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Scheduling computational workflows represented by directed acyclic graphs (DAGs) is
crucial in many areas of computer science, such as cloud/edge tasks with distributed workloads
and data mining. The complexity of online DAG scheduling is compounded by the large number
of computational nodes, data transfer delays, heterogeneity (by type and processing power) of
executors, precedence constraints imposed by DAG, and the non-uniform arrival of tasks. This
paper introduces the Multi-Agent Local Voting Protocol (MLVP), a novel approach focused on
dynamic load balancing for DAG scheduling in heterogeneous computing environments, where
executors are represented as agents. The MLVP employs a local voting protocol to achieve
effective load distribution by formulating the problem as a differentiated consensus achievement.
The algorithm calculates an aggregated DAG metric for each executor-node pair based on
node dependencies, node availability, and executor performance. The balance of these metrics
as a weighted sum are optimized using a genetic algorithm to assign tasks probabilistically,
achieving efficient workload distribution via information sharing and reaching consensus among
the executors across the system and thus improving makespan. The effectiveness of the MLVP is
demonstrated through comparisons with state-of-the-art DAG scheduling algorithm and popular
heuristics such as DONF, FIFO, Min-Min, and Max-Min. Numerical simulation show that MLVP
achieves makepsan improvements of up to 70% on specific graph topologies and an average
makespan reduction of 23.99% over DONF (state-of-the-art DAG scheduling heuristic) across
randomly generated diverse set of DAGs. Notably, the algorithm’s scalability is evidenced by
enhanced performance with increasing numbers of executors and graph nodes.
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Introduction

In heterogeneous computing systems, task scheduling and resource allocation present
significant challenges. These systems integrate various types of processors, such as CPUs, GPUs,
and FPGAs, to execute tasks efficiently and optimize resource utilization. Workflows in these
systems are often modeled as directed acyclic graphs (DAGs), which clearly represent task
dependencies, where nodes denotes individual tasks and edges reflect precedence and data transfer
costs between tasks.

Numerous studies examine online and dynamic scheduling, often using the terms
interchangeably. Typically, papers specify the scheduling model and context, which depend on
executor parameters, especially in fog computing environments ( [Alizadeh, 2020]). Task arrival
attributes, whether random-based for non-DAG models ( [Alizadeh, 2020]) or involving random
arrival times for known DAGs ( [Quintin, 2012]), also define this. When DAGs aren’t fully
visible, schedulers have limited visibility and cannot use heuristics like the Critical-Path method
like CPOP and its successors like HEFT ( |Ghose, 2022; Grandl, 2014]).

Significant research on online and dynamic scheduling for DAG-modeled applications
has been contributed by major companies. Microsoft’s research team has focused on resource
management ( [Mao, 2016]) and cluster scheduling ( [Grandl, 2014]). Cloud providers, including
Microsoft ( [Jalaparti, 2015; Yan, 2016]), Amazon ( [Durillo, 2013]), Google ( [Soualhia, 2015]),
and IBM ( |Feitelson, 1994]), have published findings on process optimization and scheduling.
Distributed application frameworks like Spark ( [Duan, 2020]) and Flink ( [Li, 2020]) utilize
DAGs to depict applications and employ various online scheduling methodologies.

This paper introduces the Multi-Agent Local Voting Protocol (MLVP), a novel approach to
DAG scheduling in heterogeneous computing environments. The MLVP leverages a multi-agent
framework where executors, acting as agents, use a local voting protocol to dynamically balance
loads across the system and in turn reducing makespan. The protocol calculates an aggregated
DAG metric for each task-executor pair, optimized via a genetic algorithm, to ensure efficient
task assignment. This method addresses the limitations of traditional scheduling algorithms by
accommodating the dynamic and online nature of real-world computing tasks.

The remainder of this paper is organized as follows. Section "Related works"provides an
overview of the online scheduling problem and dynamic DAG scheduling approaches. Section
"Online DAG Scheduling Problem"describes distributed heterogeneous computing system, DAG
model and performance criteria. Section "DAG Scheduling Algorithms"details the proposed
MLVP-based scheduling algorithm and its architecture. Section "Numerical simulation"evaluates
the MLVP-based scheduling algorithm performance under different workloads.

Related works

In online scheduling in general, review by [Alizadeh, 2020| identifies popular scheduling
algorithms: MCT, Min—Min, and Max—Min used in fog computing for task allocation based on
task size and completion times. Review by [Khallouli, 2022] assess scheduling methods in YARN,
Borg, and Kubernetes, and advocate for "smarter"approaches, like reinforcement learning and
decision trees to refine multi-objective optimization in cloud resource allocation, addressing the
complexities of heterogeneous jobs and resources.

Online DAG scheduling often deals with incomplete knowledge of tasks and
communications. To address this, |Quintin, 2012] introduces WSCOM, a variation of the
work-stealing algorithm, for scheduling file execution tasks. [Grandl, 2014] tackles online task
scheduling in data-parallel clusters that require diverse resources such as CPU, memory, disk,
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and network. They propose the Tetris scheduling method, which strives to optimally assigns
tasks based on comprehensive resource needs.

The consensus approach is increasingly popular for addressing various practical issues,
such as cooperative control in multi-vehicle networks ( [Granichin, 2012; Ren, 2007]), distributed
control of robotic networks ( [Bullo, 2009]), the flocking problem ( [Yu, 2010; Virdgh, 2013|),
and optimizing sensor networks ( [Kar, 2010]). It holds promise for load balancing in computer,
production, transport, logistics, and service networks by framing the problem as a consensus issue
among network nodes ( [Amelina, 2015]). The study in ( [Vergados, 2018]) examines optimal task
redistribution in stochastic networks with variable priorities by determining an ideal step-size for
a consensus-type protocol.

Online DAG Scheduling Problem

This paper addresses the challenge of scheduling a single DAG within a distributed
heterogeneous system, specifically when executors have visibility limited to only the initial layers
of the working front. The scheduling model is composed of four distinct parts.

Directed acyclic graph G = (C, E), where C' = 1,2,3...c is a set of nodes and E is the set
of edges, where:

e Edge (v,s) € E, v,s € C denotes the precedence constraint such that node j must wait
until task v finishes its execution.

e Cost of communication b, s between nodes v and s, (v, s) € E should be taken into account
if node ¢ and s assigned to different executors, otherwise there is no cost of communication.
If node s has several parents (v, ..., k), k € O that were performed on executors other than
the executor assigned to node v, then the cost of communication are taken into account
from each parent b, s +..4 by s.

e Each node v has a type that denotes on what type of executor should this node be executed.

e Set of immediate predecessors of node 7 in a DAG is expressed as pred(v). A node without
any predecessor is called an entry node. Multiple entry nodes may exist in a DAG.

o Set of immediate successors of node v is expressed as succ(v). A node without any successor
is called an exit node ve.;¢. There may be multiple exit nodes in a DAG.

Distributed heterogeneous computing system is represented by the graph D = (N, L),
where:

e Graph has N = 1,2, 3...n executors that work in parallel, L bidirectional links exist between
any two executors.

e In every moment of time t each executor performs his task or chooses a new one from the
DAG ready to perform nodes H' = 1,2,3...ht, H' C O.

e Each node i,i € H* of the DAG has R* = 1,2, 3...r" child nodes and each node j™, j™ € R!
could have not only node ¢ as a mother nodes.

e Executor m,m € N chooses the new node to perform in the state 2™ (t). The state of
executor m is the evaluation of the probability of choosing a node P/™ for each DAG node
1, at each moment of time.

e 7" is the execution time for executor m to process the node i.
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e All executors are divided in equal shares according to the types of DAG nodes.

e Fach executor m has a type that denotes what type of tasks can be defined for this executor.
In order to assign a node 7 to a executor m, it is necessary that the type of node ¢ and the
type of executor m match. Executor m receives a penalty w, , for each parent node of v,
that is not perform by node m.

Online sliding informational window: at each given moment the scheduler observes only
ready-to-execute nodes and their immediate successors within the informational window with
length 2. This limits amount of information that can be utilized for scheduling and makes problem
online, i.e. scheduler cannot utilize information about nature of task arrival. So, on the one
hand, in comparison with the static scheduling there are significantly less information, it makes
impossible to utilize classic DAG scheduling algorithms like CPOP or HEFT, that requires full
information about DAG. On the other hand, limited information about DAG topology and
parameters of not yet observed tasks combines limitations described in various online DAG
scheduling papers (see "Introduction") and makes problem more difficult. If compared with purely
online scheduling, there are more information available such as dependencies and parameters of
tasks that inside sliding informational window.

Performance criterion for scheduling: before presenting the final scheduling objective
function, we first define the Makespan, Earliest Start Time(EST), Earliest Finish Time(EFT)
attributes.

e Makespan is the finish time of the last node in the scheduled DAG. It is defined by
makespan = max{AFT (Vegit)} where AFT (vezit) is the actual finish time (AFT) of exit

node vez¢. In the case where there are multiple exit nodes, the makespan is the maximum
AFT of all exit nodes.

e EST(v,m) denotes the earliest start time of node v on executor m and it is defined as
EST(v,n) = max{Tava(m), maxy,epred(v)} VAL T (V) + by s} Tava(m) is the earliest ready
time of executor m.

e EFT(v,m) denotes the earliest finish time of node v on executor m and is defined as
EFT(v,m) = EST(v,m) + Wy m.

The objective function of the DAG scheduling is to determine the assignment policies of
an application’s node to heterogeneous executors so that the makespan is minimized.

Graph Generation

We utilize the open-source project DAGGEN to generate random DAGs ( [DAGGEN,
2022]). It is a popular tool for generating DAGs to evaluate the performance of scheduling
heuristics and has been used in studies on DONF ( [Lin, 2019]), CPOP ( [Sih, 1993]), HEFT
( [Topcuoglu, 1999]), and PETS ( |Illavarasan, 2007]). DAGGEN creates random, synthetic task
graphs for simulation purposes, with the process varying according to the configured parameters:

1. Generate the tasks according to -n, -fat, -regularity
2. Generate the dependencies according to -density, -jump, -ccr

3. Add transfer costs, these costs derive from the size of the data handled by the initiator of
the transfer

Table 1 presents a description of the graph generation parameters.
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Table 1. DAG Generation Parameters

Parameter Description

n Number of computation nodes in the DAG (i.e., application "tasks").
Values: 3000, 6000, 12000, 24000.

fat Width of the DAG, the maximum number of tasks that can be executed
concurrently. A small value will lead to a thin DAG (e.g., chain) with low
task parallelism, while a large value induces a fat DAG (e.g., fork-join)
with high parallelism.
Values: 0.2, 0.5.

density Determines the number of dependencies between tasks of two consecutive
DAG levels.
Values: 0.1, 0.4, 0.8.

regularity  Regularity of the distribution of tasks between the different levels of the DAG.
Values: 0.2, 0.8.

jump Maximum number of levels spanned by inter-task communications. This allows
generating DAGs with execution paths of different lengths.
Values: 2, 4.

ccr The ratio of the sum of edge weights to the sum of node weights.

Values: 0.2, 0.8.

DAG Scheduling Algorithms

The Multi-Agent Local Voting Protocol (MLVP) algorithm is designed to optimize task
scheduling for directed acyclic graphs (DAGs) in heterogeneous computing environments. The
algorithm achieves efficient task distribution by calculating an aggregated metric for each
executor-DAG node pair and assigning probability of given node execution on this executor.
Aggregated metric is derived from three key factors:

1. Incoming Connections: The ratio of the total incoming connections from unfinished DAG
nodes to their child nodes

2. Available Nodes: The number of DAG nodes currently available for execution compared to
nodes of the same type

3. Executor Performance: The performance capability of the executor in processing task

A genetic algorithm is employed to optimize the coefficients of these factors in a linear
combination, forming the aggregated DAG metric. This metric serves as a basis for determining
the probability of assigning a DAG node to a specific executor. By optimizing these coefficients,
the genetic algorithm ensures that the metric accurately reflects the importance of each factor,
leading to better task prioritization and scheduling efficiency.
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During the Local Voting Procedure, the genetic algorithm further refines the assignment
probabilities by dynamically adjusting them to balance the workload across executors. This
iterative optimization process helps the system adapt to varying task and executor conditions,
thereby reducing makespan and enhancing overall performance.

Consensus plays a crucial role in the MLVP algorithm by coordinating task distribution
among executors. The local voting protocol (LVP) facilitates consensus by enabling executors
to share their current task assignment probabilities and states with neighboring executors. The
protocol iteratively adjusts these probabilities to ensure a balanced workload distribution, which
is achieved when the difference in task assignment states between any executor and its neighbors
falls below a specified threshold (¢€), which in this case was 0.05. The algorithm’s pseudocode is
provided as Algorithm 1.

Algorithm 1 Multi-Agent Local Voting Protocol (MLVP)

1: Input: Set of executors F, Set of DAG nodes N

2: Output: Assignment probabilities for each DAG node to each executor
3: Initialize assignmentProbabilities to an empty data structure

4: for each executor e € F¥ do

5: for each node n € N do
6
7
8
9

if n is not finished and n is ready for execution then
incomingConnections < Sum of weights of all incoming edges to n
availableNodes <+ Count of nodes ready for execution of the same type as n
executor Per formance < Performance metric of executor e

10: aggregatedMetric — LinearCombination(incomingConnections,
available N odes, executor Per formance)

11: assignment Probabilities[e][n] <— CalculateProbability (aggregatedMetric)

12: end if

13: end for

14: end for

15: Find coeflicients for LinearCombination function based on historical data
16: for each node n € N do

17: if n is ready for execution then

18: for each executor e € F do

19: Tune assignmentProbabilities|e][n] using genetic algorithm to balance workload
20: end for

21: end if

22: end for

23: return assignmentProbabilities

Evaluation of Probability for Nodes

At each moment of time ¢ the executors choose |H'|/0.8n nodes for estimation in time
moment ¢ randomly. To synchronize the data of all nodes the local voting protocol (LVP) is
used. The LVP is necessary to reach a consensus on the state between the executors.

For each node i at time moment ¢ the following values are calculated by the algorithm:

1. Ratio of the sum of all incoming connections from not finished DAG node into child’s nodes
of node ¢ to the number of child nodes of node i:

Wy =Y inpi(j')/ R,

jieRi
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where R’ is the number of child nodes of i node, inp;(j'

mother nodes of j; node.

) is the number of not finished

2. Sum of the ratio of DAG nodes number currently available for execution to the number of
the same as j* types:
1/ es t
Qi= Y (|H'|/size;s(|H'])),
where size ;i (H %) is the number of DAG nodes ready to execute with the same type as node
i

7]

3. Performance of executor m is taken into account. For executor m the rate of perform the
node 7 is compared with executor e € N which is fastest executor for task i:

Z; = min(exTimee(i)) — exTimen (i),
eeN

where exTime is the time when the executor needs to finish the node 3.

4. Sum of previous elements with coefficients:
result; = wW; + qQ; + zZ;.

Coefficients w, u , z were defined using the genetic algorithm ( [Carson, 2017]) for 2 types
of graph topologies. Random population of 100 elements is created, after testing the top
10 go to the next stage, we also take 40 crossed from the top 10, 39 crossed with additional
mutations, 10 copies of the top 10 with mutations and 1 random DNA, with the target
makespan — min and stopping condition if makespan improvement with previous is less
than 0.1%.

5. Probability of choosing the executor m to perform the node ¢ is

result;

(ZjenodesToEmecute T@Sultj>

pm—

]

Local Voting Protocol

The state of executor m is the evaluation of the probability of choosing a node P/ for each
DAG node i, at each moment of time. The dynamics of the state of the node ¢ has the form:

wity =i+ "+
where f/” is the number of new nodes of DAG were opened for execution.
At time instant ¢ executor m sends to the n/4 nodes its own load z%,. We assume that
to form the control strategy each executor m has observations about its other agents state with
noise and delay:

m,e __ J m,c
Yp —x_d;n,c+wt’,c€N,

t
where d;° is delay of transfer data, and w;" is a noise.

The message exchange is undergone only once per system cycle. Applying the local voting
algorithm, we obtain a parameter characterizing the state of executor m relative to its neighbors:

u =y ) (" — 2"
ceEN
where v > 0 is a step-size, which represents the sensitivity of the algorithm to the difference
between agents states. The consensus is achieved when the state of the last node (the node to

which the message was intended) differs from its neighbors by no more than a specified one € -
consensus.
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Algorithms for comparison

In this section consider a detailed description of the graph scheduling algorithm that we use
to compare with the proposed algorithm. Degree-of-Node-First algorithm selected in accordance
with the review article for graph scheduling in heterogeneous environments ( [Suman, 2018;
Murad, 2022; Li, 2010; Kanani, 2015; Hayatunnufus, 2020]). Selection was based on following
considerations: select state-of-the-art DAG scheduling (DONF) and online scheduling heuristics
(Optimized Min-Min and Max-Min), as well as widely used FIFO.

e Degree of Node First (DONF) algorithm ( [Lin, 2019]). It is feasible to maintain higher
parallelism during the scheduling process in order to make full use of heterogeneous system
resources. Thus the chosen node should have the property of enlarging parallelism as much
as possible. Degree-of-node scheduling procedure can be shortly described as nodes with
larger out-degree should be scheduled earlier. The weighted out-degree (WOD) of node v;

is defined by:
1

ID(s)’ (1)

WOD(vi) = >

vEsuce(s)

where ID(s) is the in-degree of node s. Each executor on it’s turn selects best node by
DONF algorithm, it’s so it will be until all nodes will be executed

e Optimized Min-Min task scheduling algorithm ( [Murad, 2022]). Min-Min does the opposite
by choosing and assigning small tasks in resources that can perform the task with minimum
execution time. The objective of the Min-Min algorithm is to ensure, firstly, that all tasks
with a minimum completion time are completed. The Min-Min has the following steps:

1. For all nodes of DAG and all executors the time of perform is calculated.
2. Each executor on it’s turn selects and executes node with the lowest execution time.

e Max-Min Task scheduling Algorithm ( [Kanani, 2015]). The Max-Min is quite similar with
a previous algorithm, the main difference is in node selection criterion - in this case executor
should select the biggest node by weight. The Max-Min has the following steps:

1. For all nodes of DAG perform weight is calculated.
2. Each executor on it’s turn selects and executes node with the biggest perform weight.

e FIFO ( [Hayatunnufus, 2020]). This is the default Scheduler. The tasks are placed in a
queue and the tasks are performed in their submission order. In this method, once the job
is scheduled, no intervention is allowed. The FIFO algorithm has the following steps:

1. Each node receives its place in the queue when ready for execution.

2. Each executor on it’s turn selects and executes first node in the queue.
Numerical Simulation

In this section, the design of an experiment is explained and the performance of the
proposed MLVP-based algorithm is evaluated. The hardware used for computations:

e Server 1: CPU AMD 9 5950x 32 threads; GPU RTX 3080 ti; RAM 128 GB.

e Server 2: CPU AMD Ryzen Threadripper 3990X 128 threads; GPU RTX 3080 ti; RAM
192 GB.
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Simulation Environment

The proposed Local Voting based algorithm is tested to measure its generalization and
robustness depending on different system configurations. The working environment is determined
by different heterogeneous configurations from three to twenty four executors are used, 4
configurations in total. The types of executors are evenly distributed (equally for executors of
types 1, 2, and 3), and their powers were set randomly from a range of 10 to 300 GFlops. Each
workspace is intended for testing on a fixed DAG dimension. The details of the configurations
test cases are shown in Table 2.

Table 2. Description of Test Cases for Large-Scale DAGs

Workspace ID  Total number of executors Executors of each type Dimension DAGs

1 3 1 3000
2 6 3 6000
3 12 4 12000
4 24 8 24000

In the simulation, the executors inside a computer node are “fully connected”: links between
different executors do not obstruct each other. Links between computer nodes also have similar
properties, however later data transmission starts only when all the former ones finish.

For testing and training algorithms, a real-time graph traversal C+-+ simulation
environment was developed (see Figure 1). The logic of the simulation is as follows: after starting
the calculation, executors, working in parallel and exchanging service data, choose a node for
execution, and then work on it for the time period, depending on node weight and executor
power. After execution of a node the operation is repeated, and so on until the moment when all
nodes in the DAG are executed.

For training and evaluation of the proposed MLVP-based algorithm batch of random DAG
are used (described in Section "Graph Generation"). At fixed dimensions exists 48 topologies.
For training, 3 graphs are generated for each topology for training (totally 144 for each dimension
3000, 6000, 12000, 24000) and 10 graphs for evaluation (totally 480 for each dimension 3000, 6000,
12000, 24000). Total of 1920 DAGs were tested. Example of a DAG shown in Fig.2. Comparative
analysis is presented in the Section "Results".

Results

The comparison results between MLVP-based algorithm and state-of-the-art DAG
scheduling algorithms DONF, FIFO, Min-Min, Min-Max for different workspaces.

The comparison was carried out in accordance with the following metric for each tested
graph:

(makespanyyp — makespangther) - 100%

b= ) (2)

makespanciher

where makespanoiher is the finish time of the last node in the scheduled DAG using one of the
algorithms from the list above, makespanyiryp is the finish time of the last node in the scheduled
DAG using the MLVP-based algorithm. Obtained values are summarized and averaged for each
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simulation
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6
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Figure 1. An example of a C++ simulation environment

Figure 2. Examples of large-scale DAG

workspace and DAG dimension DAG. The proposed MLVP-based algorithm is tested on a large-
scale DAGs and is compared to the state-of-the-art algorithms, to determine its generalization
and robustness depending on dimensions DAGs and different system configurations.

Fig. 3 shows a comparison of the MLVP-based approach compared to DONF, FIFO,
Min-Min, Min-Max algorithms for various test cases, where X-Axis is test cases and Y-Axis
is the percentage of how much the MLVP-based exceeds/inferior compared with state-of-the-art
algorithms. On average, the proposed approach outperforms the DONF by 23.99%, FIFO by
26.21%, Min-Min 26.61% Min-Max 30.81% on all test cases.

Fig. 4 presents box plots illustrating the percentage improvements in makespans of
the MLVP algorithm relative to various scheduling algorithms—DONF, FIFO, Min-Min, and
Min-Max—across different workspaces and DAG dimensions. Each workspace, differentiated by
executor counts of 3, 6, 12, and 24, is analyzed separately to delineate the algorithm’s performance
under varying computational resources.

In the first workspace with three executors, the MLVP algorithm exhibits substantial
variation in performance relative to the reference algorithms, with a wider interquartile range.
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Figure 3. Percentage improvements MLVP-based approach compared to other algorithms.

Conversely, in workspaces with six, twelve, and twenty-four executors, the MLVP algorithm
demonstrates more consistent improvements, as indicated by the narrower interquartile ranges.

Observing the median values, it is evident that the MLVP algorithm tends to offer
improvements in makespan across all workspaces, albeit with variations in the magnitude of
improvement. Particularly, the algorithm shows consistent positive enhancements compared to
the FIFO, Min-Min, and Min-Max algorithms across all executor counts. In the three-executor
workspace, MLVP presents around a 10% improvement over DONF and FIFO and approximately
a 5% improvement over Min-Min and Min-Max. In the six-executor workspace, MLVP shows
nearly 20% improvement across all compared algorithms. In larger workspaces with twelve and
twenty-four executors, MLVP consistently exhibits around a 60% improvement over the reference
algorithms.

The MLVP algorithm demonstrates a promising capacity to improve makespan in various
workspaces across different topologies and against multiple scheduling algorithms. It exhibits
consistency and adaptability across different number of executions, underlining its potential
to scale effectively in heterogeneous computing environments Fig 5. Future work might focus
on exploring the robustness and scalability of MLVP in more diverse and complex scheduling
scenarios to further validate its applicability and performance.
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Figure 4. Box plot percentage improvements in makespans MLVP compared to DONF, FIFO, Min-
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Figure 5. Box plot with makespan percentage difference comparisons between MLVP and DONF for each
workspace.

Conclusion

This paper presents the Multi-Agent Local Voting Protocol (MLVP), a novel approach
to scheduling tasks in directed acyclic graphs (DAGs) within heterogeneous computing
environments. The MLVP effectively addresses the challenges of online DAG scheduling by
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dynamically balancing the load across multiple executors. This is achieved through a local voting
protocol that calculates an aggregated metric for each executor-DAG node pair, leveraging factors
such as incoming connections, available nodes, and executor performance. The optimization of
combination of these metrics is performed using a genetic algorithm, allowing for probabilistic
task assignment that improves makespan.

The MLVP’s innovative approach demonstrates significant improvements over traditional
scheduling algorithms, with simulations showing up to a 70% reduction in makespan on specific
graph topologies and an average performance gain of 23.99% over the Degree of Node First
(DONF) algorithm. These results highlight the MLVP’s scalability and effectiveness in various
system configurations, making it a promising solution for real-world applications in cloud
computing, data mining, and beyond.

Looking forward, future research could explore extending the MLVP to support multi-
dimensional executor requirements and handling dynamic conditions such as fluctuating numbers
of executors. Additionally, further exploration into optimizing resource reservation based on
anticipated critical system tasks could enhance the algorithm’s adaptability and efficiency.

References

Suman C., Kumar G. Analysis of Process Scheduling Algorithm for Multiprocessor System //
2018 7th International Conference on Reliability, Infocom Technologies and Optimization
(Trends and Future Directions) (ICRITO). —2018. — P. 564-569.

Alizadeh M. R., Khajehvand V., Rahmani A. M., Akbari E. Task scheduling approaches in fog
computing: A systematic review // International Journal of Communication Systems. —
2020. — Vol. 33, No. 16. — P. e4583.

Quintin J., Wagner F. WSCOM: Online Task Scheduling with Data Transfers // 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid
2012). — 2012. — P. 344-351.

Grandl R., Ananthanarayanan G., Kandula S., Rao S., Akella A. Multi-Resource Packing for
Cluster Schedulers // SIGCOMM Comput. Commun. Rev. — 2014. — Vol. 44, No. 4. —
P. 455-466.

Ghose A., Dey S. FGFS: Feature Guided Frontier Scheduling for SIMT DAGs // J.
Supercomput. — 2022. — Vol. 78, No. 9. — P. 11702-11743.

Khallouli W., Huang J. Cluster resource scheduling in cloud computing: literature review and
research challenges // The Journal of Supercomputing. — 2022. — Vol. 78.

Mao H., Alizadeh M., Menache 1., Kandula S. Resource Management with Deep Reinforcement
Learning // Proceedings of the 15th ACM Workshop on Hot Topics in Networks. — 2016. —
P. 50-56.

Jalaparti V., Bodik P., Menache 1., Rao S., Makarychev K., Caesar M. Network-Aware Scheduling
for Data-Parallel Jobs: Plan When You Can // SIGCOMM Comput. Commun. Rev. —
2015. — Vol. 45, No. 4. — P. 407-420.

Yan Y., Gao Y., Chen Y., Guo Z., Chen B., Moscibroda T.. TR-Spark: Transient Computing for
Big Data Analytics // Proceedings of the Seventh ACM Symposium on Cloud Computing. —
2016.

Durillo J., Prodan R. Multi-objective workflow scheduling in Amazon EC2 // Cluster
Computing. — 2013. — Vol. 17. — P. 169-189.

Soualhia M., Khomh F., Tahar S. Predicting Scheduling Failures in the Cloud: A Case Study with
Google Clusters and Hadoop on Amazon EMR // 2015 IEEE 17th International Conference
on High Performance Computing and Communications, 2015 IEEE 7th International

KOMIIBIOTEPHBIE NCCJIEJOBAHNM S 1 MOAEJIMPOBAHINE




Multi-Agent Local Voting Protocol for Online DAG Scheduling 15

Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International
Conference on Embedded Software and Systems. — 2015. — P. 58-65.

Feitelson D.G. A Survey of Scheduling in Multiprogrammed Parallel Systems //IBM T.J.
Watson Research Center research report . — 1994.

Duan Y., Wang N. W J. Reducing Makespans of DAG Scheduling through Interleaving
Overlapping Resource Utilization // 2020 IEEE 17th International Conference on Mobile
Ad Hoc and Sensor Systems (MASS). — 2020. — P. 392-400.

Li Z., Yu J., Bian C., Pu Y., Wang Y., Zhang Y., Guo B. Flink-ER: An Elastic Resource-
Scheduling Strategy for Processing Fluctuating Mobile Stream Data on Flink // Mobile
Information Systems. — 2020. — P. 1-17.

Sih G., Lee E. A compile-time scheduling heuristic for interconnection-constrained heterogeneous
processor architectures // IEEE Transactions on Parallel and Distributed Systems. —
1993. — Vol. 4, No. 2. — P. 175-187.

Topcuoglu H., Hariri S., Wu M. Task scheduling algorithms for heterogeneous processors //
Proceedings. Eighth Heterogeneous Computing Workshop (HCW’99). — 1999. — P. 3-14.

llavarasan E. Thambidurai P. Low Complexity Performance Effective Task Scheduling Algorithm
for Heterogeneous Computing Environments // Journal of Computer Science. — 2007. —
Vol. 3.

Lin H., Li M., Jia C., Liu J., An H. Degree-of-Node Task Scheduling of Fine-Grained Parallel
Programs on Heterogeneous Systems // Journal of Computer Science and Technology. —
2019. — Vol. 34. — P. 1096-1108.

Granichin O., Skobelev P., Lada A., Mayorov 1., Tsarev A.. Comparing adaptive and
non-adaptive models of cargo transportation in multi-agent system for real time
truck scheduling // International Conference on Evolutionary Computation Theory and
Applications. — 2012. — Vol. 2. —P. 282-285.

Ren W., Beard R., Atkins E. Information consensus in multivehicle cooperative control // IEEE
Control Systems Magazine. — 2007. — Vol. 27, No. 2. — P. 71-82.

Bullo F., Cortés J., Martinez S. Distributed Control of Robotic Networks: A Mathematical
Approach to Motion Coordination Algorithms // Princeton University Press. — 2009. —
Vol. 27.

Yu W., Chen G., Cao M. Distributed leader-follower flocking control for multi-agent dynamical
systems with time-varying velocities // Systems and Control Letters. — 2010. — Vol. 59. —
P. 543-552.

Virdgh C., Vésarhelyi G., Tarcai N., Szorényi T., Somorjai G., Nepusz T., Vicsek T.. Flocking
algorithm for autonomous flying robots // Bioinspiration and Biomimetics. — 2013. — Vol. 9.

Kar S., Moura J. Distributed Consensus Algorithms in Sensor Networks: Quantized Data and
Random Link Failures // IEEE Transactions on Signal Processing. — 2010. — Vol. 58,
No. 3. — P. 1383-1400.

Amelina N., Fradkov A., Jiang Y., Vergados D. Approximate Consensus in Stochastic Networks
With Application to Load Balancing // IEEE Transactions on Information Theory. —
2015. — Vol. 61, No. 4. — P. 1739-1752.

Vergados D., Amelina N., Jiang Y., Kralevska K., Granichin O. Toward Optimal Distributed
Node Scheduling in a Multihop Wireless Network Through Local Voting // IEEE
Transactions on Wireless Communications. — 2018. — Vol. 17, No. 1. — P. 400-414.

Carson J. Genetic algorithms: Advances in research and applications // Genetic Algorithms:
Advances in Research and Applications. — 2017. — P. 1-117.

2024, T. 10, Ne 1, C. 1-16




16 N. A. Zhitnukhin, A.Y. Zhadan, 1. V. Kondratov, A. L. Allahverdyan, ...

Murad S., Abdal R., Salih N.; Alsandi A., Faraj R., Muhammed A., Derahman M.,
Ahmed R. Optimized min-min task scheduling algorithm for scientific workflows in a cloud
environment // Journal of Theoretical and Applied Information Technology. — 2022. —
Vol. 100. — P. 480-506.

Li A., Yang X., Kandula S., Zhang M. CloudCmp: Comparing Public Cloud Providers //
Proceedings of the ACM SIGCOMM Internet Measurement Conference, IMC. — 2010. —
P. 1-14.

Kanani B., Maniyar B., Mohammad S. Review on Max-Min Task scheduling Algorithm for Cloud
Computing // SSRN Electronic Journal. — 2015. — Vol. 2. — P. 781-784.

Hayatunnufus H., Riasetiawan M., Ashari A. Performance Analysis of FIFO and Round
Robin Scheduling Process Algorithm in IoT Operating System for Collecting Landslide
Data // 2020 International Conference on Data Science, Artificial Intelligence, and Business
Analytics (DATABIA). — 2020. — P. 63-68.

Open Source Software. Daggen. Available at: https://github.com/frs69wq/daggen (Accessed: 22
October 2024) // github. — 2024.

KOMIIBIOTEPHBIE NCCJIEJOBAHNM S 1 MOAEJIMPOBAHINE




