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Operating principle of phase-locked loops: synchronization

mutual synchronization
C. Huygens, “Horologium Oscillatorium”, 1673.

Loop filter VCO

low frequency high frequency

vd(t)=0.5(sin[θref(t)-θvco(t)]+sin[θref(t)+θvco(t)])

{ {

sin[θref(t)] cos[θvco(t)]
Input

“master”–“slave” synchronization
E.V. Appleton, “Automatic synchronization of triode oscil-
lators”, 1923 (Nobel Prize winner, 1947).
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Mathematical model

Mathematical model:

ẋ = Ax + Bve(θe),

θ̇e = ωfree
e − Kvco(Cx + Dve(θe)).

+-

+

VCO

Baseband model of an analog PLL.

x(t) ∈ Rn — filter state
θe(t) ∈ R — phase error
A ∈ Rn×n — constant matrix
B ∈ Rn×1, C ∈ R1×n, D ∈ R
F(s) = C(sI − A)−1B + D — loop filter
transfer function

Kvco > 0 — VCO gain
ωfree

e = ωref − ωfree
vco — frequency error

ωref ≡ θ̇ref(t) — reference frequency
ωfree

vco — free-running frequency of VCO
ve(θe) — phase detector characteristic
(nonlinear periodic function)
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Main characteristics of PLL dynamics

+-

+

Loop filter

Since system is invariant with respect to
(
ωfree

e , x, θe
)
→

(
− ωfree

e , −x, −θe
)
, we can

study it for ωfree
e ≥ 0 only and introduce the concept of frequency deviation:

|ωfree
e | = |ωref − ωfree

vco|.

A hold-in range (≈ local stability) — the largest interval of frequency errors |ωfree
e | ∈ [0, ωh)

such that an asymptotically stable locked state exists and varies continuously while ωfree
e

varies continuously within the interval.

A pull-in range (≈ global stability) — the largest interval |ωfree
e | ∈ [0, ωp) from the hold-in

range such that a locked state is acquired for an arbitrary initial state.
The locked states of the model correspond to the equilibria of the system.
G.A. Leonov, N.V. Kuznetsov, M.V. Yuldashev, R.V. Yuldashev, Hold-in, pull-in, and lock-in ranges of PLL circuits: rigorous mathematical definitions and

limitations of classical theory, IEEE TCAS-I, 2015.
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The lock-in range and the Gardner problem

A lock-in range — the largest interval |ωfree
e | ∈ [0, ωl) ⊂ [0, ωp) such that the PLL after

any change of ωfree
e within the interval re-establishes an asymptotically stable locked state

without cycle slipping (sup
t>0

|θe(0)− θe(t)| < 2π).

t

ωvco
free

reference frequency ωref (t)
VCO frequency ωvco(t)Frequency

0

ω

cycle
slipping

ωref

2ω
3ω

4ω

The Gardner problem (2005): “There is no natural way to
define exactly any unique lock-in frequency”, “despite its vague
reality, lock-in range is a useful concept”.
G.A. Leonov, N.V. Kuznetsov, M.V. Yuldashev, R.V. Yuldashev, Hold-in, pull-in, and lock-in ranges of PLL

circuits: rigorous mathematical definitions and limitations of classical theory, IEEE TCAS-I, 2015.
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Second-order PLL with proportionally-integrating loop filter

Consider the second-order PLL with proportionally-integrating filter F(s) = 1+sτ2
sτ1

:

ẋ = ve(θe),

θ̇e = ωfree
e − Kvco

τ1
(x + τ2ve(θe)) .

Consider piecewise-linear ve(θe) = pwl(θe, k), k > 1
π

and sawtooth
ve(θe) = saw(θe) = lim

k→+ 1
π

pwl(θe, k) phase detector characteristics:
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Second-order PLL with proportionally-integrating loop filter

ẋ = saw(θe),

θ̇e = ωfree
e − Kvco

τ1
(x + τ2saw(θe)) .

The PLL system is discontinuous on discontinuity surfaces

Sm = {(x, θe) | x ∈ R, θe = π + 2πm}, m ∈ Z,

Surfaces Sm have a zero Lebesgue measure.

For definition of solutions we use the Filippov’s approach and consider the differential
inclusion

ẋ ∈ ψ(θe),

θ̇e ∈ ωfree
e − Kvco

τ1
(x + τ2ψ(θe)) ,

where

ψ(θe) =

saw(θe), θe ̸= π + 2πm,
[−1, 1], θe = π + 2πm.
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Phase portrait (Filippov approach)

20
Figure

Sliding bands are Dm =
{
(x, θe) |

∣∣∣x − τ1ω
free
e

Kvco

∣∣∣ ≤ τ2, θe = π + 2πm
}
, m ∈ Z.
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Second-order PLL with lead-lag loop filter: hold-in range

ẋ = ve(θe),

θ̇e = ωfree
e − Kvco

τ1
(x + τ2ve(θe)) .

Stationary set is

Λ =

{
(x, θe) | x =

τ1ω
free
e

Kvco
, θe = πm, m ∈ Z

}
.

• equilibria
(

τ1ω
free
e

Kvco
, 2πm

)
are asymptotically stable

• equilibria
(

τ1ω
free
e

Kvco
, π + 2πm

)
are unstable

Since an asymptotically stable equilibrium exists for any frequency error ωfree
e , and the hold-

in range is infinite
[0, ωh) = [0, +∞).

for any Kvco > 0, τ1 > 0, τ2 > 0.
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Global stability theorem for pull-in range estimation

ẋ ∈ ψ(θe),

θ̇e ∈ ωfree
e − Kvco

τ1
(x + τ2ψ(θe)) .

Leonov theorem on global stability of periodic systems

If there is a continuous function V(x, θe) : R2 → R such that:
(i) V(x, θe + 2π) = V(x, θe) ∀x ∈ R, ∀θe ∈ R,
(ii) for any solution (x(t), θe(t)) of the inclusion the function V(x(t), θe(t)) is non-
increasing,
(iii) V(x(t), θe(t)) ≡ V(x(0), θe(0)) implies (x(t), θe(t)) ≡ (x(0), θe(0)),
(iv) V(x, θe) + θ2

e → +∞ as |x|+ |θe| → +∞,
then any solution of the differential inclusion tends to a stationary set of this inclusion.

The following continuous Lyapunov function

V(x, θe) =
Kvco

2τ1

(
x − τ1ω

free
e

Kvco

)2

+

θe∫
0

saw(σ)dσ,

allows to prove the infiniteness of the pull-in range: [0, ωp) = [0, +∞) for any
Kvco > 0, τ1 > 0, τ2 > 0.
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Lock-in range
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Figure: The trajectories of the model with negative ωfree
e = −ω < 0 are in black, the trajectories of

the model with positive ωfree
e = ω > 0 are in red. Left subfigure: ω = 88 < ωl; middle subfigure:

ω = ωl ≈ 92.27; right subfigure: ω = 95 > ωl.

The lock-in frequency of the PLL model with the sawtooth PD characteristic is

ωl =


a√π
2τ2

(
a+b
a−b

) a
2b
, a2 > 4π,

πe
τ2
, a2 = 4π,

a√π
2τ2

exp
(

a
b arctan

b
a

)
, a2 < 4π,

where
a =

√
Kvco

τ1
τ2, b =

√
|a2 − 4π|. 10



Comparison with triangle PD characteristic

ẋ = ve(θe),

θ̇e = ωfree
e − Kvco

τ1
(x + τ2ve(θe)) .
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Figure: Comparison of the lock-in frequency of PLL model with sawtooth PD characteristic
ve(θe) = saw(θe) = pwl(θe, 1

π
) and the lock-in frequency of PLL model with triangular

characteristic ve(θe) = tri(θe) = pwl(θe, 2
π
). Parameter τ2 = 0.0225.
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