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Abstract. Dynamic game related to resource management problem is
considered. The planning horizon is assumed to be divided into the peri-
ods of exploitation where many players use a common resource and the
periods of recovery where the resource stock is evolving according to
the natural growth rule. Both noncooperative and coordinated players’
behaviors are investigated. The conditions linking the values of exploita- AQ1

tion and recovery periods in order to maintain the sustained resource
usage are determined. To illustrate the presented approaches, a dynamic
bioresource management problem (harvesting problem) with many play-
ers and compound planning horizon is investigated.
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1 Introduction

Resource management problems (exploitation of common renewable resources)
is one of the real-life challenges that are very important for ecology and eco-
nomics. It encompasses a number of different issues including the phenomenon
known as the tragedy of the commons. The commons denotes a natural resource
extracted by many individuals and the tragedy means that the participants tend
to overexploitation in the absence of regulation [15]. There is an extensive lit-
erature on renewable resources management in economics, operations research
and optimal control theory. AQ2

Real-life problems such as the exploitation processes involve dynamics of the
renewable resource and a number of decision makers. Hence, they can be inves-
tigated applying the technics of optimal control theory and dynamic games.
The game-theoretic approach to resource exploitation was pioneered by Munro
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[14] and Clark [1], who applied the Nash equilibrium for the models of fish-
eries. The optimal behavior of players in harvesting problems is investigated by
many scientists including Hamalainen et al. [5,8], Kaitala and Lindroos [11],
Levhari, Fisher and Mirman [6,7,10], Petrosyan and Zackharov [17], Plou [18],
Tolwinski [19], Zaccour et al. [2,3]. Several types of optimal behavior regulation
have been suggested such as incentive equilibrium [5,12], time-consistent impu-
tation distribution procedure [13,16], moratorium regimes [1,2,14], prohibited
for exploitation areas [13] and others.

Some resource management problems involve periodic processes when a nat-
ural resource is exploited over a certain period of time, and then a time period
for resource recovery or moratorium regime [2] is established. The matter of
environmental concernment is the balance between time intervals of exploitation
and recovery for sustained resource usage.

Such periodic exploitation processes are wide spread in harvesting problems.
For example, in lake Onego in 2004, the moratorium for exploitation of the Shuya
salmon population was withdrawn. Salmon fishing has become popular among
fishing firms in northwestern Russia. However, in 2010, the size of salmon popula-
tion that was about a hundred tons of fish according to official statistics, began to
decline very sharply. Already by 2014, it reached, according to the data of Karelian
harvesting agency, forty tons. The catch, primarily illegal, significantly exceeded
reproduction. Therefore, in 2015, a new edition of the fishing rules introduced a
new moratorium for salmon exploitation. Similar problems arise the forest man-
agement issues and other renewable resource exploitation processes.

The main goal of this paper is to determine the ratio between exploitation
and recovery periods depending on the natural environment parameters and the
exploitation load in order to maintain the sustainable nature resource evolution.
For that purpose a dynamic bioresource management problem (harvesting prob-
lem) with many players and compound planning horizon is investigated. Both
egoistic (noncooperative) and coordinated players’ behaviors are investigated.
The obtained conditions linking the values of exploitation and recovery periods
allow to establish optimal for renewable resource evolution moratorium regimes.

Further exposition has the following structure. Section 2 describes the main
model where the planning horizon is divided into the periods of exploitation
and recovery. Two-periods dynamic resource management problem is presented
in Sect. 3 while Sect. 4 describes the infinite horizon problem with interchanging
periods of exploitation and recovery. The ratio between exploitation and recov-
ery periods is determined for both models in noncooperative and coordinated
settings. Finally, Sect. 5 provides the basic results and their discussion.

2 Main Model

Consider a renewable natural resource evolving according to

x′(t) = f(x(t)) , x(0) = x0 , t ∈ (0,∞) , (1)

where x(t) ≥ 0 denotes the resource stock at time t ≥ 0, f(x) is the resource
natural growth function.

A
ut

ho
r 

Pr
oo

f



Dynamic Resource Management Problem 3

Let N = {1, . . . , n} players exploit a common resource during time period
t ∈ [0, T ]. The state dynamics takes the form

x′(t) = f(x(t)) − u1(t) − . . . − un(t) , x(0) = x0 , t ∈ [0, T ] , (2)

where ui(t) ≥ 0 gives the exploitation rate of player i at time t, i ∈ N .
Then, the moratorium for exploitation is established during time interval

(T, T +τ ] when the resource recovers and evolves according to the dynamics (1).
Section 3 considers only two periods of exploitation and recovery while Sect. 4
describes a periodic exploitation process where after the moratorium the players
continue resource usage till the next recovery period and so on.

The payoff functions of the players on a finite planning horizon [0, T ] have
the form

Ji(x, u1, . . . , un) =
∫ T

0

e−ρtgi(x(t), u1(t), . . . , un(t)) dt , (3)

where gi(·) ≥ 0, i ∈ N, are the instantaneous payoff functions, ρ ∈ (0, 1) denotes
the discount factor.

For sustainable resource evolution we suppose that after the recovery period
the size of the population shouldn’t be less than the initial one x0

1. The main
goal of this paper is to determine the ratio between exploitation and recovery
periods (T and τ) depending on the environmental and economical parameters.

Linear natural resource growth function as well as quadratic instantaneous
payoff functions are considered in the next sections. The noncooperative (ego-
istic) case where each player wishes to maximize individual payoff (3) and the
coordinated one where the players combine their exploitation rates and optimize
the joint payoff are investigated.

3 Two-Periods Model

We begin with two-periods model where players exploit the resource during
time interval [0, T ] and the resource recovers during time interval (T, T +τ ]. The
main goal is to determine the conditions linking the values of exploitation and
recovery periods (T and τ) in order to maintain the sustainable resource usage.
The conditions for noncooperative and coordinated cases are constructed and
compared.

Let N = {1, . . . , n} players exploit a natural renewable resource during time
period t ∈ [0, T ]. The evolution of the resource takes the form

x′(t) = εx(t) − u1(t) − . . . − un(t) , x(0) = x0 , t ∈ [0, T ] , (4)

1 The results obtained in the paper are naturally extended for the case when the
desired size of the population has the form kx0 for any k ∈ (−∞, ∞). The dependence
on x0 is induced by the fact that the only information that the regulator possesses
at the beginning of the planning period is the initial size of the population.
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4 V. Mazalov and A. Rettieva

where x(t) ≥ 0 denotes the resource stock at time t ≥ 0, ε ≥ 1 denotes the
natural birth rate and ui(t) ≥ 0 gives the exploitation rate of player i at time t,
i ∈ N .

During the recovery period a renewable resource evolves according linear
dynamics

x′(t) = εx(t) , x(0) = x0 , t ∈ [T, T + τ ] . (5)

Each player wishes to maximize the revenue from resource sales and to min-
imize the exploitation costs. Assume that the players have the same market
prices and costs that depend quadratically on the exploitation rate. The payoff
functions of the players take the forms

Ji(x, u1, . . . , un) =
∫ T

0

e−ρt[pui(t) − hui(t)2] dt , (6)

where p ≥ 0 is the market price of the resource, h ≥ 0 indicates the exploitation
cost, and ρ ∈ (0, 1) denotes the discount factor. Further assume that ε ≥ nρ (see
Proposition 1).

Due to the symmetry of the instantaneous payoff functions dividing (6) by p
and denoting c = h/p gives the players payoff functions in the form

Ji(x, u1, . . . , un) =
∫ T

0

e−ρt[ui(t) − cui(t)2] dt . (7)

3.1 Noncooperative Behavior

First, we consider noncooperative behavior and construct the Nash equilibrium
strategies uN

i that satisfy Nash inequalities

Ji(x, uN
1 , . . . , uN

i−1, ui, u
N
i+1, . . . , u

N
n ) ≤ Ji(x, uN

1 , . . . , uN
n ) ∀ui ∈Ui =[0,∞), i∈N.

Note, that the Nash equilibrium will be constructed in the feedback form ui(t) =
ui(x(t)), i ∈ N .

Proposition 1. The Nash equilibrium strategies in problem (4), (5), (7) have
the form

uN
i (x) =

2ε − ρ

2n − 1
x − ε − nρ

2εc(2n − 1)
(8)

and the resource size is given by

xN (t) =
n

2εc
+

(
x0 − n

2εc

)
e− ε−nρ

2n−1 t , t ∈ [0, T ] . (9)

Proof. To construct an equilibrium we apply dynamic programming principle
and construct Hamilton-Jacobi-Bellman (HJB) equations. Since players are sym-
metric assume, that all the players except the player i use feedback strategies
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Dynamic Resource Management Problem 5

uj(x) = φ(x), j ∈ N , j �= i and find the player i’s optimal behavior. To max-
imize the individual payoff (7) the player i’s value function Vi(x, t) satisfy the
next HJB equation:

ρVi(x, t) − ∂Vi

∂t
= max

ui

{
ui − cu2

i +
∂Vi

∂x
(εx − ui − (n − 1)φ(x))

}
. (10)

The solution of (10) will be constructed in quadratic form

Vi(x, t) = Vi(x) = Aix
2 + Bix + Di .

Substitution to (10) gives

ρAix
2 +ρBix+ρDi = max

ui

{
ui −cu2

i +(2Aix+Bi)(εx−ui −(n−1)φ(x))
}

(11)

which yields

ui(x) = −Ai

c
x +

1 − Bi

2c
. (12)

The symmetry of the problems lead to the symmetry of the strategies ui(x) =
φ(x), i ∈ N . Substituting to (11), the system to define parameters becomes

⎧⎨
⎩

ρAi = (2n−1
c A2

i + 2εAi) ,
ρBi = (2n−1

c AiBi − n
c Ai + εBi) ,

ρDi = (Bi−1)((2n−1)Bi−1)
4c ,

which yields

Ai = −c(2ε − ρ)
2n − 1

, Bi =
n(2ε − ρ)
ε(2n − 1)

, Di =
(ε − nρ)(n(2ε − ρ) − ε)

4ε2cρ(2n − 1)
.

As Ai ≤ 0, to have the nonnegative payoff for player i it is necessary the top
of the parabola Aix

2 + Bi + Di to lie above the X-line. The abscissa of the top
is equal x̄ = n

cε , hence the ordinate takes the form

ȳ = Ai
n2

c2ε2
+ Bi

n

cε
+ Di = Di .

It yields that Di should be nonnegative that is the fact when ε ≥ nρ.
The noncooperative equilibrium strategies become

uN
i (x) =

2ε − ρ

2n − 1
x − ε − nρ

2εc(2n − 1)
, i ∈ N .

Substituting (8) into the state dynamics corresponding to the exploitation
regime (4), we get

x′(t) = −ε − nρ

2n − 1
x(t) +

n(ε − nρ)
2εc(2n − 1)

, x(0) = x0 . (13)

The solution of (13) takes the form

xN (t) =
n

2εc
+

(
x0 − n

2εc

)
e− ε−nρ

2n−1 t , t ∈ [0, T ] .
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6 V. Mazalov and A. Rettieva

3.2 Coordinated Behavior

To coordinate the resource usage the players combine their exploitation rates
and optimize the joint payoff function that takes the form

J(x, u1, . . . , un) =
∫ T

0

e−ρt[
n∑

j=1

uj(t) − c
( n∑

j=1

uj(t)
)2

] dt . (14)

Proposition 2. The coordinated strategies in problem (4), (5), (14) have the
form

uc
i (x) =

2ε − ρ

n
x − ε − ρ

2nεc
(15)

and the resource size is given by

xc(t) =
1

2εc
+

(
x0 − 1

2εc

)
e−(ε−ρ)t , t ∈ [0, T ] . (16)

Proof. Applying HJB equation similar to Proposition 1 we construct coordinated
behavior. Note that the joint payoff function takes the form

V (x, t) = V (x) = Ax2 + Bx + D ,

where

A = −c(2ε − ρ) , B =
(2ε − ρ)

ε
, D =

(ε − ρ)2

4ε2cρ
.

3.3 Sustainable Resource Exploitation

For sustainable resource evolution after the recovery period the size of the pop-
ulation shouldn’t be less than the initial one. Denote the resource size achieved
at the end of the moratorium regime lasting for τN time steps in noncooperative
case or τ c steps in the coordinated one as xN (T + τN ) or xc(T + τ c). According
to the condition for sustained usage mentioned above the next equality should
be fulfilled:

xN (T + τN ) = xc(T + τ c) = x0 . (17)

Since during the recovery period the population evolves according to dynam-
ics (5) the condition (17) becomes

xN (T )eετN

= xc(T )eετc

= x0 . (18)

Consider the sustainable condition for noncooperative case. According to (9)
it takes the form

( n

2εc
+

(
x0 − n

2εc

)
e− ε−nρ

2n−1 T
)
eετN

= x0 (19)

which yields that the time period for resource recovery shouldn’t be less that

τN =
1
ε

ln
( 2cεx0

(2cεx0 − n)e− ε−nρ
2n−1 T + n

)
. (20)
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Dynamic Resource Management Problem 7

As the dynamics (4) and (5) can describe real fish population possess the
huge sizes we consider the condition (20) for large x0. Under this assumption it
gives the ratio between exploitation and recovery periods in the form

τN

T
≈ ε − nρ

ε(2n − 1)
. (21)

Now consider the sustainable condition for the coordinated case. According
to (16) it takes the form

( 1
2εc

+
(
x0 − 1

2εc

)
e−(ε−ρ)T

)
eετc

= x0 (22)

which yields that the time period for resource recovery shouldn’t be less that

τ c =
1
ε

ln
( 2cεx0

(2cεx0 − 1)e−(ε−ρ)T + 1

)
. (23)

Again, for large x0 the condition (23) gives the ratio between exploitation
and recovery periods in the form

τ c

T
≈ ε − ρ

ε
. (24)

Theorem 1. The time period for resource recovery in noncooperative case is
less than in the coordinated one.

Proof. Comparing (21) and (24) observe that

τ c − τN =
(2ε − ρ)(n − 1)

ε(2n − 1)
T ≥ 0 .

Hence, the noncooperative behavior is better for population state. This obser-
vation differs from the cooperation preference in the “fish wars” model as the
population density 0 ≤ x ≤ 1 instead of the size of the population was investi-
gated there.

4 Model with Many Periods

Now, consider the case when the periods of exploitation and recovery are
repeated many times. As above, the state dynamics (4) correspond to the period
of exploitation, while (5) – to the period of recovery.

In this model, the sequence of events is as follows: players exploit the resource
for time interval t ∈ [0, T ]. Then, the recovery period is implemented for t ∈
(T, T + τ ], during which the players get zero payoffs. At t = T + τ , the stock
level is back to the desired level x0, and the players can again exploit the resource.
Hence, the players’ planning horizon is infinite and the payoff functions take the
form

Ji(x0, u) =
∫ ∞

0

e−ρt(ûi(t) − cûi(t)2) dt , (25)
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8 V. Mazalov and A. Rettieva

where

ûi(t) =
{

ui(t), t ∈ [k(T + τ), (k + 1)T + kτ ],
0, t ∈ ((k + 1)T + kτ), (k + 1)(T + τ)], k = 0, 1, . . . .

Since after the recovery period the resource size is equal to the initial one x0

player i’s payoff in the game where the moratorium regime is firstly applied at
t = T is

Ji(x0, u) =
∫ T

0

e−ρt(ui(t) − cui(t)2) dt + e−ρ(T+τ)Ji(x0, u) ,

which yields

Ji(x0, u) =
1

1 − e−ρ(T+τ)

∫ T

0

e−ρt(ui(t) − cui(t)2) dt (26)

with state dynamics (4) for t ∈ [0, T ] and (5) for t ∈ (T, T +τ ]. In noncooperative
case player i ∈ N maximizes (26) with respect to ui and under coordination the
players wish to maximize the joint payoff with combined exploitation rates.

As before, we consider both types of players’ behavior and construct the
equilibrium strategies in feedback form ui(t) = ui(x(t)), i ∈ N .

4.1 Noncooperative Behavior

First, define the Nash equilibrium in the feedback strategies when each player i
maximizes individual payoff (26).

Proposition 3. The Nash equilibrium strategies in problem (4), (5), (26) have
the form

uN
i (x) =

2ε − ρ(1 − e−ρ(T+τN ))
2n − 1

x − ε − nρ(1 − e−ρ(T+τN ))
2εc(2n − 1)

(27)

and the resource size is given by

xN (t) =
n

2εc
+

(
x0 − n

2εc

)
e− ε−nρ(1−e−ρ(T+τN ))

2n−1 t , t ∈ (0,∞) . (28)

Proof. To construct an equilibrium we apply HJB equation again. Since players
are symmetric assume, that all the players except the player i use feedback
strategies uj(x) = φ(x), j ∈ N , j �= i and find the player i’s optimal behavior.
To maximize the individual payoff (26) the player i’s value function Vi(x, t)
satisfy the next HJB equation:

ρVi(x, t) − ∂Vi(x, t)
∂t

=
1

1 − e−ρ(T+τN )
max

ui

{
ui − cu2

i +
∂Vi(x, t)

∂x
(εx − ui − (n − 1)φ(x))

}
. (29)
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Dynamic Resource Management Problem 9

As before we seek the value function in quadratic form

Vi(x, t) = Vi(x) = Aix
2 + Bix + Di .

Similarly to Proposition 1 we get

ui(x) = −Ai

c
x +

1 − Bi

2c

and

Ai = −c(2ε − ρ(1 − e−ρ(T+τN )))
2n − 1

, Bi =
n(2ε − ρ(1 − e−ρ(T+τN )))

ε(2n − 1)
,

Di =
−(n − 1)2ε2 + n2(ε − ρ(1 − e−ρ(T+τN )))

4cρε2(1 − e−ρ(T+τN ))
.

Hence, the noncooperative equilibrium strategies become

uN
i (x) =

2ε − ρ(1 − e−ρ(T+τN ))
2n − 1

x − ε − nρ(1 − e−ρ(T+τN ))
2εc(2n − 1)

.

Substituting (27) into the state dynamics corresponding to the exploitation
regime (4) we get

x′(t) = −ε − nρ(1 − e−ρ(T+τN ))
2n − 1

x(t) +
n(ε − nρ(1 − e−ρ(T+τN )))

2εc(2n − 1)
, x(0) = x0 .

(30)
The solution of (30) takes the form

xN (t) =
n

2εc
+

(
x0 − n

2εc

)
e− ε−nρ(1−e−ρ(T+τN ))

2n−1 t .

4.2 Coordinated Behavior

Now, define the coordinated equilibrium in the feedback strategies when players
maximizes the joint payoff with combined exploitation rates:

J(x0, u) =
1

1 − e−ρ(T+τ)

∫ T

0

e−ρt[
n∑

i=1

ui(t) − c
( n∑

i=1

ui(t)
)2

] dt . (31)

Proposition 4. The coordinated strategies in problem (4), (5), (31) have the
form

uc
i (x) =

2ε − ρ(1 − e−ρ(T+τc))
n

x − ε − ρ(1 − e−ρ(T+τc))
2nεc

(32)

and the resource size is given by

xc(t) =
1

2εc
+

(
x0 − 1

2εc

)
e−(ε−ρ(1−e−ρ(T+τc)))t , t ∈ (0,∞) . (33)
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10 V. Mazalov and A. Rettieva

Proof. Applying HJB equation similar to Proposition 3 we construct cooperative
behavior.

Note that the joint payoff function takes the form

V (x, t) = V (x) = Ax2 + Bx + D ,

where

A = −c(2ε − ρ(1 − e−ρ(T+τc))) , B =
2ε − ρ(1 − e−ρ(T+τc))

ε
,

D =
(ε − ρ(1 − e−ρ(T+τc)))2

4ε2cρ(1 − e−ρ(T+τc))
.

4.3 Sustainable Resource Exploitation

As before assume that for sustainable resource evolution after the recovery period
the size of the population should be equal to the initial one x0. For both types
of players’ behavior the corresponding condition take the form

xN (T )eετN

= xc(T )eετc

= x0 . (34)

Consider the sustainable condition for noncooperative case. According to (28)
it takes the form

( n

2εc
+

(
x0 − n

2εc

)
e− ε−nρ(1−e−ρ(T+τN ))

2n−1 T
)
eετN

= x0 (35)

which yields for large x0 the ratio between exploitation and recovery periods in
the form

τN

T
≈ ε − nρ

ε(2n − 1)
+

1
ρT

W
( ρ2nT

ε(2n − 1)
e− ρn(2ε−ρ)T

ε(2n−1)

)
, (36)

where W (·) is the Lambert function.
Now consider the sustainable condition for the coordinated case. According

to (33) it takes the form

( 1
2εc

+
(
x0 − 1

2εc

)
e−(ε−ρ(1−e−ρ(T+τc)))T

)
eετc

= x0 (37)

which yields (for large x0) the ratio between exploitation and recovery periods
in the form

τ c

T
≈ ε − ρ

ε
+

1
ρT

W
(ρ2 T

ε
e− ρ(2ε−ρ)T

ε

)
. (38)

Theorem 2. The time period for resource recovery in noncooperative case is
less than in the coordinated one for the model with many periods.
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Dynamic Resource Management Problem 11

Proof. Let us compare (36) and (38). From (35) and (37) (for large x0) we get

τ c = T (
ε − ρ

ε
+

ρ

ε
e−ρ(T+τc)) ,

τN = T (
ε − nρ

ε(2n − 1)
+

ρn

ε(2n − 1)
e−ρ(T+τN )) ,

which yields

τ c − τN =
(2ε − ρ)(n − 1)

ε(2n − 1)
T +

Tρe−ρ(T+τN )

ε(2n − 1)
(
(2n − 1)e−ρ(τc−τN ) − n

)
. (39)

The solution of (39) can be also obtained via Lambert function in the next
form

τ c − τN =
T

ε(2n − 1)
(
(2ε − ρ)(n − 1) − ρne−ρ(T+τN )

)

+
1
ρ
W

(ρ2T

α
e−ρ(T+τN )e− ρ((2ε−ρ)(n−1)−ρne−ρ(T+τN ))

ε(2n−1) )
)

. (40)

As the Lambert function is positive for nonnegative argument and
(2ε − ρ)(n − 1) − ρne−ρ(1+τN ) is larger that ρn(1 − e−ρ(1+τN )) > 0 (40) yields
that

τ c − τN ≥ 0 .

5 Conclusions

Dynamic game related to resource management problem (renewable resource
exploitation process) is considered. The evolution of the resource and exploita-
tion processes are assumed to be periodic. Namely, the periods of extraction
of the renewable resource are interchanged with recovery periods in order to
maintain the sustained resource usage.

The desired resource size after the recovery period is assumed to be equal to
the initial one for long-term exploitation. First, the model with one extraction
and one recovery periods are considered. Then, the extension with many rotated
exploitation periods and moratorium regimes is presented. Both egoistic (nonco-
operative) and coordinated players’ behaviors are investigated. The conditions
linking the values of exploitation and recovery periods are derived analytically.
It is shown that the time period needed for resource recovery in noncooperative
case is less than in the coordinated one. The obtained ration between exploitation
and recovery periods allow to establish optimal for renewable resource evolution
moratorium regimes.

Note that the solutions are obtained under assumption that the value of
exploitation period T is externally given. The problem of optimal extraction
period size determination in order to maintain sustained exploitation process is
planned for near future work.
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