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Abstract

Graph scheduling is important for improving system performance in the
distributed heterogeneous computing environment. Since in many areas
computational workflow can be represented by a Directed Acyclic Graph
(DAG) e.g. operating systems, data engineering, machine learning. Due
to its key importance, the DAG tasks scheduling problem has been
extensively studied in the literature and a large number of researches
by major it companies Microsoft[33],[34], Amazon[35], Google[36] and
IBM[37] focus on scheduling apps/workflows modeled as static DAGs
in various application areas. As a result many state-of-the-art heuristic
algorithms such as DONF, CPOP, HCPT, HPS and PETS have been
proposed however that leave a lot of space for optimization that needs
to be explored. Therefore, the main goal of this research is propose a
scheduling scheme based on Artificial Neural Networks (ANN) outper-
forming state-of-the-art DAG scheduling algorithms (to reduce the DAG
makespan) suitable on small-scale and large-scale graphs and adaptable
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to different workspaces. Set of graph metrics – the numerical represen-
tation of each DAG node on a local scale, which chosen based on recent
research in the field of DAG scheduling [1],[2], are used as input to the
neural network, while the output is the rank of the estimated node, or
its priority of execution. The novelty of our work is supported by the
proposed algorithm architecture based on the concept of an adaptive
DAG scheduling metric, where state-of-the-art graph scheduling metrics
are aggregated by the neural network. During training and selection of
weights, the neural network actually becomes a new metric that adapts
to the topology of the graph, which allows for more efficient scheduling
for DAG in terms of reducing makespan. In order to prove the efficiency
of the approach a comparison with the state-of-the-art DAG scheduling
algorithms is provided: DONF, CPOP, HCPT, HPS and PETS. Based
on the simulation results the proposed algorithm shows the improvement
of up to 39% on specific graph topologies, and average performance gain
of 6.7% compared to the best scheduling algorithm on large number of
random small-scale DAGs. Another important area of research is the
determination of the available optimization space, for which the problem
is formulated in terms of Mixed-Integer Linear Programming (MILP) and
solved for a set of small-scale graphs(computationally heavy, not suitable
for the large scale scheduling). On large-dimensional graphs obtaining
global optimal solution is possible, but the complexity grows more than
quadratic, so to solve real applied problems this approach will require
huge computational resources, and in some cases is simply not feasible.
For example, in cloud computing, the structure and topology of a graph
change at high speed, so a faster algorithm for obtaining task schedules
is needed. Therefore, we propose an algorithm based on adaptive heuris-
tics that based on testing covers 39.2% of the proximity interval from the
best scheduling algorithm to the global optimal solution obtained using
the MILP approach. And also the results of testing on a set of large-scale
dimensions DAGs are given, where the average performance gain vary
from 6.51% to 31,43% compared to the best heuristic algorithm depend-
ing on the workspace and the dimensionality of the graph. This suggests
that the idea of using artificial intelligence and neural networks methods
for graph scheduling shows good results and requires further research.

Keywords: Neural networks, Scheduling , Directed Acyclic Graph, Genetic
Algorithm

1 Introduction

Modern computing systems often use heterogeneous computing systems. These
systems usually have several computing units of a different type. One of the key
factor in achieving high performance in modern computing systems is the effi-
cient resource scheduling. The general approach for task scheduling is divided
into two phases [3], sorting the tasks and assigning the tasks to the appro-
priate executors for processing. The scheduling problem is more complicated
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for dependent tasks, such as scientific calculations and big data applications,
which have operational dependencies between their different parts. The work-
flow represented as data dependencies between the tasks by the nodes edges.
The tasks in the workflow are represented by the nodes in the graph. Static
DAG scheduling is the well-known problem where it is necessary to to schedule
all tasks of a complex application to the appropriate executor and to minimize
the total execution time. In general, finding the optimal solution to the stated
problem is an NP-complete problem [4–6].

A large number of studies of major it companies focus on scheduling apps/-
workflows modeled as DAGs in various application areas. Cloud providers, such
as Microsoft [33], [34], Amazon [35], Google [36] and IBM [37] have publicly
available research on process optimization and scheduling. Distributed appli-
cation frameworks, such as Spark [38] or Flink [39] use directed acyclic graphs
(DAGs) to represent applications and different approaches to scheduling. It
is important to notice that, as in our study the workflows are represented as
static DAGs, and tasks in DAGs execute different functions on different data
with varying resource demands and task runtimes. In the work of researchers
from Google [40] a distributed machine learning frameworks, such as Tensor-
Flow, have been extensively explored in optimizing the learning process and
inference.

This article will discuss static scheduling models, where the information
of the computational graph (adjacency matrix, weights of nodes and edges) is
known before running the compilation. Static scheduling algorithms are further
categorized in the following way: mixed integer programming approach [7, 8],
heuristic-based algorithms [9–17], machine learning methods [18–24, 29–32,
41].

Mixed integer programming approach (MILP). On the first step
the DAG scheduling problem is formulated as a MILP and on the second step
one of the state-of-art MILP solvers such as Gubori [25], Cplex [27], CBC
[26] or others can be used to solve it. The MILP approach provides a global
optimal solution to the stated DAG scheduling problem, but unfortunately it
is intractable for most practical-scale problems due to the high dimensionality
and computational complexity. However in this research we are using the MILP
approach to study of how far the proposed algorithm is from the global optimal
solution.

Heuristic-based algorithms. Although these heuristic algorithms have
good versatility and stability [9] and have polynomial time complexity instead
of exponential time complexity. Scheduling strategies usually are based on
greedy strategies and therefore there is still much room for improvement.
The classification of heuristic algorithms for scheduling tasks on graphs can
be found on the Figure 1. Heuristics based list task-scheduling algorithms
that can be executed in heterogeneous processors environment: Levelized-
Min Time (LMT) [28], Dynamic Level Scheduling (DLS)[10], Critical Path
on a Processor (CPOP)[11], Mapping Heuristic (MH)[12], High Performance
Task Scheduling (HPS) [13], Heterogeneous Earliest Finish Time (HEFT) [14],



4 Heterogeneous Computational Scheduling using Adaptive Neural Network

Fig. 1: Categorization of DAG scheduling algorithms[28]

Heterogeneous Critical Parent Tree (HCPT)[28], Performance Effective Task
Scheduling (PETS) [15]), Look ahead [16], and Degree of Node First (DONF)
[17]. According to the results in [28] and [17] the most effective and the fre-
quently used algorithms for static DAG scheduling (in the problem of minizing
the makespan) are the algorithms CPOP, HCPT, HPS, PETS and DONF.
These algorithms were selected for comparison with the algorithm proposed in
this research.

Machine learning methods. As a prime example of using machine learn-
ing for graph scheduling is Reinforcement Learning (RL)[29] and Monte Carlo
Tree Search (MCTS)[30] which can learn from past scheduling strategies and
adjust current actions to optimize scheduling results. The recently proposed
task scheduling algorithm that are based on reinforcement learning either
greatly simplifies the scheduling model or requires a large amount of comput-
ing resources for training. Orhan [31] proposed a heterogeneous distributed
system scheduling method based on reinforcement learning. But some assump-
tions about this approach, such as task type, machine performance, and cluster
state, do not quite match real DAG tasks scheduling. Loth M [32] proposed
using Monte Carlo Tree Search (MCTS) to solve job shop scheduling problems.
The goal of job shop scheduling is to determine the processing sequence of the
operations on each machine and the start time of each operation. However,
compared with DAG task scheduling, its data dependency is more simplified.

In this paper an adaptive metric neural network based approach for DAG
scheduling is proposed for the first time. Figure 2 shows the overall structure of
the proposed algorithm. The first level of the algorithm is the neural network
that determines the execution queue of the nodes according to the character-
istics of the nodes. The second level of the algorithm is the assignment of a
task to a computing resource of the same type according to the Earliest Fin-
ish Time (EFT) algorithm. It is important to notice that the input features of
vertices defined by the set of state-of-the-art graph metrics (section 4.2) that
determine the priority for each task from the set of ready to perform tasks.
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A genetic algorithm [41] is used to train a neural network [42]. Genetic algo-
rithms are used for exploring a large and complex space in an intelligent way to
find values close to the global optimum. The approach of adaptive metric neu-
ral network allows to avoid bad performance of AI learning based algorithms
due to the fact that the proposed algorithm itself is based on state-of-the-art
graph metrics. We call the proposed algorithm by the adaptive NN-based list
DAG scheduling algorithm.

The remainder of the paper is organized as follows. In the Section 2 the
description is presented with the potential real-world applications where DAG
scheduling algorithms are applied. Section 3 describes the model of heteroge-
neous systems, mathematical problem statement and the process of generating
random DAGs for our simulation. Section 4 describes the proposed NN-based
scheduling algorithm, algorithm architecture, learning process and descrip-
tion of algorithms considered in the paper. Section 5 evaluates the NN-based
scheduling algorithm in comparison with state-of-the-art scheduling algorithms
(DONF, CPOP, HCPT, HPS, PETS) for a different workspaces (executors and
DAG workflows) for small-scale and large-scale DGA, and comparison with
the exact MILP solution for small-scale DAG obtained with the Guroby solver.
Section 6 contains the conclusion.

2 Real-World Applications

Most real-world applications, including high performance computing
applications[43], operating systems [44], machine learning applications [46],
use the static DAG workflow model in which nodes represent application tasks
and edges represent inter-task data dependencies.

Main components of the various real-world applications of computational
problems, which can be represented as a DAG:
1. Data model

• Distributed Cloud Computing and Edge computing. DAG schedul-
ing algorithm for distributed cloud computing and edge computing
should construct an optimal schedule for each new list of data
input for cloud computing and edge computing. Therefore, the DAG
scheduling algorithm should run again for each new data input.

• Tensorflow. Data input for neural networks can change, but DAG
scheduling algorithm only needs to be performed one time for each
neural network computational graph. Therefore, the work of the
algorithm does not depend on the data input.

2. Computational model
• Distributed Cloud Computing and Edge computing. List of tasks
coming to the distributed computing system and edge computing sys-
tem should be represented as a DAG, which describes the jobs as a
nodes and edges as a fixed execution sequence. Another important
thing is that in the cloud computing and edge computing there could
be tasks which should be implemented on a specific computational
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resource (such as CPU, GPU), therefore in DAG there are several
types of nodes (section 5.1).

• Tensorflow. Computational graph for neural networks is represented
as a DAG. Since a computational graph for neural network does not
change in time and it is known both for training and inference, then
the related scheduling is a static DAG scheduling problem. Another
important thing is that in the computational graph there could be
several types of the nodes representing different requirements for the
operations in computational graph (section 5.1).

3. Hardware model. The computational cluster usually consists of several
working virtual machines where each one of them has several executors
running (multiple CPUs and GPUs with different computational charac-
teristics). Mobile edge computing system consisting of a mobile user and
edge servers where server could also contain multiple CPUs and GPUs
with different computational characteristics. To train a neural network,
there can be a multi-core or many-core CPU, GPU or other accelerators.
Examples of such systems are used to test the results of the proposed algo-
rithm (section 5.1). In all these problems, it is also necessary to take into
account data transferring delay or costs from one executors to another
(section 3.1, formulas 9-10).

3 DAG Scheduling Problem Description

The problem addressed in this paper is the scheduling of a single DAG in
distributed heterogeneous system. The scheduling model consists of three
parts:
1. Directed acyclic graph G = (J,E), where J is a set of nodes and E is

the set of edges:
• Edge (vi, vj) ∈ E denotes the precedence constraint such that node
vj must wait until task vi finishes its execution.

• Cost of communication bj,m between nodes vj and vm, (vj , vm) ∈ E
should be taken into account if node vj and vm assigned to different
executors, otherwise there is no cost of communication. If node vm has
several parents (vj ,..,vk ) that were performed on executors other than
the executor assigned to node vm, then the cost of communication
are taken into account from each parent bj,m + . . .+ bk,m.

• Each node vj has a type that denotes on what type of executor should
this node be executed.

• Set of immediate predecessors of node vj in a DAG is expressed as
pred(vj). A node without any predecessor is called an entry node.
Multiple entry nodes may exist in a DAG.

• Set of immediate successors of node vj is expressed as succ(vj). A
node without any successor is called an exit node. There may be
multiple exit nodes in a DAG.
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2. Distributed heterogeneous computing, which consists of a set P ,
pi ∈ P heterogeneous executors with a fully connected topology:

• D is the computation cost matrix, where Dj,i = wj,i is the execution
time for executor pi ∈ P to process node vj ∈ J .

• Each executor pi has a type that denotes what type of tasks can
be defined for this executor. In order to assign a node vj ∈ J to a
executor pi, it is necessary that the type of node vj and the type of
executor pi match.

3. Performance criterion for scheduling. Before presenting the final
scheduling objective function, we first define the Makespan, Earliest Start
Time (EST), Earliest Finish Time (EFT):

• Makespan is the finish time of the last node in the scheduled DAG.
It is defined by makespan = max{AFT (vexit)} where AFT (vexit)
is the actual finish time (AFT) of exit node vexit. In the case where
there are multiple exit nodes, the makespan is the maximum AFT of
all exit nodes.

• EST (vj , pi) denotes the earliest start time of node vj
on executor pi and it is defined as EST (vj , pi) =
max{TAva(pi),max{vm∈pred(vj)}{AFT (vm) + bm,j}} where TAva(pi)
is the earliest ready time of executor pi.

• EFT (vj , pi) denotes the earliest finish time of node vj on executor pi
and is defined as EFT (vj , pi) = EST (vj , pi) + wj,i.

The objective function in the DAG scheduling problem is to determine
the assignment policies for the node to heterogeneous executors so that the
makespan is minimized.

3.1 Mathematical Problem Statement

In this section, our core formulation and customizations are described in detail.
The parameters and variables used in the mathematical model are given in the
Table 1.

The objective function in 1 minimizes the makespan over all DAG nodes.
Makespan is always bigger than the completion time of any node, constraint
2. Constraint 3 is used to minimize the number of irrelevant binary variables,
Xj,i is only defined as binary when Bj,i > 0, i.e. when executor pi offers
the services necessary to complete node vj . Constraint 4 specifies that each
node must be assigned once to exactly one executor. 5 – 8 denote that the
variable Zj,k through equation assumes that the sum of products between the
variables Xj,i and Xk,i. Constraints 9 – 10 state that a node cannot start
until its predecessors are completed and data has been transmitted to it if the
preceding jobs were executed on a different executor (if required). Collectively,
the constraints 11 – 15 specify that an executor may process at most one node
at a time and that if two nodes vj and vk are assigned to the same executor,
their execution times may not overlap.

Minimize : Cmax (1)
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Table 1: Parameters and variables of the mathematical model.

Designation Description
Input Parameters

Q
is a full node precedence graph. 1 if node vj ∈ J comes any time before
node vm ∈ J , 0 otherwise

B
1 if executor pi ∈ P needed to complete node vj ∈ J , 0 otherwise

M
is an upper bound on the makespan set by default to a very large number

D
Dj,i = wj,i is the execution time for executor pi ∈ P to process node
vj ∈ J

Decision Variables
X

is a matrix llocation of node to executor X ∈ Bn∗m, where n is the
number of vertices in a DAG, m is the number of executors. 1 if
executor pi ∈ P is assigned to complete vj ∈ J , 0 otherwise

S
is a vector scheduled start time of node, Sj ∈ Rn

θ
is a matrix support variable used to determine whether two nodes overlap,
θ ∈ Bn∗n. 1 if node vm ∈ J is started before node vj ∈ J , 0 otherwise

Cmax
is the makespan of the schedule, Cmax ∈ R

Z
is a matrix support variable used to assign communication costs,
Z ∈ Bm∗n. 1 if node vm ∈ J and node vj ∈ J assigned to the same
executor,0 otherwise

Ki,j,m
is the product of binary variables Xj,i and Xm,i. Since the product
between variables violates the linearity of the model variable Ki,j,m,

assumes its value through inequalities of model, Ki,j,m, ∈ Bm∗n∗n.

Cmax ≥ Sj +Dj,i ·Xj,i, ∀vj ∈ J, ∀pi ∈ P : Bj,i > 0. (2)

Xj,i = 0, ∀vj ∈ J, ∀pi ∈ P : Bj,i = 0. (3)

∑
pi∈P

Xj,i = 1,∀vj ∈ J. (4)

Zj,k =
∑
pi∈P

Ki,j,k, ∀(vj , vk) ∈ E, (5)
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Ki,j,k ≤ Xj,i, ∀(vj , vk) ∈ E, pi ∈ P, (6)

Ki,j,k ≤ Xk,i, ∀(vj , vk) ∈ E, pi ∈ P, (7)

Ki,j,k ≤ Xk,i +Xj,i − 1, ∀(vj , vk) ∈ E, pi ∈ P. (8)

Sk ≥ Sj , ∀(vj , vk) ∈ E, (9)

Sk ≥ Sj +
∑
pi∈P

Xj,i ·Dj,i +
∑

vl∈pred(vk)

bl,k · (1− Zl,k), ∀(vj , vk) ∈ E. (10)

Sk −
∑
pi∈P

Dj,i ·Xj,i − Sj −
∑

vl∈pred(vk)

bl,k · (1− Zl,k) ≥ M · θj,k, (11)

∀vj , vk ∈ J, vj ̸= vk, Qj,k ̸= 0 (12)

Sk −
∑
pi∈P

Dj,i ·Xj,i − Sj −
∑

vl∈pred(vk)

bl,k · (1− Zl,k) < M · (1− θj,k), (13)

∀vj , vk ∈ J, vj ̸= vk, Qj,k ̸= 0, (14)

Xj,i +Xk,i + θj,k + θk,j , ∀vj , vk ∈ J, pi ∈ P. (15)

3.2 Graph Generation

We use open-source project DAGGEN to generates random DAGs [50]. This
tool relies on a layer-by-layer approach with six parameters: the number of
vertices (n), a fat (f) and regularity (r) parameters for the layer sizes, and a
density (d) and jump (j) parameters for the connectivity of the DAG, ccr (c)
is the ratio of the sum of edges weights to the sum of the node weights.

The number of elements per each layer is uniformly drawn in an interval
centered around an average value determined by the fat parameter and with a
range determined by the regularity parameter. Lastly, edges are added between
layers separated by a maximum number of layers determined by the jump
parameter (edges only connect consecutive layers when this parameter is one).
For each vertex, a uniform number of predecessors is added between one and
a maximum value determined by the density parameter.

DAGs were generated with the following parameters:
• n ∈ {30, 60, 90, 36, 114, 576, 2400, 9600, 36864},
• f ∈ {0.2, 0.5},



10 Heterogeneous Computational Scheduling using Adaptive Neural Network

• r ∈ {0.2, 0.8},
• j ∈ {2, 4},
• c ∈ {0.2, 0.8}.
• d ∈ {0.1, 0.4, 0.8}.

4 Algorithm

4.1 Algorithm Architecture

Figure 2 shows the overall system structure of NN-based approach to DAG
scheduling. We assume that workflow description and generated DAG graph
are provided to scheduling system.

Fig. 2: Neural network for DAG scheduling

• The first level of the algorithm is the NN module based on input param-
eters from DAG metrics for one node from ready to perform node list.
Graph scheduling metrics are described in the section 4.2. The output
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of the neural network indicates the relevance of the node to be sched-
uled first from ready to perform node list. After receiving the relevance
value for each node from ready to perform node list, the node with the
maximum relevance value is selected first for execution.

• The second level of the algorithm is the assignment of a task to a comput-
ing resource (same type as the task) using EFT algorithm. The selected
task at the first level is assigned to the executor defined at the second
level and is passed into the set of completed tasks, then the set of tasks
ready to perform node list is updated.

If all the tasks are completed, then the scheduling procedure stops.
Otherwise, the algorithm repeats with an updated ready to perform node list.

4.2 Graph Scheduling Metrics

The main stage of the algorithm development is the search of metrics that
could be extracted on the local scale to describe each node in the graph. A large
overview of graph metrics is presented in paper [2]. Based on it, the following
metrics were selected to describ the input parameters of the neural network.
In the Table 2 the list of graph metrics that are used to describe each node vi
as input for the neural network.

Table 2: Graph Scheduling Metrics.

Designation Description
WOD(vi)

Weighted out-degree(WOD) of node vi: WOD(vi) =
∑

vj∈succ(vi)
1

ID(vj)
,

where ID(vj) is the in-degree of node vj

WOD2(vi)
2-degree WOD:

WOD2(vi) =
∑

vj∈succ(vi)

(
1

ID(vj)
+ α ·

∑
vk∈succ(vj)

1
ID(vk)

)
, where α

is a factor of the second out-degree

rank(vi)
prioritizing tasks: rank(vi) = wi +maxvj∈succ(vi)

(bi,j + rank(vj))

C(vi)
Computational complexity of the node vi

∥pred(vi)∥
Quantity of the predecessors node vi

∥succ(vi)∥
Quantity of the successors node vi

TWin
Total weight of incoming edges in node vi

TWou
Total weight of outgoing edges in node vi
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4.3 Training Neural Networks using Genetic Algorithms

Genetic algorithms are used for optimization and learning based on certain
features of biological evolution:
1. Approach for encoding solutions of the optimization problem using

chromosomes.
2. Evaluation function that returns a rating tor each chromosome given to

it.
3. Approach for initializing the population of chromosomes.
4. Operators that may be applied to parents when they reproduce to alter

their genetic composition. Included might be mutation, crossover (i.e.
recombination of genetic material), and domain-specific operators.

5. Parameter settings for the algorithm, the operators, and so forth.
Given these five components, a genetic algorithm operates according to the

following steps. Let S be the set of all possible permissible encodings. In the
classical genetic algorithm, all c ∈ S must have the same constant length Ln.
A real fitness-function f defined on S is a function of solution assessment.
We are searching for its point of maximum or minimum. The convergence of
the genetic algorithm is based not on the analysis of the fitness-function, but
on working with some set of solutions, which is called a population. Elements
of the population are called individuals. Before the start of the algorithm we
generate the initial population P 0 ⊂ S, which consist of m encodings c01, ..., c

0
m.

A genetic algorithm consists of iterative implementations of operations (i is
the number of the generation). A detailed description of the genetic algorithm
is given in Algorithm 1.

Algorithm 1 Genetic algorithm

1. Assessment: calculate f(c) for all c ∈ P i

2. Selection: choose a reproductive set Ri ⊂ P i depending the on previous
assessment

3. Reproduction:
(a) Crossover: choose pairs from the reproductive set Ri and make new

individuals from them with some special algorithm. The resulting
descendants form the set N i

(b) Mutation: with some probability a number of individuals ck ∈ P i∪N i

can mutate. This means they get some independence from fitness-
function changes in their encoding: ck −→ c′k(they must still be
permissible ⇔ c′k ∈ S)

4. Updating the population: create a new population P i+1 from m individ-
uals (usually the best) c ∈ P i ∪N i

4.4 Computational Complexity

Below consider a brief description of heuristics based list scheduling algo-
rithms with their time complexity and priority attributes 3. Time complexity
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is defined by the parameters v, and p where v denotes the tasks and where p
is the count of processors, o is the maximum out-degree of any DAG node.

Table 3: List Scheduling Algorithms for Heterogeneous System

Algorithms Complexity Reference to the source

CPOP O(v2p) [11]
HCPT O(v2p) [28]
HPS O(v2(plogv)) [13]
PETS O(v2(plogv)) [15]
DONF O(v×o×p) [17]
NN O(k×o×p) this paper

The time complexity of the algorithm that we propose for DAG scheduling
is O(kop), where o is the maximum out-degree of any node, p is the num-
ber of processors and k is number of nodes in ready to perform node list.
The presented algorithm is either comparable in complexity to other heuris-
tic algorithms, for example DONF, or exceeds them. In the worst case, the
proposed algorithm has complexity O(v2p), where o large as v1, like DONF
which in worst case same complexity O(v2p). In other cases, the computational
complexity of the DONF and other algorithms is larger.

4.5 State-of-the-Art DAG Scheduling Algorithms

In this section consider a detailed description of state-of-the-art DAG schedul-
ing algorithms that are used to compare with the proposed NN-based
algorithm. These algorithms are selected in accordance with the review paper
for graph scheduling in heterogeneous environments [28].

Critical Path on a Processor (CPOP) algorithm [11]. Here in the
first phase, the priority of a node is defined by the upward rank (ranku)

ranku(vi) = wi + max
vj∈succ(vi)

(bi,j + ranku(vj)) (16)

and downward rank (rankd)

rankd(vi) = max
vj∈pred(vi)

(bi,j + wj + rankd(vj)). (17)

The final priority of node vi is calculated by:

priority(vi) = rankd(vi) + ranku(vi). (18)

Then the critical-path processor is defined as the processor that minimizes the
cumulative computation costs of the nodes on the critical path (i.e., the longest
path from any entry node to any exit node). In general, it is the one that runs
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the fastest. In the processor selection phase, all nodes on the critical path are
assigned to the critical-path processor. All the other nodes are assigned to the
processor with minimum EFT. The computational complexity of the CPOP
algorithm is O(v2p).

Heterogeneous Critical Parent Trees (HCPT) algorithm [28] is a
straightforward procedure for BNP (Bounded number of heterogeneous proces-
sor) scheduling. It uses the other method in which a graph is divided into two
group of unordered parent tree for scheduling that is a critical path (CN). The
zero variance among average latest start time and average earliest start time
is specified as a critical node. In the literature, analysis and experiments have
been expressed that HCPT algorithm produced relatively better results jointly
with less complexity. The computational complexity of the HCPT algorithm
O(v2p).

High-Performance Task Scheduling (HPS) algorithm. The HPS
algorithm [13] has 3 execution stages. To sort the nodes, the traversing of DAG
is being done in top down manner. In node prioritizing phase, computation
of node priority is done by using the Up Link Cost, Down Link Cost, and
Link Cost node priority attributes. In processor selection phase, the minimum
EFT (given by the processor) is chosen for execution of that node. The HPS
algorithm uses insertion policy. The computational complexity of the HPS
algorithm O(v2(plogv)).

Performance Effective Task Scheduling (PETS) algorithm [15]
completes its execution in three stages like HPS algorithm. In the first stage,
the node sorting is done at each step of the node. The second stage is the node
prioritizing stage, here node prioritization is performed using the Data Trans-
fer Cost (DTC), Average Computation Cost (ACC), and Rank of Predecessor
Task (RPT) priority attributes. The DTC is the communication cost of data
transfer from the node vi to all its instant successor tasks; for an exit node
DTC vexit = 0. The RPT denotes the instant predecessor’s highest rank value
of node vi. For an entry node node RPT ventry = 0. The rank evaluation of
node vi derives from DTC, ACC, and RPT values and represented by:

rank(vi) = rank{ACC(vi) +DTC(vi) +RPT (vi)}. (19)

The highest rank value node is assigned highest priority. In the processor
selection phase, the processor is selected using EFT approach. The PETS
algorithm uses insertion policy. The computational complexity of the PETS
algorithm O(v2(plogv)).

Degree of Node First (DONF) algorithm [17] is feasible to maintain
higher parallelism during the scheduling process in order to make full use of
heterogeneous system resources. Thus the chosen node should have the prop-
erty of enlarging parallelism as much as possible. Degree-of-node scheduling
procedure can be shortly described as nodes with larger out-degree should be
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scheduled earlier. The weighted out-degree (WOD) of node vi is defined by:

WOD(vi) =
∑

vj∈succ(vi)

1

ID(vj)
, (20)

where ID(vj) is the in-degree of node vj . Next, a processor with mini-
mizes EFT is selected. The computational complexity of the DONF algorithm
O(vop).

5 Numerical Simulation

In this section, the design of an experiment is explained and the performance
of the proposed NN-based algorithm is evaluated. The hardware that was used
in experiment is a PC with Intel Core i5-8600 with 6 cores and 3.10Ghz base
frequency, 16gb of RAM and NVIDIA GeForce GTX 1060 with 6gb of vRAM.

5.1 Simulation Environment

The proposed NN-based algorithm is tested on a small-scale and large-scale
DAGs to measure its generalization and robustness depending on different
system configurations. Additionally for the small-scale DAGs the closeness of
the makespan for state-of-the-art DAG scheduling algorithms and the global
optimal makespan is analyzed. For all test cases in the simulation, data trans-
mission starts only when all the former ones finish. The communication speed
between execution nodes is 1085 MB/s.

5.1.1 Workspaces for Small-Scale DAG

The working environment for small-scale DAG is determined by different het-
erogeneous configurations where from three to nine executors are used. The
details of the configurations are shown in Table 4.

These executors differ in computational capabilities and types:
1. 3 executors of various types are defined which differ in computational

capabilities: 26, 134, and 34 GFlops respectively for the first, second and
third types.

2. 6 executors, previous configuration has been expanded by the three addi-
tional performers which differ in computational capabilities: 50, 70, and
20 GFlops respectively for the first, second and third types.

3. 9 executors, here as well the second configuration is expanded by com-
puting capacities: 125, 40, 60 GFlops respectively for the first, second and
third types.
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Table 4: Description workspace for small-scale DAG (30,60,90 nodes)

Executors Type Computational capabilities (GFlops)

Workspace 1: 3 executor
1 1 26
2 2 134
3 3 34

Workspace 2: 6 executor
1 1 26
2 2 134
3 3 34
4 1 50
5 2 70
6 3 20

Workspace 3: 9 executor
1 1 26
2 2 134
3 3 34
4 1 50
5 2 70
6 3 20
7 1 125
8 2 40
9 3 60

5.1.2 Workspaces for Large-Scale DAG

The working environment for large-scale DAG is determined by different het-
erogeneous configurations where from three to ninety six executors are used, 6
configurations in total. The types of executors are evenly distributed (equally
for executors of types 1, 2, and 3), and their powers were set randomly from a
range of 10 to 300 GFlops. Each workspace is intended for testing on a fixed
DAG dimension. The details of the configurations test cases are shown in Table
5. A total of 6 test cases were identified for large-scale DAGs:
1. 3 executors, 1 executor of each type (1 for 1 type, 1 for 2 type, 1 for 2

type) which differ in computational capabilities: randomly generated from
10 to 300 GFlops. Testing is performed on DAGs of dimension 36 nodes.

2. 6 executors, 2 executor of each type (2 for 1 type, 2 for 2 type, 2 for 2
type) which differ in computational capabilities: randomly generated from
10 to 300 GFlops. Testing is performed on DAGs of dimension 144 nodes.

3. 12 executors, 4 executor of each type (4 for 1 type, 4 for 2 type, 4 for 2
type) which differ in computational capabilities: randomly generated from
10 to 300 GFlops. Testing is performed on DAGs of dimension 576 nodes.

4. 24 executors, 8 executor of each type (8 for 1 type, 8 for 2 type, 8 for
2 type) which differ in computational capabilities: randomly generated
from 10 to 300 GFlops. Testing is performed on DAGs of dimension 2400
nodes.



Heterogeneous Computational Scheduling using Adaptive Neural Network 17

5. 48 executors, 16 executor of each type (16 for 1 type, 16 for 2 type, 16
for 2 type) which differ in computational capabilities: randomly generated
from 10 to 300 GFlops. Testing is performed on DAGs of dimension 9600
nodes.

6. 96 executors, 32 executor of each type (32 for 1 type, 32 for 2 type, 32
for 2 type) which differ in computational capabilities: randomly generated
from 10 to 300 GFlops. Testing is performed on DAGs of dimension 36864
nodes.

Table 5: Description test cases for large-scale DAG (36, 114, 576, 2400, 9600,
36864 nodes)

Total number executors Number executors each type Dimension DAGs

Workspace 4: 3 executor
3 1 36

Workspace 5: 6 executor
6 3 144

Workspace 6: 12 executor
12 4 576

Workspace 7: 24 executor
24 8 2400

Workspace 8: 48 executor
48 16 9600

Workspace 9: 96 executor
96 32 36864

5.2 Training and Testing Graph Description

For training and evaluation of the proposed NN-based algorithm batch of
random DAG are used (described in Section 3.2).

At fixed dimensions exist 48 topologies. For small-scale DAGs, 3 graphs are
generated for each topology for training (totally 144 for each dimension 30, 60,
90) and 10 graphs for evaluation (totally 480 for each dimension 30, 60, 90).
Total number of small-scale DAGs tested was 1440. Comparative analysis is
presented in the Section 5.4. Examples of small-scale DAGs are shown in Fig.3.

As in the case of small-scale DAGs, at fixed dimensions exist 48 topologies.
For large-scale DAG 3000 graphs are generated for each topology for training
(totally 144 000 for each dimension 36, 114, 576, 2400, 9600, 36864) and 10000
graphs for evaluation (totally 48 000 for each dimension 36, 114, 576, 2400,
9600, 36864). Total of 288 000 large-scale DAGs were tested. Examples of
large-scale DAG are shown in Fig.4. Comparative analysis is presented in the
Section 5.4.
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a) b)

c)
d)

Fig. 3: Examples of DAGs with 60 vertices: a) f = 0.2, d = 0.1, r = 0.2, j =
2, c = 0.2, b) f = 0.2, d = 0.8, r = 0.2, j = 4, c = 0.8, c) f = 0.5, d = 0.4, r =
0.2, j = 4, c = 0.8, d) f = 0.5, d = 0.8, r = 0.8, j = 4, c = 0.8.

Fig. 4: Examples of large-scale DAG

5.3 Training of Neural Network

In order to perform a neural network weight optimization we use the genetic
algorithm. We start by describing the five components of the algorithm listed
in Section 4.3:
1. Chromosome Encoding: weights and biases in the neural network are

encoded as a list of real numbers.
2. Evaluation Function: total makespan for all training graphs.
3. Initialization Procedure: weights of the initial members of the population

are chosen at random with a uniform distribution between -1, 1.
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4. Operators: TPI and SBX crossovers were used which were randomly
selected for each individual. Mutation operator takes one parent and ran-
domly changes some of the entries in its chromosome to create a child.
Crossover operator takes two parents and creates one or two children
containing some of the genetic material of each parent.

5. Parameter Settings. There are a number of parameters whose values can
greatly influence the performance of the algorithm: probability of muta-
tion is 80 %, population size is 150, number of generations is 1000, total
number of weights is 95.

30 nodes DAGs 60 nodes DAGs 90 nodes DAGs
Fig. 5: Learning curve neural network with the GA learning algorithm

The training process of the NN-based algorithm is visualized in Fig.5. The
generations of the genetic algorithm are located on the X-Axis, the average
makespan for all graphs is located on the Y-Axis.

5.4 Result Compared with SoTA

In this subsection, the comparison results between NN-based algorithm
and state-of-the-art DAG scheduling algorithms is provided: DONF, CPOP,
HCPT, HPS, PETS and a comparison with the global optimal solution for
each workspace on a small-scale DAGs. This is followed by a comparison of
NN-based with the better scheduling algorithm on large dimension DAGs.

The comparison was carried out in accordance with the following metric
for each tested graph:

p =
(makespansota −makespanNN ) · 100%

makespansota
, (21)

where makespansota is the finish time of the last node in the scheduled DAG
using one of the algorithms from the list above, makespanNN is the finish
time of the last node in the scheduled DAG using the NN-based algorithm.
Obtained values are summarized and averaged for each workspace and DAG
dimension.

5.4.1 Result for Small-Scale DAGs

The proposed NN-based algorithm is tested on a small-scale DAGs to measure
its generalization and robustness:
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• depending on different system configurations (workspace 1: 3 executors;
workspace 2: 6 executors; workspace 2: 9 executors) and different DAG
dimensions (30, 60, 90 nodes in DAG),

• analyzing the closeness of the makespan for a provided schedule to the
global optimal makespan (defined using the MILP solution, more details
in the Sections 3.1, 5.5).

Comparison results are presented in the Table 6 for each workspace.
According to simulation results, the most effective from all state-of-the-art
DAG scheduling algorithms is the DONF algorithm. For a small dimension of
30 nodes in workspace 1 the NN-based algorithm provides an average improve-
ment of 4.81% by comparison DONF, while compared to other algorithms
NN-based provides an average improvement of 17.5%. However, in workspaces
2 and 3 we can see that our NN-base approach is competitive with DONF, but
it does not provide significant improvements compared to DONF, at the same
time outperforms consistently the other baselines.

Table 6: Average percentage of improvement NN-based algorithm compared
to SoTA.

Dimension DONF CPOP HCPT HPS PETS

Workspace 1: 3 executors
30 4.81 17.75 15.04 18.31 18.41
60 9.71 24.14 22.01 25.11 25.03
90 12.14 26.07 24.86 27.59 27.6

Workspace 2: 6 executors
30 2.20 14.17 10.43 13.37 13.47
60 6.36 22.81 18.59 22.51 22.41
90 9.44 25.87 21.81 26.59 26.40

Workspace 3: 9 executors
30 1.57 10.72 6.33 8.06 8.19
60 5.10 20.0 14.46 17.67 17.83
90 5.73 21.51 16.55 20.14 20.31

One should keep in mind that DONF is a modern heuristic, and at DAG
dimensions 90 and 60 is showed the closest result to the NN-based algorithm.
However the proposed algorithm shows better performance than the DONF at
any other DAG dimensions. The biggest improvement is obtained on workspace
1 (on average, at all dimensions is 7.33%), and becomes less effective when mov-
ing to workspace 2 (on average, at all dimensions is 6.01%) and 3 (on average,
at all dimensions is 4.13%). Also the simulation results show a tendency for the
percentage improvement on NN-based algorithms over state-of-the-art algo-
rithms to increase as the DAG dimension increases: average for all workspaces
is 2.85% at dimension 30; 7.10% at dimension 60; 9.23% at dimension 90.

Fig. 6 shows a comparison of the proximity of different approaches for DAG
scheduling to a global optimal solution obtained using the MILP approach.
Proximity shows the percentage of how close the makespan obtained by the
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DAG scheduling algorithm to the global optimal solution obtained by the
MILP approach. The implementation of the MILP solution is described in the
section 5.5. According to Box Plot illustration, the median line of box for NN-
based algorithm is higher than all the other algorithms, which indicates that,
on average, the proposed algorithm is closest to the global optimal solution.
Additionally it is important to notice that the lower performance bound for
the NN-based algorithm is higher for all the other algorithms, which allows us
to conclude that even in the worst conditions (low probability conditions), the
NN algorithm works better. Also, the results of the algorithm are more stable,
because the length of the confidence interval is the smallest and there are fewer
outliers (observations that lies an abnormal distance from other values).

workspace 1, 30 nodes workspace 2, 30 nodes workspace 3, 30 nodes

workspace 1, 60 nodes workspace 2, 60 nodes workspace 3, 60 nodes

workspace 1, 90 nodes workspace 2, 90 nodes workspace 3, 90 nodes

Fig. 6: Box plot with the comparison of proximity to the MILP solution for
state-of-the-art DAG scheduling algorithms for each workspace and each DAG
dimension.

5.4.2 Result for Large-Scale DAGs

The proposed NN-based algorithm is tested on a large-scale DAGs and is
compared to the DONF algorithm which outperformed other state-of-the-art
algorithms when comparing on small-scale DAGs. To determine its general-
ization and robustness depending on DAG dimensions and different system
configurations the following list of test cases is used:
1. Test case 1: workspace 4(3 executors), DAGs of dimension 36 nodes.
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2. Test case 2: workspace 5 (6 executors), DAGs of dimension 144 nodes.
3. Test case 3: workspace 6 (12 executors), DAGs of dimension 576 nodes.
4. Test case 4: workspace 7 (24 executors), DAGs of dimension 2400 nodes.
5. Test case 5: workspace 8 (48 executors), DAGs of dimension 9600 nodes.
6. Test case 6: workspace 9 (96 executors), DAGs of dimension 36864 nodes.
Fig. 7 shows a comparison of the NN-based approach compared to DONF

for various test cases, where X-Axis represents the test cases and Y-Axis
represents the percentage of how much the NN-based exceeds/inferior com-
pared with DONF. On average, the proposed approach outperforms DONF by
22.77% on all test cases.

Fig. 7: Percentage improvements NN-based approach compared to DONF

The proposed NN-based algorithm is scalable and adaptive, which follows
from the test results. On small-scale graphs (Test case 1, with 36 nodes and
3 executors) there is a smaller space for optimization, so the percentage of
improvement was 6.51%, but as the number of nodes and executors increases,
the NN-based approach increases the percentage of improvement over DONF
up to 31.4%. A small decrease in performance (up to 26.43% and 24.47%,
compared to DONF) on test cases 5 and 6 may be due to the need for additional
model training.

5.5 Detailed Comparison

In this section a details comparison of the proposed NN-based algorithm and
the best state-of-the-art algorithm (DONF algorithm) is presented. The com-
parison is based on the proximity of the considered algorithms to the global
optimal solution calculated by the MILP approach.

The Mixed Integer-Linear Programming formulation presented in section
3.1 is modeled and solved using Python 3.6 and MILP solver Gurobi 9.1.2
[25]. Time limit of 15 minutes, relative MILP optimality gap of 0.03, and
deterministic concurrent method are used each MILP solution.

Table 7 shows the proximity results for NN-based and DONF algorithms to
the MILP global optimal solution. For all the experiments NN-based algorithm
provides higher proximity to the MILP solution. It is important to notice
that with the help of the proposed NN-based algorithm it was possible to
cover 39.2% of the proximity interval from the best DAG scheduling algorithm
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(DONF) to the global optimal solution obtained using the MILP approach:
average proximity of best state-of-the-art algorithm DONF is 73.37% ; NN-
based algorithm proximity is 84.08%.

Table 7: Proximity of DONF and NN-based solutions to MILP solution.

Workspace 3 Workspace 2 Workspace 1

Dimension DONF NN DONF NN DONF NN

30 94.89 96.43 91.13 93.23 85.85 90.33
60 89.27 94.06 80.66 86.22 77.48 86.20
90 84.36 89.38 77.82 85.89 73.37 84.08

workspace 1: 3 executors

workspace 2: 6 executors

workspace 3: 9 executors

Fig. 8: Proximity of NN-based and DONF solutions to MILP solution for
DAG topology: 90.
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Figure 8 shows the average proximity of NN-based and DONF solutions for
each of the topologies under consideration. DAG topologies are located along
the X-Axis, where the first letter denotes the generation parameter: fat(f),
regularity(r), density(d), jump (j), ccr(c). The second number is the value of
this parameter. For more information about the parameters and value of this
parameter, see the Section 3.2.

Proximity percentages for NN-based and DONF solutions to the global
optimal solution based on MILP are distributed along the Y-Axis. For
workspace 1, NN-based algorithm provides an improvement in the result for
all DAG topologies. In other cases, one an observe some topologies where NN-
based is quite close to the DONF algorithm. It is reasonable to interpret these
results as features of training on a heterogeneous sample of data. Thus, having
a similar computational complexity, the NN-based algorithm provides greater
efficiency in almost all the DAG topologies.

6 Conclusion

In this paper, the scheduling scheme based on artificial neural networks is inves-
tigated. This approach can be used to solve DAG static scheduling problems
in heterogeneous environment where it is necessary to speed up the scheduling
or to minimize the scheduling makespan.

The novelty of our work is supported by the proposed algorithm archi-
tecture based on the concept of an adaptive DAG scheduling metric, where
state-of-the-art graph scheduling metrics are aggregated by the neural net-
work. During training and selection of weights, the neural network actually
becomes a new metric that adapts to the topology of the graph, which allows
for more efficient scheduling for DAG in terms of reducing makespan. The first
level of the algorithm is the neural network which, according to the character-
istics of the nodes, determines the execution queue of the nodes. Here the set
of graph metrics are used to describe the state space, allowing to extract on
the local scale a description of the state of each node in the DAG. The second
level of the algorithm is the assignment of a task to a computing resource of
the same type as the task in accordance with the EFT algorithm. A genetic
algorithm is used to train a neural network.

Simulation results show that the proposed NN-based algorithm can obtain
better scheduling results than state-of-the-art heuristic rules in all static
instances, the average percentage improvement on all test cases in compar-
ison to the best algorithm DONF is 6.7% on small-scale DAGs and 22.77%
on large-scale DAGs. NN-based algorithm exceed CPOP, HCPT, HPS, PETS
algorithms by an average of 22.1% on small-scale DAGs. Also a comparison
is presented with the globally optimal MILP solution on small-scale DAGs,
where NN-based algorithm provides proximity to the global optimal solution
from 84.08% to 96.43%. On large-dimensional graphs obtaining global opti-
mal solution is possible, but the complexity grows more than quadratic, which
greatly limits the scope of this approach. According to the test results the
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NN-based algorithm covers 39.2% of the proximity interval from the best
scheduling algorithm DONF to the global optimal solution obtained using the
MILP approach.

As for future work, it is planned to extend the support of multi-dimensional
executors requirements of DAGs. Furthermore, it is interesting to study the
DAG scheduling problem in the online streaming settings where DAG nodes
arrive dynamically over time.
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