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Abstract—Vitamin D (calciferol) is a key vitamin playing an important role in the regulation of the
musculoskeletal, immune, cardiovascular and nervous systems. Vitamin D deficiency is a risk factor for
multiple brain disorders. Mounting evidence shows robust neuroprotective properties of vitamin D, as
well as its ability to improve neuronal function and reduce brain disorders. Here, we focus on the latest
clinical and preclinical (rodent and zebrafish) data on the role of vitamin D as a neurosteroid hormone,
including its role in regulating the synthesis and functions of neurotransmitters and neurotrophic factors.
A better insight into the role of vitamin D in brain function may lead to novel approaches to the
treatment and prevention of vitamin D deficiency-related brain disorders.
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INTRODUCTION

The secosteroid vitamin D (calciferol, Fig. 1) is an
important vitamin in the body [1–4] that regulates
cell proliferation, blood calcium and phosphorus
levels [5–7], as well as functioning of the musculo�
skeletal, immune [8–11], cardiovascular [12], and
nervous [13–15] systems. Recent decades have wit�
nessed a growing interest in the physiological role of
vitamin D in the body (Fig. 2). Vitamin D is synthe�
sized in the human skin from 7-dehydrocholesterol
following exposure to ultraviolet radiation [16], and
the main mechanism of its action involves binding
the active form (calcitriol) of this hormone to the
nuclear vitamin D receptor (VDR), followed by the
induction of expression of >1000 target genes [18,
19, 20–22]. The VDR gene is highly conserved across

vertebrates [23] and is widely expressed in human
and animal tissues, including virtually all brain
regions (Fig. 3). Rapid (nongenomic) effects of vita�
min D on its membrane receptors (mVDRs) have
also been described (Fig. 3) [24, 25], although the
molecular identity and signaling mechanisms of
these receptors remain poorly understood [26–29].

Over the past decades, extensive evidence has
accumulated showing robust positive clinical effects
of vitamin D in the brain [30–33] (Fig. 2) and the
risks of developing brain disorders due to vitamin D
deficiency and/or VDR genetic mutations [34–38]
(Tables 1, 2). Preclinical data (Table 3) also support
the critical importance of vitamin D and VDR sig�
naling in the brain [3, 39, 40]. However, despite the
growing interest in the role of this vitamin in the
brain, many aspects of its neurobiology remain
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unclear. Here, we summarize clinical and preclinical
evidence on vitamin D effects in the brain, accumu�
lated over the last 10 years, aiming to provide a
deeper insight into its role in the central nervous sys�
tem (CNS), and highlight promising research trends
in this area.

Since many brain diseases are associated with
hypovitaminosis D [59–61], vitamin D therapy
reduces the risk of the three most common CNS dis�
orders—anxiety [44], depression [62], and dementia
[63]. Genetic variations of VDR are linked to Alzhei�
mer’s (AD) [35] and Parkinson’s [37] diseases and
cognitive impairments [36], as well as depression and
autism (Table 2). It is believed that vitamin D effects
may be mediated by the protection of neurons from

oxidative stress and neuroinflammation [8], includ�
ing the action of this hormone as an antioxidant that
reduces the risk of neurodegenerative diseases [33,
60, 65]. Vitamin D also promotes synthesis of neuro�
trophic factors (e.g., the nerve growth factor (NGF)
and the brain-derived neurotrophic factor (BDNF)
[66–68]), regulates calcium and phosphorus levels in
the brain [69, 70], and protects the myelin sheath of
nerve fibers. In contrast, its deficiency leads to
myelin destruction and the development of multiple
sclerosis [42] and neuromyelitis optica (Devic’s dis�
ease) [43]. In addition to its action on neurons, vita�
min D affects glia, reducing the pro-inflammatory
M1 phenotype of microglia [21]. Activated astro�
cytes demonstrate high expression of genes encoding

Fig. 1. A diagram illustrating vitamin D synthesis and biological action. DBP—vitamin D-binding protein. Further vitamin D
metabolism proceeds via its hydroxylation followed by the excretion with bile [17].
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VDR and Cyp27B1 (a cytochrome P450 superfamily
enzyme involved in vitamin D synthesis) [71], while
the hormone itself reduces the levels of pro-inflam�
matory cytokines, such as tumor necrosis factor
alpha (TNF-α) and interleukin 1 beta (IL-1β), and
Toll-like receptor 4 (TLR4) in these glial cells [71].
Possessing all key features of a classic neurosteroid
hormone [72–76], vitamin D also interacts with other
steroids [30]. For example, the therapeutic effect of
progesterone in neurotrauma is manifested clinically
only at an adequate level of vitamin D, while in an
animal model of neurotrauma, there was noted a

decrease in neuroinflammation (a reduction in both
the number of injured neurons and astrocyte activity)
after co-administration of these two steroids [77].

BRAIN DISEASES ASSOCIATED 
WITH VITAMIN D DEFICIENCY

Vitamin D deficiency has long been associated
with a high risks of AD [78], a severe neurodegenera�
tive pathology caused by beta-amyloid aggregation
and neurofibrillary tangles with astro- and microgli�
osis [79]. AD is also the most frequent cause of

Fig. 2. Relevance of research on vitamin D in the central nervous system, as seen from the increase in the number of publications on
vitamin D + brain in the Pubmed database (www.Pubmed.gov, accessed August 2024). Left panel illustrates the overall conservation
of VDR genes in humans, primates, rodents, amphibians, and zebrafish (Danio rerio), as analyzed by their nucleotide sequences in
CDS FASTA format using the Ensembl database (www.ensembl.org/index.html, accessed August 2024) and presented as a phyloge�
netic tree generated using the MEGA 11 software. Bottom panel illustrates major groups of CNS disorders influenced by hypovita�
minosis D and vitamin D therapy (see further details in text and Table 1).
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dementia [80, 81]. There is a direct relationship
between vitamin D status and AD, as both patients
and APP and PS1 mice (two genetic models of AD)
demonstrate reduced blood calciferol levels [82]. In
rodents, chronic hypovitaminosis D leads to neuro�
nal senescence, neurodegeneration, and beta-amy�
loid accumulation in the brain [40, 83]. AD is also
associated with VDR whose genetic variation may

double the risk of AD [84] and related cognitive
impairments [41]. In addition to improving AD,
vitamin D has a positive effect on cognitive function
in general. For example, elevated blood calciferol
levels correlate with lower risks of dementia [46],
while vitamin D deficiency correlates with a worsen�
ing of neuropsychological functions [85], especially
in elderly patients [86].

Fig. 3. Effect of vitamin D on its specific nuclear (VDR) and membrane (mVDR) receptors. Bottom inset summarizes VDR distri�
bution across various tissues and different brain regions in humans (based on the Human Protein Atlas, www.proteinatlas.org/
ENSG00000111424-VDR/, accessed August 2024) and in the mouse brain (Allen Brain Atlas, www.mouse.brain-map.org/experi�
ment/show/100144119, accessed August 2024). RXR—retinoid receptor (forms a heterodimer with VDRs upon binding vitamin D
in the nucleus).
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Depression is another severe and highly prevalent
brain disorder [87], manifesting as lowered mood,
inattention, and general hypoactivity [88, 89]. How�
ever, although positive effects of vitamin D intake or
sunlight therapy on mood, as well as the seasonal
nature of depression, are well known, their relation�
ship to vitamin D is not fully understood. One of
putative mechanisms of vitamin D action may be
related to the hippocampus [90], whose structure is
disrupted in patients with chronic depression [59,
91] and which is rich in VDRs [92]. Likewise, vita�
min D deficiency in rodents provokes its atrophy

during development [59, 93]. Monoamine defi�
ciency in the brain is also linked to the pathogenesis
of depression [94], and hypovitaminosis D reduces
dopamine and serotonin synthesis [59]. VDRs are
expressed in dopaminergic neurons of the hippo�
campus, substantia nigra, and prefrontal cortex that
all play a key role in depression, while VDR expres�
sion in the substantia nigra in rodents can delay the
differentiation of dopaminergic neurons and cause
behavioral deficits in hypovitaminosis D [95].

Bipolar disorder is yet another mental health con�
dition characterized by abrupt swings from depres�

Table 1. Neurological and mental diseases associated with vitamin D

Neurological diseases Mental illnesses

Parkinson’s disease [40]
Alzheimer’s disease (AD) [41]
Multiple sclerosis [42]
Devic’s disease [43]

Depression [33]
Anxiety disorders [44]
Bipolar disorder [45]
Schizophrenia [32]
Attention deficit hyperactivity disorder (ADHD) [46]
Autism [47]
Epilepsy [48]

Table 2. Neurological and mental diseases associated with VDR gene polymorphisms

Neurological diseases Mental illnesses

Parkinson’s disease (BsmI, ApaI, FokI) [37, 40] Depression (FokI, BsmI, ApaI, TaqI) [49]

Alzheimer’s disease, AD (Cdx-2, FokI, BsmI, ApaI, 
TaqI) [50]

Schizophrenia (rs10741657 AA, rs10877012 TT, rs6013897 AA) 
[51]

Multiple sclerosis ( ApaI, BsmI, FokI, TaqI) [52] Autism (Cdx-2, FokI, BsmI, TaqI) [53]

Table 3. Approaches to studying vitamin D using animal models

Models General characteristics

Vitamin D-free diet [55, 56] (rodents) Decreased blood calcidiol and calcitriol levels, altered neuroanat�
omy, hyperlocomotion, increased exploratory activity, decreased 
learning ability, decreased size of the lateral ventricles

Paricalcitol* administration [55] (rodents) Decreased blood calcidiol and calcitriol levels

VDR gene knockouts [39, 57] (mice) Prepulse inhibition deficit, anxiety, decreased activity in the open 
field and Y-maze, motor dysfunctions

Vitamin D-free diet [5] (zebrafish Danio rerio) Reduced swimming near the surface (anxiety-like behavior), overall 
hypoactivity

Administration of various doses and forms of 
vitamin D (larval zebrafish) [58]

Changes in zebrafish fry activity depending on tank illumination

*A drug used for the prevention and treatment of secondary hyperparathyroidism associated with chronic renal failure, a 1,25-dihy�
droxyergocalciferol analog, the active form of vitamin D2 (ergocalciferol).
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sion to mania, whose relationship to vitamin D is
poorly understood [21]. For example, while patients
with bipolar disorder are indistinguishable in calcif�
erol and 24,25-dihydroxyvitamin D levels from con�
trols [45] or groups with other mental illnesses [96],
most studies nevertheless reveal lower vitamin D lev�
els than normal [97].

Anxiety spectrum disorders are presently most
prevalent CNS illnesses worldwide and present as
anxiety/excessive worries [98] accompanied by the
hypothalamic-pituitary-adrenal (HPA) axis dys�
function, impaired glucocorticoid production, and
the imbalance of inhibitory and excitatory neuro�
transmission [99]. A negative correlation has been
shown between vitamin D levels and anxiety disor�
ders, whereas regular vitamin D intake promotes a
decrease in these diseases [44] (see also increased
anxiety in VDR mutant mice, Table 3, and HPA axis
disorders in rodents with hypervitaminosis D [44]).

Multiple sclerosis is a severely debilitating neuro�
logical disease [100] whose symptoms (spasticity,
fatigue, pain) are caused by a nonselective autoim�
mune brain lesion [101, 102]. Vitamin D deficiency
[103], as well as VDR ApaI, TaqI, and BsmI poly�
morphisms [104], are linked to the risk of this dis�
ease, while the VDR FokI polymorphism is
associated with higher vitamin D levels in both con�
trols and multiple sclerosis patients [105] (Table 2).
Patients with another autoimmune disorder, Devic’s
disease, also have reduced calciferol levels [43], but
it is unclear whether it is causative or consequential
for this pathology [43].

Autism spectrum disorder (ASD) represents a
severe psychiatric disorder characterized by social
behavior deficits, stereotypies, cognitive impair�
ments [106], and hypo- or hypersensitivity [106].
Autistic children and adolescents have lower vitamin
D levels than their healthy peers [47, 107], while
children born to mothers with low vitamin D levels
are more likely to develop autism [47]. On the con�
trary, vitamin D supplementation can correct autism
symptoms in infant children [107, 108].

Schizophrenia is a severe, highly heterogeneous
mental disorder that encompasses positive (delusions,
hallucinations) and negative (anhedonia, social isola�
tion, affect flattening) symptomatology, as well as
cognitive impairments [109]. There is evidence of a
link between schizophrenia and vitamin D system’s
activity [110], because VDR rs10741657 AA,

rs10877012 TT and rs6013897 AA polymorphisms
are associated with schizophrenia [51], while hypo�
vitaminosis D has been reported in 70% of people
with schizophrenia, particularly increasing the risk
of its development during the first year of life [110,
111].

Attention deficit hyperactivity disorder (ADHD)
is a widespread neurodevelopmental disorder char�
acterized by inattention, hyperactivity, and impul�
sivity [112]. Low blood calciferol concentrations are
associated with the risk of ADHD [97], which may
be due to defects in serotonin synthesis by trypto�
phan hydroxylase 2, whose ‘vitamin D response ele�
ment’ (VDRE) activates serotonin production [97].
An association of ADHD with the Intron8 polymor�
phism of VDR has also been found [113]. In contrast,
vitamin D intake reduces hyperactivity, impulsivity,
and inattention not only in children, but also in
adults with ADHD [114].

Epilepsy is one of the most common neurological
diseases, presenting as CNS hyperarousal and sei�
zures [115]. Interestingly, the seasonal nature of epi�
lepsy reproduces that of hypovitaminosis D [116],
whereas vitamin D intake reduces the occurrence of
epileptic seizures by 40% [117]. The vitamin also
exerts acute anticonvulsant effects in a rodent model
of pharmacogenic epilepsy [118], whereas the dis�
ruption of vitamin D signaling in VDR knockout
mice causes increased seizure sensitivity [119]. Anal�
yses of various VDR polymorphisms show that the
FokI AC genotype less, and the ApaI AA genotype
more frequently, occur in people with epilepsy [120]
(Table 2).

Finally, linking CNS diseases to vitamin D status
inevitably raises the question of its threshold blood
concentrations [121] (30–40 ng/mL [122–124]). It is
generally considered that vitamin D deficiency is 12–
20 ng/mL [125], insufficiency—20–30 ng/mL [126],
sufficiency—50 ng/mL, and hypervitaminosis—above
100 ng/mL [121]. Notably, posing a serious biomedi�
cal problem [127–129], hypovitaminosis D affects
60–70% of the world population [130].

EXPERIMENTAL MODELS TO STUDY 
VITAMIN D IN THE CNS

Experimental (animal) models are important tools
to explore the role of vitamin D and its receptors in
the pathogenesis of CNS diseases [76, 131]
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(Table 3). The main approaches to animal modeling
of hypovitaminosis D include artificial vitamin D
deficiency and engineering of genetically modified
animals by targeting the genes of its synthesis or sig�
naling. For example, a dietary model of vitamin D
deficiency in female rats deprived of ultraviolet light
and dietary vitamin D supplementation leads to
decreased blood calcidiol and calcitriol levels and
brain alterations in newborn rat pups, whose cortex
proves to be longer and thinner, and whose lateral
ventricles are enlarged [55]. Dietary vitamin D defi�
ciency affects differentiation and proliferation of
brain cells during the neonatal period [132], also
causing animal hyperlocomotion [56], impaired
learning, and a reduction in the size of lateral ventri�
cles [133]. Thus, even short-term prenatal vitamin D
deficiency affects brain development and function,
leading to cognitive and behavioral disorders in adult
individuals, which may be important in terms of
translating these results to humans.

Another approach to studying vitamin D is based
on the depletion of its reserves through the adminis�
tration of paricalcitol [55], a cytochrome CYP24A1
inducer that incites rapid calcidiol and calcitriol
catabolism (Table 3). As soon as three weeks follow�
ing the administration of several paricalcitol doses to
rats, the serum levels of both hormones proved to be
below detection limits [55]. Owing to this model,
various vitamin D effects (e.g., bone and mineral
metabolism, hypertension, oxidative stress, and
inflammation) have been studied, opening up the
possibility of applying this model in brain research as
well.

The use of zebrafish (Danio rerio), an established
model organism in neurobiological research, has a
number of advantages specifically for studying CNS
diseases [134] and may also be useful for unraveling
evolutionarily conserved physiological functions of
vitamin D. Firstly, high fecundity and rapid develop�
ment of zebrafish makes them a convenient model
for experiments and collecting big data arrays [135].
Secondly, the transparency of zebrafish embryos and
fry allows the in vivo investigation of internal pro�
cesses with high resolution [136], which is particu�
larly important for analyzing the formation of key
brain structures at early stages of embryonic devel�
opment. In addition, zebrafish have numerous
genetically modified strains for studying various
aspects of CNS diseases, easily manipulable genet�

ics, and a number of well-developed and effective
genome editing techniques [137].

Taken together, this makes zebrafish increasingly
applicable for studying the role of vitamin D in the
brain. For example, a vitamin D-deficient diet
reduces fish swimming near the surface of water in
an unfamiliar aquarium (i.e., reveals more anxious
behavior compared to controls) and causes overall
hypoactivity [5]. Models have also been generated
based on zebrafish fry, where vitamin D2 alters
behavior depending on light levels, reducing swim�
ming in the dark, but not in the light [58]. Likewise,
the VDR agonist lithocholic acid at high concentra�
tions suppresses swimming activity during both light
phases in this model, while at low concentrations it
does so only in the light [58].

The effects of vitamin D on CNS conditions are
also studied using zebrafish models of other diseases.
For example, vitamin D administration to zebrafish
with artificially induced hyperglycemia, a character�
istic feature of diabetes mellitus, reduces blood sugar
levels and restores memory and learning abilities in
the T-maze [138]. This is particularly significant
given that in humans, hyperglycemia reduces cogni�
tive functions and even causes AD. Thus, vitamin D
normalizes zebrafish cognitive functions impaired by
artificially induced hyperglycemia, further support�
ing the conserved mechanisms linking these two dis�
orders.

PROBLEMS AND PROSPECTS

Studying the effects of vitamin D on human and
animal nervous systems is a dynamically developing
and promising area of research [131, 139, 140], yet
not without relevant but still unresolved problems.
For example, the behavior of rats and mice exposed
to dietary vitamin D deficiency during development
differs under distinct conditions [55]. In rats, hypo�
vitaminosis D impairs latent, but not prepulse, inhi�
bition and working memory. Electrophysiological
studies of vitamin D-deficient rats reveal increased
hippocampal long-term potentiation and learning in
the Y-maze behavioral test [141]. Unlike rats, vita�
min D-deficient mice demonstrate impaired learn�
ing with a paradoxical increase in exploratory and
motor activity [132]. Moreover, a positive correla�
tion between maternal calcidiol levels during preg�
nancy and the mental and psychomotor
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development of infants up to one year of age [142,
143] and older has been reported in the clinic [144],
suggesting that vitamin D deficiency during different
developmental phases may differentially affect neu�
robehavioral syndromes and have species- and per�
haps lineage-specific differences.

Vitamin D-induced stimulation of neuro- and
gliogenesis is also of interest here. For example, the
vitamin D-induced enhancement of adult neurogen�
esis in various models [145, 146] matters in terms of
the neuroprotective properties of this hormone-like
vitamin, as discussed above. Meanwhile, vitamin D-
induced enhancement of astro- and microgliogene�
sis may have opposite effects under certain condi�
tions, raising the possibility of probably more
complex nature of vitamin D action on different cells
of the nervous system, clearly meriting further inves�
tigation.

Unraveling genetic and physiological causes of
vitamin D-associated CNS diseases in animals is an
important line of research [55]. In addition to
rodents, a relatively novel model object, the zebraf�
ish, is increasingly being used in this field (Table 3).
Recent findings generally indicate the evolutionarily
conserved nature of vitamin D involvement in CNS
regulation, since the behavioral and cognitive alter�
ations it evokes in fish resemble those seen in clinical
patients (Table 1) and in rodent models (Table 3).
Sequence analyses of the main genes of the vitamin D
system, encoding receptors and enzymes of its syn�
thesis and metabolism, indicate their high homology
in humans, mice, and fish (Table 4, Fig. 2). At the
same time, the well-known elevated neuroregenera�
tion level in zebrafish (compared to humans and
rodents) may require a more specific interpretation
of data on vitamin D effects, accentuating the

importance of further cross-taxon translational stud�
ies of its role in the brain.

Data on the possible link between vitamin D and
gamma-aminobutyric acid (GABA) are also inter�
esting. For example, vitamin D has a rapid anticon�
vulsant effect in a mouse model of seizures induced
by the GABA-lytic agent corazol (pentylenetetra�
zole) [147], while VDR knockout mice in the same
model show increased seizure sensitivity [4]. Thus,
further studies are needed to elucidate the relation�
ship between vitamin D and GABA in the CNS,
including both vitamin D-induced indirect modula�
tion of the GABAergic system and its direct impact
on GABAA receptors. Since many neurosteroids
have allosteric modulation sites on the GABAA
receptor [148], and the rapid effect of vitamin D on
corazol-induced seizures rules out VDR-mediated
genomic effects, this possibility deserves compre�
hensive investigation, as does the possible involve�
ment of mVDRs in these processes. An indirect
vitamin D–GABA interaction through vitamin D
effects on other neurotransmitters (e.g., mono�
amines) and gliotransmitters, which in turn may
mediate the modulation of GABAergic neurons, is
also possible.

An analysis of the known molecular partners of
human VDRs (Fig. 4) using the KEGG (Kyoto Ency�
clopedia of Genes and Genomes) database revealed
100 major pathways, including steroid-related pro�
cesses of transcription/translation, immune activity,
cellular response to stimuli, oncogenesis and cell
growth, as well as CNS-related processes, such as the
regulation of gliomas, synaptic plasticity, Hunting�
ton’s disease, oxytocin and GABA receptors (the lat�
ter again supporting a possible biological link between
vitamin D and the GABAergic system).

Table 4. Analyses of genetic homology of the main vitamin D system’s genes in humans, mice and zebrafish, based on
coding nucleotide sequences in the BLAST database (www.blast.ncbi.nlm.nih.gov/Blast.cgi, accessed August 2024)

Genes Biological functions of encoded proteins
Human vs. 

mice, %
Human vs. 

fish, %
Mice vs. 
fish, %

VDR Nuclear vitamin D receptor 84.92 78.53 78.21

CYP2R1 25-vitamin D hydroxylase (synthesis enzyme) 89.63 69.01 66.98

CYP27B1 1α-Vitamin D hydroxylase (synthesis enzyme) 82.55 64.57 89.13

CYP24A1 1,25-hydroxyvitamin D3-24-hydroxylase 82.89 67.16 75.00

Average homology, % 85.00 85.00 67.32 77.32
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Another important question concerns the very
nature of vitamin D. Calcitriol is traditionally viewed
as the main physiologically active form of vitamin D
in the body [149]. However, there is evidence for the
biological effects of calciferol, previously thought to
be a low-activity circulating form of vitamin D [17].
Thus, the role of this and other VDR ligands in the

CNS remains poorly understood and requires further
research. To gain a deeper insight into the biological
activity of vitamin D, we analyzed calcitriol in silico
using the PASS Online database [150] that allows
predicting the functional properties of small mole�
cules by their chemical structure taken from a library
of more than 250000 known properties as of August

Fig. 4. Analyses of vitamin D molecular pathways through its receptors (VDR) according to the BioGRID (www.thebiogrid.org/,
accessed August 2024, left) and KEGG (www.genome.jp/kegg/, right) databases; arrows denote brain-related processes. Bottom
panel summarizes predicted biological activities (Pa) for calcitriol according to the PASS Online database (www.way2drug.com/pas�
sonline/, accessed August 2024) with high probability Pa > 0.7 (also see text for details).
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2024 (Fig. 4). Interestingly, among the predicted
biological activities of calcitriol, widely represented
are its traditional effects, such as anti-osteoporotic
and calcium-regulating, immunomodulating, as well
as antidiabetic and antiproliferative (which confirms
its potential for the therapy of diabetes [151] and
some cancers [152]). The high probability of sub�
strate-specific and inhibitory interactions with
enzymes involved in vitamin D metabolism (CYP27,
CYP3A4, CYP2C8 and CYP24) may suggest poten�
tial interactions between vitamin D and other drugs
[153].

Studying the relationship between CNS diseases
and vitamin D levels in the body can also shed light
on the issue of comorbidity of a number of such dis�
eases. For example, there is a well-known frequent
comorbidity of depression with AD, anxiety disor�
ders, schizophrenia, and other psychiatric diseases
[154–156]. Since correlations with the vitamin D
system’s activity are observed for all of them (Fig. 2),
a detailed analysis of this issue may lead to a better
insight into the link between vitamin D and the lead�
ing psychiatric diseases, and probably to the emer�
gence of new vitamin D-based multi-target therapies
(Table 5).

Another important aspect relates to blood con�
centrations of active forms of vitamin D and,
accordingly, the choice of doses to be prescribed for
vitamin D deficiency. A significant part of vitamin D
is synthesized in the skin under the influence of
ultraviolet radiation, the degree of exposure to which
is difficult to standardize, so it is as difficult to assess
the vitamin D intake rate. Moreover, the very pro�
cess of determining blood levels of vitamin D active
forms in the clinic is associated with multiple diffi�
culties. It is also important that vitamin D (D3) can
trigger a negative feedback in the body, leading to a
compensatory increase in the degradation of its
active form and causing a parallel disruption of a
number of physiological processes. An important
role is also played by the proteins that specifically
bind various forms of vitamin D (vitamin D-binding
proteins, DBPs) and thus directly influence its blood
concentrations (Fig. 2). Therefore, the level and
physiological activity of these proteins, as well as
their possible individual variability, should also be
considered when selecting doses for vitamin D ther�
apy.

Potential sex differences in the effects of vitamin D

also merit attention. For example, in a mouse model
of obesity, a decrease in the number of VDRs in the
paraventricular zone alters brain electrophysiologi�
cal activity and glucose tolerance in males, but not in
females [163]. Therefore, further dissection of this
problem may provide a better understanding of the
vitamin D action profile in terms of personalized
medicine. At the same time, despite the predomi�
nantly positive effect of vitamin D on the brain
(Fig. 2), this interplay does not appear to be entirely
linear. For example, apart from the direct toxicity of
vitamin D overdose, there is interesting evidence
that postnatal hypo- and hypervitaminosis D equally
impairs spatial learning and hippocampus-depen�
dent memory in mice, being accompanied by
changes in the expression of a number of genes in
brain tissues [164]. Vitamin D deficiency in rats also
causes a paradoxical improvement of memory [141],
which may be due to its action during CNS develop�
ment, but in general does not fit into the commonly
accepted paradigm of vitamin D action in the brain.
One of the important factors in these processes may
be the established powerful proapoptotic potential of
vitamin D, which may account for the contradictory
data on the effect of vitamin D on the functional
state of neurons and glial cells in the brain and some
negative effects on the brain structures, especially in
the case of its overdose.

CONCLUSION

In general, further study of vitamin D effects on
the nervous system represents a promising field of
neurobiology and may lead to the development of
new methods to treat and prevent vitamin D-associ�
ated neurological and psychiatric diseases. The use
of experimental (animal) models is an important
translational approach to studying pathophysiologi�
cal CNS mechanisms related to the vitamin D sys�
tem’s dysfunction. Thus, the expanded use of both
traditional (rodents) and alternative (e.g., zebrafish)
model organisms is therefore essential in this field in
terms of seeking for evolutionarily conserved mecha�
nisms and targets for this critical neurosteroid. It is
important, however, for the therapeutic approach to
be balanced, and to ensure that possible adverse
effects of vitamin D in the CNS also receive due
scrutiny. Finally, there are multiple open questions
in this area (Table 5), whose solution will provide a
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Table 5. Selected open issues on the role of the vitamin D system in the central nervous system

• Vitamin D has neuroprotective properties [157]. Can taking vitamin D be effective in preventing neurodegenerative 
changes that occur as a result of aging?

• What is the nature of mVDR? What are its gene, structure and molecular partners? What are the possible interactions 
between mVDR and the classical nuclear genomic effects of vitamin D mediated by VDR? Can new ligands act on both 
types of vitamin D receptors simultaneously?

• Do vitamin D deficiency disorders have comorbidity? What role can vitamin D play in it as a common link?

• Can increasing vitamin D levels cause negative effects by increasing the concentrations of its steroid metabolites such 
as calcidiol and calcitriol?

• Vitamin D regulates the synthesis of a number of neurotrophic factors and neurotransmitters [33]. Can it, directly or 
indirectly, influence intelligence and other cognitive characteristics of the human and animal brain?

• Vitamin D modulates the activity of microglia [158] and also regulates the synthesis of neurotrophic factors that pro�
mote the renewal and repair of neurons [66, 67]. Will it be an effective tool to combat the consequences of strokes and 
traumatic brain injuries?

• What are the neurotranscriptomic and neurometabolomic profiles of hypo- and hypervitaminosis D?

• What are the mechanisms of epigenetic and epigenomic modulation of the vitamin D system?

• Attacks of psychosis in schizophrenia are often treated with antipsychotics. Given the association between schizo�
phrenia and vitamin D [159], can there be side effects from the simultaneous use of antipsychotics and vitamin D (for 
example, in the correction of manic symptoms in bipolar disorder, as well as psychosis and a number of other central 
nervous system disorders)?

• What types of neurons are most affected by vitamin D, and how does this affect their function? Is there a predomi�
nance of the neuronal effects of vitamin D depending on specific neuronal regions or functions?

• Vitamin D is able to reduce the concentration of glial-derived neurotrophic factor (GDNF) [76]? What is the contri�
bution of vitamin D to the physiological functions of neuroglia—astrocytes and microglia?

• Vitamin D in excess has toxicity that can provoke neuropsychiatric abnormalities—difficulty concentrating, confu�
sion, apathy, drowsiness and depression [160]. What physiological and biochemical mechanisms may be involved in 
these neurotoxic effects?

• Since vitamin D has neuroprotective properties [157], can it influence neuronal survival during toxic exposures? If 
yes, then how?

• Vitamin D may influence microglial function [158]. Can vitamin D have different effects on the functions of differ�
ent populations (e.g., M1 and M2) of microglial cells?

• Are there cross-taxon differences in the effects of vitamin D on the vertebrate CNS?

• Different people respond differently to the same dose of vitamin D [161], which may have a genetic basis [162]. Does 
it contribute to decreased or increased sensitivity to the effects of vitamin D in the CNS? What is the contribution of 
vitamin D as a neurosteroid to the modulation of other steroid-dependent processes (e.g., allosteric modulation of the 
GABA-A receptor) in the brain?

• How does vitamin D interact with other neurosteroid hormones in the brain? Is it possible to create therapeutics 
based on its hypothetical synergy and other CNS steroids? For example, can vitamin D enhance the therapeutic effects 
of other steroids?

• How do the stimulating effects of vitamin D on the genesis of new neurons and glial cells affect the brain?

• Given the steroidal nature of sex hormones, as well as vitamin D itself, are there sex differences in the effects of vita�
min D on brain and behavior of humans and animals?

• What are the possible negative consequences of vitamin D on apoptosis, neurogenesis and gliogenesis?

• How do the effects of vitamin D vary with age? Are there critical age windows for vitamin action in the brain?

• Does vitamin D have an acute effect on memory? Can new nootropic drugs be created based on vitamin D and other 
ligands? VDR?
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better insight into the physiological role of vitamin D
in the human and animal CNS, being also relevant
for the development of new therapies based on the
vitamin D system, its brain receptors, and related
small molecule analogs.
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