for
10 min, 15,000× g at 4 ◦C. The extract was evaporated in a vacuum evaporator (Labconco,
Kansas City, MO, US). The dried material was dissolved in a mixture of pyridine and
silylating mix of BSFA:TMCS 99:1 (Sigma, St. Louis, MO, USA), with the addition of an
internal standard (tricosan, normal C23 hydrocarbon, Sigma). The material was derivatized
by incubating the samples at 90 ◦C for 20 min.

GC-MS analysis was performed with an Agilent 6850 gas chromatograph coupled to an
Agilent 5975 mass spectrometer (Agilent Technologies, Santa Clara, CA, USA). Separation
was performed on a Rxi-Sil-5ms capillary column (RESTEK, Bellefonte, PA, USA). The inlet
temperature was −250 ◦C, in splitless mode; the column thermostat was set at an initial
temperature of 70 ◦C, then a linear increase at a rate of 6◦/min up to 320 ◦C.

Data were analyzed with the PARADISe 6.0.1 software [132] coupled with NIST MS
Search 2.4 (National Institute of Standards and Technology, NIST, Santa Clara, CA, USA).
For additional metabolite annotation, the AMDIS (Automated Mass Spectral Deconvolution
and Identification System, NIST, Santa Clara, CA, USA) was used. Identification was made
by mass spectra and RI match with records in libraries: NIST2020 [133], Golm Metabolome
Database [134] and in-house library of the laboratory of analytical phytochemistry BIN
RAS. Mass spectra were attributed to the compound if the match factor of the similarity
to the library record was at least 800 (80 for AMDIS). If a mass spectrum was similar to
several members of a class, it was annotated with class and RI (hexose_RI=, sterol_RI=,
etc.). The unannotated compounds were used in the analysis as labeled by retention indices
(“na_RI=”).

4.3. Monitoring Sucrose and Hexose Concentrations in the Medium

The concentrations of sucrose, glucose, and fructose in the culture medium in sam-
ples for GC-MS were measured by HPLC-ELSD with a LicArt 62 (Labconcept, St. Pe-
tersburg, Russia), on an Inspire™ HILIC column (Dikma Technologies, Foothill Ranch,
CA, USA). Mobile phase “A” was a mix of water/acetonitrile/formic acid 95:5:0.1; “B”—
acetonitrile/water/formic acid 90:10:0.1. The gradient elution mode was 90% “B” (5 min);
80% (10 min); 10% (20 min); 10% (30 min); 90% (35 min); 90% (40 min), at a flow rate of
300 µL/min and column temperature of 30 ◦C. The injection volume was 5 µL. Detection
was performed on an evaporative light scattering detector (ELSD), carrier gas (nitrogen)
flow rate 3.0 L/min, and evaporation temperature 60 ◦C. Identification was performed by
comparing the retention times of the peaks with the peaks of the standards. Quantification
was made from peak areas calibrated with standards.

4.4. Data Analysis

The data were analyzed in the R 4.3.1 ‘Beagle Scouts’ environment. The data were
normalized by the sample median, the logarithm taken, and standardized. Normalized
peak areas are displayed in Supplementary Table S1. If a compound was absent in a sample
but present in the other replicates, this was considered a technical error and impute was
performed using the KNN (k-nearest neighbors) method using the impute package [135].
A principal component analysis (PCA) was performed using pcaMethods [136]. An OPLS-
DA (orthogonal projections in latent structure—discriminant analysis) was performed
using the ropls package [137]. The fgsea package [138] was used for a metabolite set
enrichment analysis (MSEA). The metabolite sets for biochemical pathways for MSEA were
downloaded from the KEGG database [139] using the KEGGREST package [140]. The list
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of metabolites belonging to different biochemical pathways was manually corrected, as the
required pathways were added for some metabolites. Compounds for which a class was
annotated were placed in the corresponding pathways. The metabolic map was built on
the Cytoscape 3.10.2 software [141].

5. Conclusions

The cells of the BY-2 suspension culture experience complex systemic rearrangements,
including changes in the metabolome. The lag phase, proliferation phase, elongation
growth phase, stationary phase, and death are well manifested. One of the factors affecting
metabolic rearrangements is a change in trophic status. Tobacco cells rapidly break down
sucrose extracellularly and uptake sugars. The initial period of development is charac-
terized by the accumulation of free amino acids and sterols, which is in agreement with
the synthetic activity during the absorption of the substrate. The strongest changes occur
after the completion of division and the activation of elongation growth, when sucrose
in the medium is eliminated. Further active elongation mainly involves the activation of
sugar metabolism and the repression of synthetic processes. The completion of elongation
growth is accompanied by an increase in the level of metabolites associated with specialized
metabolism and the formation of a secondary cell wall. In the stationary phase, there is a
secondary increase in the accumulation of amino acids, sterols, and FFAs due to destructive
processes. Correlations in the dynamics of the metabolite content during the process of
culture growth and cell development are determined both by their functional connections
and the structure of biochemical pathways. The obtained data are clearly related to cross-
connections of metabolic pools and its dynamic alterations during the development of the
BY-2 suspension culture.
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//www.mdpi.com/article/10.3390/plants13233426/s1, Table S1. Normalized peak areas. Table S2.
OPLS-DA models. Table S3. Biomass density. Figure S1. Stigmasterol/β-sitosterol ratios.
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