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Abstract—The integrated stress response (ISR), a key mechanism of cellular response to various stress
signals, is highly conserved across eukaryotes from yeast to humans. A central element of ISR is the
phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α). This process is regulated by several
kinases (PERK, GCN2, HRI and PKR) activated by different contextual cellular stressors. The ISR
system plays a critical role in maintaining cell homeostasis and survival under stress. However, its
chronic activation can lead to cell dysfunction and programmed cell death. Recent studies indicate that
ISR is actively involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer’s and
Parkinson’s diseases, amyotrophic lateral sclerosis, and traumatic brain injury. At the same time, the
contribution of ISR to common mental pathologies, including depression, schizophrenia, bipolar
disorder, post-traumatic stress disorder and addiction, remains poorly understood. Here, we address
current data on the role of IRS in the pathogenesis of these disorders, and discuss the possibilities of
pharmacological modulation of ISR pathways in the pathological contexts.
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Abbreviations: Aβ—beta-amyloid; ATF4—activating transcription factor 4; BDNF—brain-derived neu�
rotrophic factor; AD—Alzheimer’s disease; BD—bipolar disorder; CReP—constitutive repressor of
eIF2α phosphorylation; CHOP—C/EBP homologous protein, also known as DNA damage-inducible
transcript 3; DNA—deoxyribonucleic acid; eIF2—eukaryotic translation initiation factor 2; eIF2α—
eukaryotic translation initiation factor 2 alpha; eIF2B—eukaryotic translation initiation factor 2B;
GADD34—growth arrest and DNA damage-inducible protein, also known as protein phosphatase 1 regu�
latory subunit 15a; GCN2—general control nonderepressible 2 kinase; GDP—guanosine diphosphate;
GTP—guanosine triphosphate; HRI—heme-regulated inhibitor kinase; ISR—integrated stress response;
ISRIB—integrated stress response inhibitor; mRNA—messenger ribonucleic acid; MS—multiple scle�
rosis; NMDA—N-methyl-D-aspartate (glutamate receptor); PERK—PKR-like endoplasmic reticulum
kinase; PKR—protein kinase R; PTSD—post-traumatic stress disorder; PP1—protein phosphatase 1;
RNA—ribonucleic acid; SSRI—selective serotonin reuptake inhibitor; TrkB—tropomyosin receptor
kinase B; TBI—traumatic brain injury; CPP—conditioned place preference; p-eIF2α—phosphorylated
eukaryotic translation initiation factor 2 alpha; VTA—ventral tegmental area
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INTRODUCTION

The Integrated Stress Response (ISR)

The Integrated Stress Response (ISR) is a highly
conserved mechanism of cellular stress response,
found in all eukaryotes from yeast to humans [1]. A
key event in the ISR signaling cascade is the phos�
phorylation of the eukaryotic translation initiation
factor subunit alpha (eIF2α) (Fig. 1). Four main
kinases known to catalyze this process include PKR-
like endoplasmic reticulum kinase (PERK), general
control nonderepressible kinase 2 (GCN2), heme-
regulated inhibitor kinase (HRI), and protein kinase
R (PKR) [2]. These kinases are activated in response
to critical internal and external stressors, which is
accompanied by the phosphorylation of appropriate
sites. For example, PERK is activated in response to
endoplasmic reticulum stress caused by the accumu�
lation of misfolded proteins or impaired calcium
homeostasis [3–5], HRI can be activated by iron
deficiency, heat shock, or osmotic stress [6], and

GCN2 responds to amino acid deprivation, ultravio�
let radiation, and several other stress signals [7, 8].
Signals for PKR activation can be viral double-
stranded RNA, cytokines, heat shock proteins, and
reactive oxygen species [9–11]. Thus, ISR is trig�
gered in response to a wide range of stress exposures,
the common process for which is eIF2α phosphory�
lation at Ser51 by the above kinases to form the
phosphorylated eIF2α (p-eIF2α).

The eIF2α is a subunit of the eukaryotic transla�
tion initiation factor 2 (eIF2) complex that also
includes β- and γ-subunits. The eIF2 forms a ternary
complex with GTP and initiator methionyl (mt)-
tRNA, which is involved in translation initiation
[12]. GTP is hydrolyzed to form GDP, after which
the eIF2-GDP complex loses its connection to the
40S ribosomal subunit and diffuses into the cyto�
plasm. Reactivation of the complex requires yet
another factor, eIF2B, which serves as a nucleotide
exchanger, promoting GDP substitution for GTP to
form eIF2-GTP, which is able to participate again in

Fig. 1. The Integrated Stress Response (ISR) signaling pathway. PERK—PKR-like endoplasmic reticulum kinase; GCN2—general
control nonderepressible 2 kinase; PKR—protein kinase R; HRI—heme-regulated inhibitor kinase; eIF2α—eukaryotic translation
initiation factor 2α; ATF4—activating transcription factor 4; GADD34—growth arrest and DNA damage-inducible protein, also
known as protein phosphatase 1 regulatory subunit 15а; PP1—protein phosphatase 1; CReP—constitutive repressor of eIF2α phos�
phorylation; GTP—guanosine triphosphate; GDP—guanosine diphosphate.
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translation initiation.
However, during the ISR activation, eIF2α phos�

phorylation at Ser51 leads to the tight and irreversible
binding of eIF2 and eIF2B [13]. Under these condi�
tions, eIF2 loses the ability to form a ternary complex
with GTP and mt-tRNA, resulting in an overall inhi�
bition of mRNA translation and protein synthesis in
the cell. In parallel, translation of some mRNAs with
short open reading frames in the 5’-noncoding region
increases due to alternative mechanisms of transla�
tion initiation [14–16]. These mRNAs are translated
into proteins that ensure the cell response to stress�
ors.

Among these proteins, the most studied is the
activating transcription factor 4 (ATF4) that regu�
lates the expression of genes whose products are
involved in the transport and biosynthesis of amino
acids, carbohydrate metabolism, antioxidant
defense, apoptosis, and other processes essential for
the cellular response to homeostatic imbalance [17].
In addition, ATF4 is able to trigger the genetic
expression of a number of proteins involved in the
regulation of programmed cell death, the key one
being the pro-apoptotic DNA damage inducible
transcript 3, also known as the C/EBP homologous
protein (CHOP) [18, 19]. In general, ISR is consid�
ered to be an adaptive reaction aimed at restoring
homeostasis and ensure cell survival. However,
chronic ISR activation leads to cell dysfunction and
can triggerthe programmed cell death pathways [1].

Importantly, IRS activation never entails to a
complete arrest of protein synthesis in the cell, due
to a feedback mechanism as ATF4 induces the gene
expression of the growth arrest and DNA damage-
inducible protein (GADD34), also known as a pro�
tein phosphatase 1 regulatory subunit 15a, which pro�
motes eIF2α dephosphorylation [19, 20]. Another
feedback mechanism includes an ISR-induced
increase in the protein level of CreP, a constitutive
repressor of eIF2α phosphorylation [21]. Experi�
mental evidence also suggests some baseline level of
ISR activation, because a fraction of eIF2α mole�
cules are always in the phosphorylated state [22–25].
Thus, stress exposures only shift the p-eIF2α/eIF2α
balance toward the phosphorylated form. Moreover,
ISR signaling can be involved in a number of physio�
logical processes, independent of the presence of
stressors, such as cell cycle regulation [26], glucose
metabolism [27], and the maintenance of antioxi�

dant defense [23].
eIF2α signaling plays a special role in nerve cells.

For example, the shift in the p-eIF2α/eIF2α ratio
serves as a mechanism for the regulation of the pro�
cesses of long-term potentiation, depression, and
shaping synaptic plasticity [28–30]. ISR may play a
role in memory formation and the implementation
of cognitive functions [29–33]. For example, a het�
erozygous mutation in the eIF2α gene at the Ser51
phosphorylation site (rendering its phosphorylation
impossible) improves long-term memory consolida�
tion in mice [29], whereas pharmacological inhibi�
tion of eIF2α dephosphorylation in the mouse
hippocampus reduces fear memories [29, 34]. Mice
with a constitutive deletion in the eIF2α kinase
GCN2 gene show paradoxical memory improve�
ment during complex task execution, and impaired
memory in a standard training paradigm [35]. Per�
haps, stimulus-induced eIF2α phosphorylation in
the dendrites and axons of neurons leads to a local
suppression of protein synthesis and ATF4-mediated
activity inhibition of CREB1, a transcription factor
that stimulates the expression of genes involved in
synaptic plasticity [36]. However, stimulus-induced
reduction in ATF4 mRNA levels in the hippocam�
pus of mice impairs synaptic plasticity and glutama�
tergic function, ultimately disrupting long-term
memory formation [37]. Finally, the exposure of pri�
mary neuronal cultures to the brain-derived neuro�
trophic factor (BDNF) elevates the translation of the
of protein phosphatase 1 regulatory subunit 15a
(GADD34), followed by a decrease in p-eIF2α lev�
els and an increase in de novo protein synthesis [38].
In addition to its involvement in animal memory
formation, ISR has been linked to the regulation of
eating behavior [39–41]. For example, genome edit�
ing of eIF2α at Ser51 (making its phosphorylation
impossible) in neurons expressing agouti-related
peptide leads to eating disorders and increased leptin
sensitivity [40].

The importance of ISR in the CNS is further sup�
ported by the fact that the brain is one of the organs
most susceptible to ISR dysregulation [42]. For
example, mutations in the gene encoding CReP, a
constitutive eIF2α phosphatase, are associated with
microcephaly and diabetes [43], mutations in the
eIF2α kinase PERK gene are associated with diabe�
tes, skeletal dysplasia, and mental retardation [44],
while mutations in the genes encoding eIF2B sub�
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units cause leukoencephalopathy with vanishing
white matter [45]. Mounting evidence points to the
involvement of ISR in CNS pathologies associated
with neural tissue degeneration, such as Alzheimer’s,
Parkinson’s and Huntington’s diseases, amyotrophic
lateral and multiple sclerosis, as well as traumatic
brain injury [46–50]. For example, many character�
istic pathological processes in these diseases, such as
oxidative stress, mitochondrial dysfunction, protein
misfolding, amino acid deprivation, and impaired
calcium homeostasis, can trigger ISR through the
activation of specific eIF2α kinases [42]. In turn,
ISR hyperactivation may be one of the pathological
mechanisms responsible for the dysfunction and
degeneration of nerve and glial cells, and eventually
for the functional impairments observed in these
brain diseases. Data on ISR activation in these
pathologies and its modulation in animal models are
summarized in Table 1.

However, while the involvement of ISR in the
above pathologies has been described in detail [42,
50, 166–168], the role of the ISR system in the most
common psychiatric brain disorders, including
depression, anxiety, schizophrenia, bipolar disorder
(BD), posttraumatic stress disorder, and drug addic�
tion (substance use disorder), is much less studied
and hence merits further consideration. Here, a spe�
cial focus will also be made on experimental data
supporting the prospects for pharmacological ISR
modulation in the context of these pathologies.

THE ISR CASCADE MODULATORS

The selective ISR inhibitor (ISRIB) is a relatively
recently synthesized experimental small molecule
(Fig. 2) that exerts an inhibitory effect on the cellular
ISR pathway [169, 170] through a highly specific
binding to eIF2B, thus promoting its dimerization,
due to which the efficiency of eIF2B as a nucleotide
exchange factor increases, while it becomes insensi�
tive to the eIF2α phosphorylation (Fig. 2). Thus,
ISRIB blocks the negative effect of eIF2α phosphor�
ylation on translation, which prevents ISR by
directly affecting the main mechanism of its activa�
tion [169].

Salubrinal (Fig. 2) is another new experimental
ISR-modulating drug [171, 172] whose main mech�
anism of action is based on inhibiting the
GADD34:PP1 complex consisting of serine/thre�

onine protein phosphatase (PP1) and the regulatory
subunit (GADD34), which acts as a PP1 regulatory
subunit 15A [173–176]. This, in turn, leads to the
inhibition of eIF2α dephosphorylation and, as a
consequence, to indirect ISR activation. A similar
mechanism of action has been observed in some
other salubrinal-related drugs, specifically, Sal003
and Sephin1 [125, 177–180]. The third key class of
drugs with a pronounced effect on ISR are PERK
inhibitors, specifically, GSK2606414 and
GSK2656157 (Fig. 2) [181–183]. In contrast to
other drugs, PERK inhibitors have a stimulatory
effect on ISR, and their use in experimental practice
is mainly associated with the possibility of tumor
growth suppression [184, 185].

ISR IN CNS PSYCHIATRIC PATHOLOGIES

Major depressive disorder (MDD) is a widespread
and clinically heterogeneous mental illness with a
complex etiology and high resistance to therapy. The
main MDD symptoms include a prolonged decline
in mood and motivation, impaired cognitive func�
tions, and autonomic symptoms, such as sleep and
appetite disorders [186]. Neuroinflammation [187],
oxidative stress [188], and endoplasmic reticulum
stress [189] have also been implicated in the patho�
genesis of depression, and all, as already noted, can
trigger ISR. Although clinical studies indicative of
ISR activation in depression are rather scarce, ele�
vated ATF4 expression has been described in post�
mortem samples of the prefrontal cortex from
depressed suicidal patients [190] and in peripheral
blood samples of mononuclear cells from depressed
patients [191, 192]. Furthermore, genome-wide
association studies suggest a potential association of
an intronic mutation in the EIF2B gene (which
encodes the eIF2 complex regulatory subunit) [193],
polymorphism of the transcription factor-binding
domain in the EIF2AK1 gene (which encodes the
eIF2α kinase HRI) [194], as well as polymorphism
of the ATF4 regulatory region [195], with the risk of
depression.

Evidence from experimental animal models of
depression also indicates a possible activation of ISR
in affective pathogenesis. For example, in a mouse
model of chronic social defeat, hippocampal levels
of PERK and eIF2α phosphorylated forms increase,
and activation of the PERK-eIF2α pathway can
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Table 1. Evidence for the Integrated Stress Response (ISR) activation in neurodegenerative pathologies

Findings References

Alzheimer’s Disease (AD)

↑ p-eIF2α in various brain regions of AD patients [51–58]

↑ p-PKR in the brains of AD patients [53]

↑ p-PERK in the olfactory bulbs of AD patients [56]

↓ eIF2B in the brains of AD patients [51]

↓ p-eIF2α in the brains of AD patients at late stages of the disease [59]

Distribution of p-PERK correlates with abnormally phosphorylated tau protein in the brains of AD 
patients

[60]

↑ p-eIF2α, p-PERK, ATF4, and other UPR markers in mouse and rat models of AD [51, 53–55, 
61–72]

↓ p-eIF2α in the brain of rats after injection of Aβ oligomers into the brain ventricles [73]

↓ p-eIF2α at early stages of the disease in Tg2576 transgenic mouse model [74]

Aβ peptide causes PKR-mediated increase in p-eIF2α in primary mouse neurons and in the brains of 
monkeys

[34]

PERK-independent ↑ p-eIF2α, ↓ GADD34, and reduced protein synthesis in astrocytes of 3xTg-AD mice [75]

↑ p-eIF2α in cells overexpressing mutant Aβ precursor protein [55]

↑ p-eIF2α in human neuroblastoma cells exposed to Aβ oligomers [76, 77]

↑ p-eIF2α in a cell line overexpressing mutant Aβ precursor protein [55]

Deletion of PERK gene improves synaptic plasticity and spatial memory in mouse models of AD [61]

Deletion of eIF2α phosphorylation site in 5xFAD transgenic mice did not lead to improved behavioral 
performance

[78]

PERK haploinsufficiency reduced UPR activation and cognitive impairment in 5XFAD transgenic mice [62]

Conditional PERK knockout in the forebrain reduces p-eIF2α and restores long-term potentiation in the 
APP/PS1 mouse model of AD

[79]

GCN2 gene deletion leads to hyperactivation of the PERK-eIF2α pathway and increased amyloidosis in 
the brain of 5XFAD transgenic mice

[80]

Salubrinal increases beta-secretase levels and Aβ synthesis in primary neurons [54]

Salubrinal reduced oxidative stress and apoptosis markers caused by Aβ injections into the brain ventricles 
of rats

[73]

Salubrinal reduced AD-like symptoms at early stages of pathology in Tg2576 transgenic mouse model [74]

GSK2606414 reduces p-eIF2α and restores long-term potentiation in the APP/PS1 mouse model of AD [79]

PKR inhibitor SAR439883 showed neuroprotective effect in several mouse models of AD [72]

GADD34 injections into the hippocampus reduced ↑ p-eIF2α and improved cognitive performance in 
APP23 mouse model of AD

[64]

ISRIB prevents p-eIF2α-mediated long-term memory impairment in an acute AD mouse model [51]

ISRIB restores synaptic function and memory in a transgenic mouse model of AD [51]

ISRIB reduces Aβ-induced markers of endoplasmic reticulum stress, neurodegeneration, and neuroin�
flammation in a rat model of Aβ brain injection

[71]

ISRIB could not restore memory impairment in APP/PS1 and APP J20 mouse models of AD [81, 82]
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Table 1. (Contd.)

Findings References

Parkinson’s Disease (PD)

↑ p-eIF2α and p-PERK in the brains of people with PD [83–85]

↑ p-eIF2α in mononuclear blood cells of patients with familial and sporadic forms of PD [86]

↑ p-eIF2α, p-PERK, and ATF4 in genetic and pharmacological rodent models of PD [83, 87–89]

↑ p-eIF2α in pink1- and parkin-mutant Drosophila [90]

↑ p-eIF2α and ↑ p-PERK in rat astrocyte culture overexpressing α-synuclein [91]

↑ p-eIF2α and ↑ CHOP in a cell model of PD overexpressing α-synuclein [92]

Guanabenz (inhibits eIF2α phosphatase) promotes neuronal survival in various PD models [93]

GSK2606414 showed neuroprotective effect in several mouse models of PD [83]

Neuroprotective effect of salubrinal in a rotenone-induced rat model of PD [88]

PKR inhibitor C-16 reduces ATF4 activation and dopaminergic neuron death in mouse models of PD [89]

Huntington’s Disease (HD)

↑ p-eIF2α in the striatum in the N171-82Q transgenic mouse model [94]

↑ p-eIF2α in a cell model of HD [95, 96]

↑ ATF4 mRNA and protein levels in a cell model of HD [97]

ISRIB reduces cell death in striatal cell cultures of STHdhQ111 transgenic mice [98]

GSK2606414 restores spatial memory and recognition memory and restores dendritic spine density in CA1 
pyramidal neurons in R6/1 mouse model

[99]

PERK activator MK-28 restores motor and executive functions and extends lifespan in R6/2 mouse model [100]

eIF2α phosphatase inhibitor salubrinal shows neuroprotection in a cell model of HD [96]

Amyotrophic Lateral Sclerosis (ALS)

↑ p-eIF2α in spinal cord samples from people with ALS [101]

↑ p-eIF2α and p-PKR in cortex samples from patients with C9ORF72-associated ALS [102]

↑ ATF4 in the spinal cord of patients with sporadic and familial ALS [103]

UPR pathway contributes to the translation of intron repeats involved in ALS pathogenesis [104]

↑ ATF4 mRNA in the spinal cord in the SOD1-mutant mouse model [105]

PERK activation in motor neurons of SOD1-mutant mice [106]

↑ p-eIF2α and p-PERK in SOD1-mutant neuroblastoma cells [107]

GSK2606414 reduced cell death in an ALS neuron culture model [108]

Heterozygous PERK gene knockout worsens disease progression in the mtSOD1 transgenic mouse model [109]

ATF4 gene knockout increases lifespan in SOD1-mutant mice [110]

Sephin1 (eIF2α phosphatase inhibitor) mitigated behavioral, morphological, and molecular changes in 
SOD1-mutant mice

[111]

Guanabenz showed neuroprotection in the mtSOD1 transgenic mouse model via eIF2α phosphatase inhi�
bition

[112]

Salubrinal improved disease progression in SOD1-mutant mice [113]

ISRIB improved survival of SOD1-G93A transgenic neurons [114]

ISRIB-like compounds 2BAct and PRXS571 worsen disease progression in SOD1-G93A transgenic mice [115]
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Table 1. (Contd.)

Findings References

Multiple Sclerosis (MS)

↑ p-eIF2α in affected brain regions of people with MS [116]

↑ ATF4, CHOP, and markers of endoplasmic reticulum stress in the brains of people with MS [117–119]

↑ p-eIF2α, ATF4, and CHOP in human oligodendrocyte culture under MS-relevant stress conditions [120]

PERK-eIF2α-CHOP pathway activation in neurons of optic nerves in a mouse model of autoimmune 
encephalomyelitis

[121]

↑ p-eIF2α, p-PERK, and markers in mouse dorsal root ganglia in a model of autoimmune encephalopathy [122]

↑ p-eIF2α in oligodendrocytes in a mouse model of CNS-specific interferon-γ overexpression [123]

↑ GADD34 in oligodendrocytes in a mouse model of CNS-specific interferon-γ overexpression [124]

↑ p-eIF2α in oligodendrocyte culture under inflammatory stress conditions [125]

Interferon-γ induces p-eIF2α phosphorylation and increases apoptosis markers in oligodendrocyte culture [123]

Neuroprotective effect of interferon-γ-mediated increases in p-PERK and p-eIF2α in oligodendrocytes in 
a mouse model of autoimmune encephalopathy

[126, 127]

Neuroprotective effect of GADD34 gene inactivation in a model of interferon-γ-mediated demyelination [124]

Deletion of the eIF2α phosphatase gene GADD34 alleviates pathology in a mouse model of autoimmune 
encephalopathy

[125]

PERK gene inactivation in oligodendrocytes reduces p-eIF2α, oligodendrocyte loss, demyelination, and 
axon degradation in a mouse model of autoimmune encephalopathy

[128]

Induced PERK hyperactivation in oligodendrocytes promotes neuroprotection and remyelination in cell 
cultures and mouse models of MS

[129]

Heterozygous PERK gene knockout worsens pathology in a model of CNS-specific interferon-γ overex�
pression

[123, 130]

ISRIB restores process growth and reduces oligodendrocyte cell death under MS-relevant stress conditions [120]

Sephin1 inhibited oligodendrocyte process formation under stress conditions [120]

Sephin1 increased p-eIF2α in oligodendrocyte culture under inflammatory stress conditions and showed 
neuroprotective effect in a mouse model of autoimmune encephalopathy

[125]

Salubrinal increased p-eIF2α, reduced hypomyelination, and oligodendrocyte loss in hippocampal slices 
exposed to interferon-γ

[124]

Guanabenz increases p-eIF2α, reduces interferon-γ-induced oligodendrocyte loss and demyelination in 
cell culture and mouse models of MS

[131]

Traumatic Brain Injury (TBI)

↑ p-eIF2α, p-PERK, ATF4, and other UPR markers in various brain regions in mouse and rat models of 
TBI 

[46, 132–
158]

↓ p-eIF2α and ATF4 in a mild TBI model in mice [159]

Conditional PERK gene knockout in oligodendrocytes leads to UPR hyperactivation and greater white 
matter damage following spinal cord injury

[160]

Salubrinal reduced neuronal apoptosis in a fluid percussion injury model in rats [134]

Salubrinal improved behavioral outcomes in a contusion-induced TBI model in rats [138]

Salubrinal reduced markers of endoplasmic reticulum stress, autophagy, and apoptosis in a cortical impact 
model in mice

[142]
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inhibit CREB, leading to the suppression of BDNF
expression [196]. Likewise, ISR activation is also

found in rat models of depression based on moderate
unpredictable stress, leading to increased PERK and

Table 1. (Contd.)

Findings References

Salubrinal improved cognitive performance and reduced neuronal death in a mild TBI model in mice [159]

Salubrinal reduced apoptosis markers and normalized impulsive behavior in a blast-induced TBI model [152]

Guanabenz increased p-eIF2α and improved behavioral parameters in a controlled cortical impact model [135]

GSK2606414 reduced neuron loss and improved contextual discrimination in a controlled cortical impact 
model in mice

[140]

GSK2606414 reduced expression of UPR markers and neuronal apoptosis in a surgical brain injury model 
in rats

[145]

GSK2656157 prevents dendritic spine loss and normalizes memory impairment in a controlled cortical 
impact model in mice

[161]

ISRIB restored long-term memory function and normalized long-term potentiation impairment in a focal 
contusion model in mice

[46]

ISRIB reduced neuronal apoptosis and contributed to the normalization of locomotor function in a spinal 
cord injury model in mice

[151]

ISRIB reduced neuroinflammation and normalized behavioral impairments in a spinal cord injury model [162]

ISRIB reduced ferroptosis and white matter damage in a controlled cortical impact model in rats [163]

ISRIB normalized impulsive behavior and synaptic function in a multiple TBI model in mice [164]

ISRIB normalized motor and cognitive impairments in the stab-wound injury model in zebrafish (Danio 
rerio)

[165]

Fig. 2. Mechanisms of action of the Integrated Stress Response (ISR) modulators. PERK—PKR-like endoplasmic reticulum kinase;
eIF2α—eukaryotic translation initiation factor 2α; ATF4—activating transcription factor 4; GADD34—protein phosphatase 1 regu�
latory subunit 15a; PP1—protein phosphatase 1.
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eIF2α phosphorylation in the hippocampus, as well
as increased protein levels of ATF4 and eIF2α phos�
phorylated form in the prefrontal cortex [192], with
depression-like behavior in the sucrose preference
and the forced swim tests. In male Wistar rats
exposed to mild stressors (e.g., white noise, bright
light, immobilization, swimming in hot and cold
water) for 6 weeks [197], depression-like behavior
parallels an increase in PERK and eIF2α phosphor�
ylated forms in hippocampal samples, while the
serotonergic antidepressant fluoxetine, a selective
serotonin reuptake inhibitor (SSRI), normalizes
these changes. Lastly, in female Wistar rats, a 6-week
chronic unpredictable stress protocol evokes an
increase in ATF4 gene expression in the prefrontal
cortex, which is abolished by another SSRI, ser�
traline [198], suggesting that the suppression of
eIF2α signaling activity may be somehow linked to
mechanisms underlying the therapeutic effect of
SSRI antidepressants.

In another experimental model, a depressive-like
state in rats was induced by lipopolysaccharide
(LPS) injections, which also led to the activation of
PERK kinase in the hippocampus, but not in the
prefrontal cortex [199]. In contrast, ISRIB adminis�
tration to rats reduced both LPS-induced neuroin�
flammation and depression-like behavior [199].
Finally, two mouse models of depression, LPS-
induced neuroinflammation and corticosterone-
induced stress, showed elevated eIF2α phosphoryla�
tion in serotonergic raphe neurons, decreased
BDNF levels, increased content of endoplasmic
reticulum stress-related proteins, as well as anxiety-
and depression-like behavior [200]. Injections of
tunicamycin, a compound that induces endoplasmic
reticulum stress and consequent ISR activation, into
the mouse dorsal raphe nuclei also increased p-
eIF2α levels in these nuclei and depression-like
behavior. Local tunicamycin injections into the
raphe nuclei altered the expression of genes encod�
ing neuroplasticity-related proteins (e.g., BDNF and
its receptor TrkB, neuritin, and others), and
decreased serotonin-mediated neurotransmission in
other brain regions [200].

In contrast, ISRIB injections block tunicamycin-
induced changes in gene expression of synaptic pro�
teins and prevent depressive-like behavior of animals
[200]. At the same time, the administration of salu�
brinal, an eIF2α inhibitor and ISRIB activator,

enhances tunicamycin effects on the above parame�
ters [200]. Interestingly, ketamine, an inhibitor of
N-methyl-D-aspartate (NMDA) glutamate recep�
tors, considered as a fast-acting antidepressant, also
normalizes tunicamycin-induced changes in p-eIF2α
levels and behavior, assuming that increased eIF2α
phosphorylation and the activation of p-eIF2α-
mediated signaling in the dorsal raphe nuclei may be
responsible for the impairments in neurotransmis�
sion, neuroplasticity and behavior, observed in
experimental models [200]. Overall, despite the pau�
city of clinical data, animal model studies indicate
that ISR and especially PERK-eIF2α signaling may
play an important role in the pathogenesis of depres�
sion, opening up new avenues for the use of drugs
targeting the ISR system as possible antidepressants.

Schizophrenia is a prevalent heterogeneous disor�
der with an intricate etiology, resulting due to a
combination of genetic predisposition and environ�
mental factors [201]. The symptoms of schizophre�
nia are categorized into the positive (delusions and
hallucinations) and negative (a lack of motivation,
social isolation, and cognitive impairments) [202].
Although the role of ISR in the pathogenesis of this
disease remains poorly understood, evidence of ISR
involvement in schizophrenia can be found in
genetic studies, clinical reports, as well as in experi�
mental models of the disease. For example, certain
single nucleotide mutations in the ATF4 gene are
associated with schizophrenia in males, but not in
females, in China [203]. A genome-wide association
study of >13000 cases links schizophrenia to
EIF2AK2 encoding the eIF2α kinase HRI [204].
Proteomic analysis of the prefrontal cortex in
schizophrenia patients shows elevated level of
another eIF2α kinase, GCN2 [205]. The neuro�
spheres derived from olfactory epithelial cells of
schizophrenia patients also demonstrate lower both
global protein synthesis and ribosomal protein con�
tent. A subsequent pathway analysis of differentially
expressed proteins and mRNA transcripts in neuro�
spheres showed the enrichment of the pathway asso�
ciated with eIF2α signaling. Studies of blood cells
from schizophrenia patients demonstrate elevated
eIF2α phosphorylation in lymphocytes [206] the
fraction of peripheral blood mononuclear cells
[207], suggesting a possible systemic activation of
ISR.

Evidence of ISR activation has also been
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described in mouse models of schizophrenia. For
example, in a model of prenatal exposure to the viral
mimetic polyriboinosinic-polyribocytidylic acid
(poly I:C, an immunostimulant causing schizo�
phrenia-like changes in offspring), there is
increased p-eIF2α/eIF2α ratio in the hippocampus
and prefrontal cortex [206]. In another model, mice
with a conditional knockout of the CACNA1C gene
(which encodes the L-type Cav1.2 calcium channel
associated with schizophrenia and BD) in the excit�
atory glutamatergic neurons of the prefrontal cortex
[208] exhibit increased anxiety and social behavior
disorder, as well as decreased protein synthesis and
increased p-eIF2α level in the prefrontal cortex,
whereas ISRIB restores protein synthesis and nor�
malizes behavioral impairment in this model [208].
Using a culture of cortical neurons with a mutant
DISC1 (disrupted in schizophrenia 1) gene associ�
ated with schizophrenia, there were observed ATF4
accumulation in the cell nuclei and ATF4-induced
changes in the expression of a number of genes lead�
ing to synaptic dysfunction [209]. A structural analy�
sis showed that mutations in the DISC1 gene prevent
DISC1-ATF4 complex formation, resulting in the
impaired DISC1-mediated suppression of ATF4
activity [209]. Genetic suppression of ATF4 expres�
sion (by a heterozygous ATF4 mutation) normalizes
synaptic function, restoring the density of synaptic
contacts, as well as increasing the average frequency
of spontaneous discharges and the number of active
neuronal gap junctions. In contrast, the enhancement
of ATF4 expression in a culture of non-mutant neu�
rons leads to transcriptomic changes and decreased
synaptic excitability, similar to those observed in
DISC1-mutant cells. This suggests a key role of ATF4
in the pathogenesis of DISC1-mediated schizophre�
nia, and raises the question of the role of ISR-medi�
ated ATF4 activation in other forms of this disease
(e.g., an analysis of brain cortex samples from patients
with schizophrenia shows a decrease in the pivotal
ISR components, PERK and ATF4 [210]).

Moreover, mice with a conditional PERK knock�
out in the cerebral cortex exhibit several schizophre�
nia-like behavioral abnormalities related to
information processing and behavioral flexibility, as
well lower p-eIF2α and ATF4 levels in the prefrontal
cortex [210]. The content of p-eIF2α and ATF4 in
the prefrontal cortex of older adults with schizophre�
nia is indistinguishable from controls [211]. In gen�

eral, the inconsistency of these data may be due to
the great clinical heterogeneity of schizophrenia, as
well as the differences in animal models employed.
Therefore, despite the growing body of evidence of
ISR involvement in schizophrenia, the specific role
of this pathway in its pathogenesis remains obscure
and warrants further investigation.

Bipolar disorder (BD)is characterized by recurrent
swings of mood and various specific cognitive, phys�
iological and behavioral symptoms [212]. To date,
there is only indirect evidence for a possible role of
ISR in the pathogenesis of BD. For example, in a
human lymphocyte culture model, tunicamycin (as
an endoplasmic reticulum stress activator) stimulates
eIF2α phosphorylation in controls, but not in lym�
phocytes of BD patients [213]. The lack of a normal
response to tunicamycin is accompanied by
increased cell mortality, and this effect is only
observed for lymphocytes from patients at the late
stage of the disease. These data suggest the role of
ISR dysfunctions in BD.

Peripheral blood cells from BD patients show ele�
vated endoplasmic reticulum stress markers [213–
216], although it remains unclear whether these
changes are associated with eIF2α phosphorylation
and ISR activation per se. Lastly, a recent genetic
analysis of public genomic databases of BD patients
using Mendelian randomization to link the genes
encoding ISR pathway components to BD [217]
revealed significant BD associations with the
EIF2B5 gene encoding the eIF2B factor subunit (a
molecular target of ISRIB), as well as with EIF2AK4
encoding GCN2, an eIF2α kinase.

Post-traumatic stress disorder (PTSD) results from
a severe traumatic event and is accompanied by
long-term psychiatric, neuroendocrine, and neuro�
physiological disturbances [218]. Data on the
involvement of ISR in the pathogenesis of PTSD are
currently limited to animal models using single pro�
longed stress in rats, which elevates p-eIF2α and p-
PERK levels and the content of several endoplasmic
reticulum stress markers in the prefrontal cortex
[219, 220], as well as evokes the accumulation of
ATF4 and CHOP proteins in the nuclei of prefrontal
cortical neurons, paralleled by increased apoptosis
and behavioral disorders related to the rat learning
abilities and memory [219]. Interestingly, the PERK
inhibitor GSK2606414 restores both changes in pro�
tein levels and behavioral abnormalities, observed in



THE ROLE OF THE INTEGRATED STRESS RESPONSE

JOURNAL OF EVOLUTIONARY BIOCHEMISTRY AND PHYSIOLOGY   Vol.  60  No. 6  2024

2225

this model of PTSD [219]. Overall, these data sug�
gest a PERK-dependent ISR hyperactivation in this
model, yet calling for further studies using alterna�
tive models, as well as more extensive and systematic
clinical data, to draw a definite conclusion on the
role of ISR in PTSD.

Drug addiction. The dependence on the use of
diverse psychoactive substances (substance use dis�
order) is also based on long-term molecular and cel�
lular alterations in neurons of the mesolimbic and
dopaminergic systems [221], in which ISR has
recently been implicated. For example, in rat condi�
tioned place preference (CPP), as well as cocaine
and morphine self-stimulation studies, exposure to a
drug-associated stimulus evokes a decrease in p-
eIF2α and ATF4 levels in the basolateral amygdala
[222], whereas injections of Sal003 (an eIF2α phos�
phatase inhibitor) into this brain region suppresses
drug-directed behavior, while decreased ATF4
expression via RNA interference blocks the effect of
Sal003. Injection of the latter into the rat nucleus
accumbens suppresses drug-seeking behavior in the
rodent model of cocaine withdrawal [223]. In mice,
cocaine [224, 225], nicotine [226], alcohol and
methamphetamine [224] reduce eIF2α phosphory�
lation level in the ventral tegmental area (VTA), a
key brain region involved in the formation of drug
addiction [227]. Interestingly, young adolescent
mice with reduced p-eIF2α/eIF2α ratio in the VTA
show a greater predisposition to cocaine and nico�
tine addiction [224, 226]. Moreover, in young mice,
cocaine and nicotine are able to induce long-term
potentiation in VTA neurons (one of the mecha�
nisms behind the formation of addiction) at lower
doses compared to adults [224, 226].

Genetic suppression of eIF2α phosphorylation in
the VTA (Ser51 substitution for alanine in one of the
EFf2s1 gene alleles) lowers the threshold of nicotine-
and cocaine-induced long-term potentiation in the
VTA neurons of adult mice to a level comparable to
that observed in adolescents [224, 226]. At the same
time, the administration of the ISR activator Sal003
into the VTA inhibits the effect of cocaine on long-
term potentiation, and additionally, reduces the indi�
ces of addictive behavior in adolescent mice [224].

In contrast, ISRIB enhances the effects of cocaine
and nicotine on long-term potentiation and, addi�
tionally, contributed to the formation of addictive
behavior [225]. The administration of the cannabi�

noid receptor agonist WIN 55,212-2 to rats also
decreases eIF2α phosphorylation in the nucleus
accumbens of adolescent, but not adult, individuals
[228], whereas WIN 55,212-2 and cocaine enhance
each other’s behavioral effects (cross-sensitization)
in adolescent rats [228]. The involvement of eIF2α
signaling in the pathogenesis of drug addiction is fur�
ther supported by the fact that in humans, the
genetic predisposition to smoking is associated with
a polymorphism of EFf2s1 that encodes eIF2α [226].
Thus, ISR inhibition in the neurons of the mesolim�
bic system plays an important role in the formation
of addiction to a wide variety of drugs, while the sup�
pression of p-eIF2α signaling may be a key factor
determining a greater predisposition of young indi�
viduals to drugs.

Chronic morphine exposures increases p-eIF2α
content in the rat cerebral cortex, which is accompa�
nied by apoptotic changes in cell morphology [229],
while systemic morphine injections elevate p-eIF2α
levels in the rat spinal cord and increase the expression
of endoplasmic reticulum stress and apoptosis markers
[230]. Repeated amphetamine administration
increases p-eIF2α phosphorylation and decreases total
protein synthesis in the mouse striatum [231], while a
single exposure to a high dose of methamphetamine
and amphetamine increases p-eIF2α levels in the
mouse hippocampus [232] and rat striatum [233].
Taken together, these observations indicate that patho�
logical changes in the brain caused by drugs of abise
(including opiates and amphetamine), are associated
with the activation of the ISR system.

GENERAL DISCUSSION

ISR is an important protective mechanism aimed
at maintaining cellular homeostasis under stress con�
ditions. At the same time, altered eIF2α signaling
can have both adaptive and pathogenic effects,
depending on the context and the degree of ISR acti�
vation. In the short term, this mechanism promotes
cell survival by reducing the total level of protein
synthesis and redistributing homeostasis restorative
resources. However, a chronic activation of the ISR
pathway can induce programmed cell death via
mediators, such as ATF4 and CHOP, which may
lead to neuronal dysfunction and cell death, as
described in Alzheimer’s and Parkinson’s diseases,
as well as in other neurodegenerative disorders.
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However, the functional significance of ISR sig�
naling cascades for mental diseases remains unclear.
On the one hand, the above data attest to the
involvement of ISR components in the pathogenesis
of depression, schizophrenia, BD, addiction, and
PTSD. Furthermore, ISR modulators, such as
ISRIB and salubrinal, show therapeutic efficacy in
some models of these diseases. On the other hand,
the possibility for the changes in eIF2α signaling to
be not causative but consequential for general cellu�
lar dysregulation in pathology cannot be ruled out.

Notably, most of the data discussed here are
obtained using animal models, and this introduces
certain limitations into their interpretation. Firstly,
such models do not always fully capture the com�
plexity and multicomponent nature of mental illness
in humans. Secondly, the pathogenesis of depression
or schizophrenia in humans often involves a wide
range of factors, such as genetic, social, and bio�
chemical components that are difficult to reproduce
in animal experiments. Thirdly, the significance of
ISR in rodent models of neurodegeneration and
mental disorders may vary depending on the meth�
ods used and experimental conditions. For example,
ISR activation in the rat hippocampus in a model of
chronic unpredictable stress may represent a
response to chronic stress, but not necessarily mean
that this cascade is the first cause of the disease.

Furthermore, the issue of the advisability of artifi�
cial modulation of eIF2α signaling activity under
conditions of pathology remains open. On the one
hand, such drugs as ISRIB and salubrinal show a
potential to improve behavioral and neurophysiolog�
ical parameters in some models of the above pathol�
ogies. On the other hand, artificial inhibition or
stimulation of eIF2α signaling may have unpredict�
able consequences toward general cellular homeo�
stasis, especially in the context of complex
multicomponent CNS pathologies. Finally, biologi�
cal effects of ISR modulators (e.g., ISRIB) with vs.
without CNS pathology merit further scrutiny.
Overall, despite the potential importance of ISR in
the pathogenesis of mental disorders, current data
remain fragmentary, and it remains unclear whether
ISR is a pivotal mechanism or a collateral link in a
broader network of pathophysiological systemic
changes in the brain. Future research should focus
on integrating the knowledge of the role of ISR and
other signaling cascades and on developing thera�

peutic strategies aimed at precise and controlled
intervention in this pathway.

CONCLUSION

ISR in the brain is an important mechanism of
cellular adaptation to biological stress, affects neuro�
nal activity and is involved in the pathogenesis of
multiple CNS diseases. Both ISR activation (e.g., in
depression and PTSD) and inhibition (e.g., in some
models of BD, schizophrenia, and addiction) can
correlate with the development of mental disorders.
Thus, pharmacological agents (e.g., ISRIB and salu�
brinal) that target diverse components of the ISR
system represent promising therapeutic tools to min�
imize negative effects of ISR activation or inhibition
in the brain by modulating the symptoms of mental
illness. In general, future studies can further eluci�
date the specific roles of the ISR pathways in mental
disorders and develop targeted therapies mitigating
their deleterious effects and preventing the develop�
ment of undesirable side effects associated with ISR
deregulation. The deeper insight into the complex
interplay between cellular stress responses and the
pathogenesis of mental disorders will advance treat�
ment strategies for these conditions.
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