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Abstract— This paper focuses on developing and studying a
phase shift control system for a two-rotor vibration mechatronic
setup. The controller serves to maintain the desired revolving
speed of the unbalanced rotors and the desired phase shift
between them. The sliding mode motion is achieved using an
integral relay controller in the phase loop, while PI controllers
are employed in the velocity control loops. The numerical
study, simulations, and experiments are performed using the
Mechatronic Vibration Setup SV-2M. The velocity and phase
shift control laws are studied, and the possibility of asymptotic
sliding mode occurrence in the phase shift loop is examined
through analytical and numerical analysis. The simulation
and experimental results confirm the asymptotic emergence of
sliding mode motion and demonstrate the dynamical properties
of the closed-loop system.

Index Terms— Phase shift control; Two-rotor vibration
mechatronic setup; Induction motor; Sliding mode motion;
Relay control; PI control

I. INTRODUCTION

Vibration technologies find application across diverse in-
dustries and manufacturing sectors, such as ore enrichment,
metallurgy, mechanical engineering, chemical industries,
production of construction materials, grinding, fine grinding,
and surface treatment of various parts. A vibration machine
is an assembly where the working element undergoes oscil-
latory motion essential for executing or enhancing a specific
process. These machines can be categorized based on various
factors such as the drive type, energy transformation, spectral
composition of generated vibration, trajectory shape of the
working element, and others. The phenomenon of vibration-
induced rotation maintenance enhances motor efficiency,
utilized in cone crushers. Machines in mineral processing,
construction, chemical, and food industries operate on the
principle of vibration displacement. The artificial mode of
multiple synchronization is implemented by different (mul-
tiple) rotational frequencies of the rotors, forming complex
shapes and heterogeneous trajectory fields of the points on
the vibrator. This effect expands the technological possibili-
ties of using vibration machines for performing challenging
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transportation tasks, such as the movement of dusty, wet, and
sticky loads, as well as simultaneous screening and separa-
tion of bulk materials. Asymmetry of vibrations at multiple
rotor speeds creates and enhances vibratory conveying with
increased productivity.

The primary operational modes and control of a vibra-
tion system include start-up, passage through resonance,
and synchronization. Specifically considering movement in
the vertical plane while disregarding deviations from pla-
nar parallel motion, synchronous rotation of vibrators is
employed to perform tasks like screening, crushing, and
vibratory conveying of bulk materials for enhanced produc-
tivity. The synchronous mode, occurring naturally in the
form of self-synchronization, was discovered and studied
by I.I. Blekhman and his coworkers [1]–[3]. However, strict
adherence to these conditions does not always ensure stable
vibrator operation in multiple synchronization mode, under-
scoring the need for novel algorithmic approaches to address
this challenge. For example, in [4] the features of dynamics
of a vibration machine with two self-synchronizing vibration
exciters of the asynchronous type are studied. The results of
[4] can be used in developing resonant vibrating machine’s
control systems to establish the corrective values of the
power supply frequency of vibration exciters in the event
of an uncontrolled displacement of the technological load.
The control of the resonant mode of a vibrating machine,
driven by an induction motor is considered in [5], where
frequency control of oscillation modes is proposed, based
on measuring the phase shift between the oscillations of the
working element of the VM and the exciting force. Paper [6]
is devoted to the controlled vibration damping of a round
plate based on a controller with phase shift adjustment in
the feedback loop. The proposed controller combines the
structures of regulators with positive position feedback and
strain rate feedback. The experimental results are presented,
where plate vibrations are measured by a laser vibrometer,
and a control signal was applied to the plate using an
macro fiber composites disk attached to its center. The
cause of vibrational movement as an average directed motion
of a material particle relative to a horizontally oscillating
uniformly rough surface based on the asymmetry of the
surface oscillations shape called the temporal asymmetry, is
studied in [3], [7]–[9].

This paper focuses on developing and studying the phase
shift control system of a two-rotor vibration mechatronic
setup, aiming to maintain the desired revolving speed of
the unbalanced rotors. Unlike [10], in the present paper, the
integral component is introduced to the relay controller in
the phase loop, which makes it possible to eliminate the



Fig. 1. Laboratory view of setup SV-2M.

static error in the phase control without the large magnitude
chattering, cf. [11]. As before, PI controllers are utilized in
the velocity control loops. The parameters of the Mechatronic
Vibration Setup SV-2M are used for numerical study and
simulations, and the experimental results are also presented.

The paper is structured as follows. Section II provides a
description of the laboratory setup SV-2M, detailing its struc-
ture, technical characteristics, and presenting the adopted
mathematical model of the servo system. Section III presents
the proposed velocity and phase shift control laws. The pos-
sibility of sliding mode occurrence for the proposed control
law is studied analytically and numerically in Section IV.
Simulation results confirming the appearance of sliding mode
motion and demonstrating the dynamical properties of the
closed-loop system are discussed in Section V. Experimental
results are described in Section VI. Finally, Section VII
summarizes the obtained results and outlines future work
intentions.

II. TWO-ROTOR VIBRATION MECHATRONIC SETUP

A vibration complex SV-2M is a nonlinear electrome-
chanical system equipped by two induction motors (IM)
with unbalanced rotors. The system operates in two modes:
self-synchronization of the vibrators and controlled synchro-
nization mode [12], [13]. However, the self-synchronization
mode is not always sufficiently stable due to random vari-
ations in motor and system parameters, structural oscilla-
tions. Instability in the self-synchronization mode can lead
to significant deviations in the phase difference of rotor
rotations from the desired values. The desired phasing of
rotor rotations can also become unstable. This raises the
challenge of controlling the synchronization of the electric
motors, which requires measuring the rotor rotation angles
and acting on the relative phase shift. The laboratory view
of the setup is depicted in Fig. 1.

A. Structure and Technical Characteristics of the Laboratory
Setup SV-2M

The vibration complex, considered in this work has broad
research capabilities. The complex can be used to study
dynamic problems such as vibration rotation, braking and
starting of an unbalanced rotor, the Sommerfeld effect, self-
synchronization of vibrators, synchronization control, and
vibration isolation from disturbances, see [12]–[16] for more
details.

B. Servo System Model

Despite the intricate dynamics of the system, our focus
lies primarily on the rotation of the rotors rather than the
oscillations of the platforms. Under certain conditions delin-
eated for this study, it is justifiable to employ a simplified
model that accurately captures the motor gains and principal
time constants. This approach, as advocated by [13]–[16],
was validated for the SV-2M system. It was determined that
at low frequencies (down to 5 Hz), the gravitational (or
”pendular”) torque significantly influences motor rotation,
necessitating consideration in controller design (cf. [17],
[18]). However, at medium to high-frequency ranges (5 – 20
Hz), the phenomenon known as ”averaging property” applies,
wherein fast oscillating components are averaged out, and
only the slower motions pertaining to revolving unbalanced
rotors are pertinent, as discussed in [19], [20].

Moreover, given that induction motors incorporate local
feedback controllers, the dynamics of the drive systems,
including the induction motor and the frequency converter
with its feedback local controller, can be approximated by the
following second-order transfer function mapping the control
signal to angular velocity ω:

Wd(s) =
{

ω

u

}
=

b0

a0s2 +a1s+1
=

kd

T 2s2 +2ξ T s+1
, (1)

where b0, a0, a1 stand for the drive model parameters, where
b0 = kd corresponds to the drive system static gain; T =√

a0 is the time constant; ξ = a1(2T )−1 denotes the damping
ratio; s ∈ C stands for the Laplace transform variable. Note
that the case of ξ ≥ 1 is also possible. Model (1) is used in
this work at the stage of the controller design and for the
preparatory simulation.

Identification of motor model parameters was performed
in [16], [21] based on the standard non-recursive least-square
estimation (LSE) method, cf. [22], see details and results in
[21].

III. ROBUST PHASE-SHIFT CONTROL ALGORITHM

Based on the approach of [21] and the speed-gradient (SG)
method of [23], let us use the following control law for
control of rotation speed and the phase shift between the
unbalanced rotors for the two-rotor vibration setup:

eωl (t) = ω
∗
l (t)−ωl(t), eωr(t) = ω

∗
r (t)−ωr(t), (2)

δ̇ωl = eωl , uωl = KIωl δωl +KPωl eωl , (3)

δ̇ωr = eωr , uωr = KIωr δωr +KPeωr , (4)
ul = satumax

0 (uωl −uψ), ur = satumax
0 (uωr +uψ), (5)

where satba(x) is defined as

satba(x) =


a if x≤ a,
b if x≥ b,
x otherwice;



the “phase-loop” control signal uψ is produced by the
following separate algorithm, cf. [21]:

ψ(t) = ϕr(t)−ϕl(t), (6)
eψ(t) = ψ(t)−ψ

∗(t), (7)
∆ω = ωr−ωl , (8)
σ = eψ + τM∆ω, (9)
uσ =−γ sign(σ) (10)
v̇(t) = uσ (t), (11)

uψ = satūψ

(
τσ uσ (t)+ v(t)

)
, (12)

where sata(x) =

{
asign(x) if |x| ≥ a,
x otherwice

; ūψ is the design

parameter, limiting the phase shift control signal uψ ; τM
is the “reference model” time constant; KI and KP are the
rotation frequency controller gains; τσ > 0 is the weighting
factor for the phase-shift controller; ω∗(t) denotes the refer-
ence rotation frequency, while ψ∗(t) stands for the reference
phase shift; γ is the relay controller parameter (the relay
“shelf” level). It is worth mentioning, as stated in [16], [21],
[24], there are two control aims for the given vibrating setup:
ensuring given rotation frequency of the unbalanced rotors
as well the phase shift between there. This leads to two
control contours in the setup: control of rotation frequency,
which is realized by PI-controllers (2)–(4), producing control
signals uωl , uωr , and, as in [21], the relay controller (6)–
(12), generating phase control signal uψ . The fusion of both
signals to form the control actions ul , ur, applied to the
drives, is realized in a cross-coupling manner in (5).

Signal σ(t), given by (9) can be treated as a first-order
prediction of the phase error. In the context of systems with
the sliding mode, σ(t) corresponds to the deviation of the
system’s motion from the required sliding mode so that the
equivalence σ(t) ≡ 0 corresponds to the specified sliding
mode. From the point of view of adaptive control with an
Implicit Reference Model (IRM), the algorithm represented
by (6)–(12) can be referred to as the IRM algorithm, cf. [23],
[25]. In the given case, the IRM is expressed by the identity
σ(t) ≡ 0, and the applied control law, according to the SG
method, ensures decrease of |σ(t)|. Signal σ of the form
(9) can be rewritten as σ = eψ +τM∆ω = ψ∗−ψ +τM(ωl−
ωr) = ψ∗−ψ − τMψ̇ . Therefore, the equivalence σ(t) ≡ 0
implies fulfillment of the relation τMψ̇ + ψ = ψ∗, which
can be called “the reference equation” by the analogy with
the habitual reference model in Model Reference Adaptive
Control (MRAC), as it described in [26]. Unlike the MRAC
approach, the reference model

τMψ̇M(t)+ψM(t) = ψ
∗(t) (13)

is not a part of the system but it is implicitly represented
by parameter τM of the algorithm. This property gives the
method its name. Note that the signal ψM is not used in the
control law (2)–(5). This signal can be used to assess the
reliability of the system and the achievement of the desired
closed-loop behavior.

The objective is to determine the existence and time of
appearance of the sliding mode (SM) in the closed-loop
system (1)–(12), taking into account the presence of two
control channels, each involving servo-drives described by
(1) with different parameters. This topic has been extensively
studied in the literature, as highlighted in references such
as [23], [25], [27]. In the mentioned works, focused on the
linear time-invariant (LTI) single-input–single-output (SISO)
systems controlled using the relay algorithm

ẋ(t) = Ax(t)+Buσ (t), σ(t) = GCx(t),

uσ (t) =−γ sign
(
σ(t)

)
, (14)

where x(t) ∈ Rn; uσ (t) ∈ R1 is defined in (10); σ(t) =
GCx(t)∈R1, it was proved that a SM occurs on the surface

σ = 0, if transfer function W (s) = GC
(
sI−A

)−1B ≡ N(s)
D(s)

of (14) from control input u to measured output σ is a
strictly minimal phase (SMP), i.e. if N(s) is the Hurwitz
polynomial, the W (s) relative degree ρ , defined as ρ =
degD(s)− degN(s), is equal to 1, and γ > 0 is sufficiently
large (with respect to a given region of initial conditions
x(0)). Then for (14) the auxiliary control goal lim

t→∞
σ(t) = 0

is achieved.

IV. EXPLORING SLIDING MODE POTENTIAL

A. Analytical study

Firstly, let us check the SMP property for the system with
control input uψ as in (5) and output σ , given by (9), cf. [10].
To represent the system model in the state-space LTI form
ẋ=Ax+Bu, y=Cx under the assumption that the saturations
are not active, introduce drives state vectors xl = [ϕl,ωl,εl]

T∈
R3, xr = [ϕr,ωr,εr]

T∈R3, where ϕl,r, ωl,r, εl,r denote rotation
angles, angular velocities, and accelerations of the left (l)
and right (r) rotors respectively; variables ul,r are taken as
drive inputs u, and vectors [ϕl,r, ωl,r]∈R2 as drive outputs y.
Evidentlly, the state-space representation of transfer function
(1) leads to the following triples (A,B,C) in the state-space
form:

Ad,l =

0 1 0
0 0 1
0 −1/a0,l −a1,l/a0,l

 , Bd,l =

 0
0

b0,l/a0,l

 ,
Ad,r =

0 1 0
0 0 1
0 −1/a0,r −a1,r/a0,r

 , Bd,r =

 0
0

b0,r/a0,r

 ,
Cd =

[
1 0 0
0 1 0

]
. (15)

Then the transfer functions for the left and right drives from
ul,r to yl,r are

Wdl(s)=Cd(sI2−Adl)
−1Bdl, Wdr(s)=Cd(sI2−Adr)

−1Bdr,

respectively.
Now let us take into account the PI-controllers (2)–(4)

in the feedback for rotation velocities control. To this end,
let us introduce the controller gain matrices (row-vectors)
G = [1, τM]∈ R1×2 and K = [KI , KP]∈ R1×2 (recall that in



(3), (4) the identical controller gains for the left and right
drives are taken). This leads to the following block matrices
in the state-space form ẋ = Ax+Bu, y = Cx for the system
with input uψ and output σ , defined as in (6)–(9):

A=

[
Ad,l−Bd,lKCd 03,3

03,3 Ad,r−Bd,rKCd

]
, B=

[
Bd,l
−Bd,r

]
,

C =

[
1 0 0 −1 0 0
0 1 0 0 −1 0

]
. (16)

The state-space system (15), (16) representation leads to
the following transfer function from input uψ to output σ

W σ
uψ
(s) = GC(sI6−A)−1B≡

Nσ
uψ
(s)

Dσ
uψ
(s)

, (17)

where
Nσ

uψ
(s) = τM

(
a0,lb0,r + a0,rb0,l

)
s4 +

(
a0,lb0,r + a0,rb0,l +

τM(a1,lb0,r +a1,rb0,l)
)
s3

+
(
a1,lb0,r + a1,rb0,l + τM(b0,l + b0,r + 2b0,lb0,rKP)

)
s2 +

(b0,l+b0,r+2b0,lb0,rKP+2b0,lb0,rKIτM)s
+2b0,lb0,rKI ,
Dσ

uψ
(s) = a0,la0,rs6 + (a0,la1,r + a1,la0,r)s5 +

(
a1,la1,r +

a0,l (b0,rKP+1)+a0,r(b0,lKP+1)
)
s4

+(a1,l (b0,rKP +1)+a1,r (b0,lKP +1)+a0,lb0,rKI +a0,rb0,lKI)s3

+((b0,lKP +1)(b0,rKP +1)+a1,lb0,rKI +a1,rb0,lKI)s2

+(b0,lKI (b0,rKP +1)+b0,rKI (b0,lKP +1))s+b0,lb0,rKI
2.

The phase shift control law (9)–(12) introduces the integral

(isodromic) factor
τσ s+1

s
into the linear part, and then

D(s) = sDσ
uψ
(s), N(s) = (τσ s+1) ·Nσ

uψ
(s). (18)

The transfer function of the system being analyzed is evi-
dently not SMP due to its relative degree, denoted as ρ , being
equal to 2. Nevertheless, certain conditions, as referenced in
[28]–[31], can relax this constraint. Specifically, when ρ = 2,
provided that γ attains a sufficiently large value, the system
can achieve the auxiliary control objective of lim

t→∞
σ(t) = 0.

Frequency conditions determining the presence of a SM,
obtained through the Describing Functions (DF) method, are
outlined in [28], [30]. In [28], the correlation between the
relative degree of a plant’s transfer function and the likeli-
hood of SM occurrence in relay systems is examined using
the Locus of a Perturbed Relay System (LPRS) approach,
introduced in [32]. The LPRS, defined as a characteristic of
the response of a linear component to unequally spaced pulse
control of variable frequency in a closed-loop, serves as the
basis for understanding SM behavior.

Drawing on the LPRS concept, it is demonstrated in [28],
[32] that if ρ = 1 or 2 and the LPRS exhibits no intersection
points with the real axis apart from the origin, the ideal
SM manifests. In such instances, the frequency of chattering
tends toward infinity, resulting in an infinite equivalent gain.
This assertion is formalized in the following Theorem.

Theorem 1: ( [30, Theorem 4.5]). If the transfer function
W (s) is a quotient of two polynomials N(s) and D(s) of
degrees m and n, respectively, with non-negative coefficients,
then for the existence of ideal SM, it is necessary that the

relative degree ρ = n−m of W (s) be one or two. If ρ = 1,
then a conventional ideal SM can appear; if ρ = 2, then the
so-called asymptotic second-order SM can occur, see [33],
[34].

As stated in [30], Theorem 1 does not provide a sufficient
condition, as a periodic motion of a finite frequency can
exist even if the relative degree is one or two [28]. In [28] an
example is demonstrated showing that if the LPRS intersects
the real axis from below, returns then to the lower half-plane,
and finally approaches the origin of the coordinates from
below having the real axis as an asymptote, the SM appears
in some vicinity of the stationary state. In this case, the SM
appears only if initial conditions are sufficiently small.

B. Numerical study

Let us analyze the system properties numerically for the
specific values of the system model parameters, taken from
[21]:
• Left drive parameters: b0,l = 0.0042 s−1, a0,l = 0.1187

s2, a1,l = 0.8110 s.
• Right drive parameters: b0,r = 0.0043 s−1, a0,r = 0.1185

s2, a1,r = 1.2195 s.
• Reference model time constant: τM = 2 s.
• The following values of rotation frequency controller

(2)–(5) gains KI , KP were set equal for both the right
and left drives as KI = 240, KP = 1680 s.

• The desired rotation frequency is set to the constant
value ω∗ = 40 rad/s for both drives,

• The natural bounds of control signals saturation are [0
– 40000], therefore umax = 40000 in (5).

However, fulfillment of the frequency condition ensures
the existence of a sliding mode; τσ should be sufficiently
large. Then the LTI closed-loop system dynamics with the
given in (18) polynomials are described by the following
equation (

D(p)+ γN(p)
)
σ(t) = 0, (19)

where p = d/dt denotes the time derivation operator.
The roots locus and the Nyquist plots for the cases of τσ =

0.01 s and τσ = 5 s are depicted in Figs. 2, 3, respectively.

V. SIMULATION RESULTS

To confirm the conclusion made, let us simulate the
complete system, including the plant model (18), tracking
the reference action by the drives’ angular velocities, and
the relay law of phase shift control. The control law is given
by (2)–(12), γ = 2500, τM = 2 s, τσ = 2 s, ω∗ = 40 rad/s,
ψ∗ = π .

As is seen from time histories of σ(t), uψ(t), ψ(t), ωl(t),
ωr(t), depicted in Fig. 4, the controlled variables ψ(t), ωl(t),
ωr(t) tend to the desirable (reference) values ψ∗, ω∗, and the
sliding mode occurs asymptotically, cf. [33], [34].

It is worth emphasizing that the simulations were per-
formed solely to illustrate the analytical results for an
idealized model, that exactly corresponds to equations (2)–
(12), (18) and without considering the real factors impact-
ing the system’s behavior. In particular, for the chattering
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phenomenon not to be noticeable, the Euler method of the
MATLAB/Simulink package with the sufficiently small step
of 10−3 s was used in the simulation.

In reality, the following factors affect the system’s behav-
ior:

1. The angular velocities ωl , ωr are calculated based
on sampled measurements of the quantized rotation angles
ϕl , ϕr with sampling time T0=0.01 s, quantization step
2π/4000 rad, and consequent discrete-time differentiating.

2. The induction drive dynamics models contain, apart
from the induction motors dynamics’ complexity, the Schnei-
der Electric frequency converter Altivar ATV12H018M2 with
its local feedback law, not revealed by the manufacturer. The
dry friction effect, existing in the drives, can also be hardly
estimated.

3. The rotors revolving is strongly affected by the vibra-
tions of the stand, which has essentially nonlinear dynamics,
that hardly be taken into account due to its complexity and
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numerous unknown parameters, cf. [16].
All these features can not be adequately reproduced by

simulations, but experimentally only. A number of the exper-
imental results are presented in the previous works, see [13],
[15], [16], [21], [24], [35], [36]. Some specific experimental
results related to control law (2)–(12) are given below in Sec.
VI.

VI. EXPERIMENTAL RESULTS

All the experiments have been carried out on the mecha-
tronic vibrational setup MMLS SV-2M, as described in
Section II. The desired rotation frequency ω∗ = 40 rad/s
was set to both rotors. The PI-controller gains for rotational
frequency were taken as kI = 240, kP = 1680 s, both for
right and left motor loops. Control law (2)–(12) parameters
were taken as γ = 2500, τM = 2 s, τσ = 2 s. The controller
sampling interval Ts was 0.01 s. The IRM (13) time constant
τM = 1 s was taken. In (12), ūψ = 5000 was set.

The experimental results, obtained for the same conditions
as the simulation ones, are plotted in Fig. 5. These results, in
general, fit the simulation ones, but, naturally, the chattering
manifests itself, and it is evident that in reality, the transients
are not as fast as in the idealized system model.

VII. CONCLUSION

This paper presents the successful development and exam-
ination of a phase shift control system tailored for a two-rotor
vibration mechatronic setup, with the objective of sustaining
the desired revolving speed of the unbalanced rotors. The
implementation of sliding mode motion was accomplished
by integrating a relay controller into the phase loop, while
PI controllers were deployed in the velocity control loops. By
conducting numerical investigations and simulations utilizing
the parameters of the Mechatronic Vibration Setup SV-2M
from IPME RAS, the effectiveness of the proposed velocity
and phase shift control strategies was validated.



Analytical and numerical studies were conducted to ex-
plore the potential occurrence of sliding mode behavior
within the phase shift loop, confirming its asymptotical
existence. Simulations illustrated this mode’s appearance and
elucidated the closed-loop system’s dynamic properties.

In summary, the outcomes of this investigation affirm the
efficiency of the phase shift control system in attaining the
desired rotor speed and underscore the feasibility of introduc-
ing sliding mode motion into the mechatronic setup. Future
endeavors aim to refine and optimize the control system
based on the acquired insights and investigate additional
applications and enhancements for the two-rotor vibration
mechatronic setup. Additionally, the inclusion of the “square-
root” multiplier in the control law, inspired by the super-
twisting method proposed by [37], [38], as discussed in [21],
warrants further exploration in subsequent studies.
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