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Abstract. The gambler’s ruin problem is studied. At each of n steps, AQ1

the probability that the player wins at the next step depends on the
win/lose ratio in previous steps. The player’s payoff and the asymptotic
formula for large game durations were determined. The numerical results
of payoff simulation for different n values are reported.
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1 Introduction

This paper considers the following multistage model in discrete time. A random
walk related to the ruin problem [1,2] is being monitored. In such problems,
at each step, a particle moves one unit to the right on the integer number line
when the player wins and one unit to the left if the player loses. Accordingly, the
player’s capital increases or decreases by a unit depending on whether they win
or lose. The player’s initial capital is fixed and when the random walk reaches
this level, it is absorbed, which is considered as the moment of ruin of the player.
In the classical model, the random walk is symmetrical, which corresponds to
equal chances for a player to win and to lose. In this paper, we investigate a
model in which the probability of winning increases with an increase in the total
number of wins, and decreases with an increase in the number of losses. The
player’s goal is to augment his/her capital as much as possible without going
ruin.

Models with symmetric random walks were considered in different ways
depending on the player’s goal. Shepp [3] studied a problem in which the goal was
to maximize the value of the payoff per unit time. Tamaki [4] solved the prob-
lem of maximizing the probability of stopping on any of the last few maximum
values.
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Problems related to the sequence of dependent random variables were consid-
ered in various urn schemes. Tamaki [5], Mazalov, Tamaki [6] considered variants
of the problem of maximizing the probability of stopping at the largest value
in an urn scheme, where the probability of transition to the next state depends
on the trajectory at the previous steps. Shepp [3], Boyce [7], Ivashko [8] studied
setups in which the goal was to maximize the value of the trajectory. Variants
of balls-and-bins problem were considered by Tijms [9] and Ivashko [10]. Other
extensions of the gambler’s ruin problem to the case of multidimensional random
walks [11] and the case of two players [12] have been studied.

In this paper, we consider the ruin problem associated with a random walk,
where the probability of transition to the next state depends on the ratio of the
number of wins and losses at the previous steps: the more wins, the greater the
probability of success at the next step.

This paper is structured as follows. Section 2 gives the statement of gam-
bler’s ruin problem. Section 3 suggests an analytical solution of the problem for
different cases and asymptotic behavior for large values of n. Finally, in Sect. 4,
we present the findings and conclusions, and draft plans for the future.

2 Gambler’s Ruin Problem

The paper considers the ruin problem of the following form. A time interval n is
set at the beginning of the game. A random walk on the integer line starts from
0 and at each step i, (i = 1, 2, ..., n) moves +1 to the right or −1 to the left.
At the beginning of the game, the player can win or lose with equal probability

of
1
2
. In the following, the transition probabilities are calculated based on the

following assumptions. Suppose that at step i we are in the state (p, q), where
p is the quantity +1 and q is the quantity −1, i = p + q. We will move to the

state (p + 1, q) with the probability
p + 1

p + q + 2
and to the state (p, q + 1) with

the probability
q + 1

p + q + 2
.

Let X1, ...,Xn be a sequence of random variables that take the values +1

or −1 corresponding to the random walk considered above. Then, Si =
i∑

j=1

Xj ,

i = 1, 2, ..., n is the difference between +1 and −1 during i steps, i.e. the position
of the particle at time i, S0 = 0.

Moving over to coordinates on the plane (i, j): i = p+q and j = p−q, we find

that if Si = j, then Xi+1 takes the value +1 with a probability
1
2

(

1 +
j

i + 2

)

and the value −1 with a probability
1
2

(

1 − j

i + 2

)

, j = −i, i, i = 0, n.
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Harmonic Numbers in Gambler’s Ruin Problem 3

The value sequence X1, ...,Xn form a certain trajectory on the plane (see,
e.g., Fig. 1).

Fig. 1. Example of trajectory Sn for n = 10.

Let us describe the ruin problem associated with the specified random walk.
We take the case of a cautious gambler who uses the following strategy. He/she
leaves the game as soon as the number of losses exceeds the number of wins.
Otherwise, he/she continues playing until the end instant n. The payoff when
stopping at the time instant τ ≤ n is denoted as Sτ (difference between the
number of wins and the number of losses). Then, Sτ = −1 if the random walk
goes down to the level −1 or Sτ = Sn ≥ 0 if the game continues to the end time
instant.

The player’s payoff in this problem is

Vn = Un + Un,

where

Un =
n∑

j≥0

j · P{S1 > −1, S2 > −1, ..., Sn−1 > −1, Sn = j},

Un =
n∑

j=1

(−1)P{S1 > −1, ..., Sj−1 > −1, Sj = −1}

= (−1)
(

1 − P{S1 > −1, ..., Sn−1 > −1, Sn > −1}
)

.

Here, Un is the payoff when stopping at the last step at a non-negative value
(see Fig. 2), Un is the payoff when stopping at −1 (see Fig. 3).
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4 V. Mazalov and A. Ivashko

Fig. 2. Payoff when stopping at the last step at a non-negative value.

Remark 1. The probability P r
n of the player’s ruin with this strategy is

P r
n = P

{
inf

1≤j≤n
Sj < 0

}
=

n∑

j=1

P{S1 > −1, ..., Sj−1 > −1, Sj = −1}

= 1 − P{S1 > −1, ..., Sn−1 > −1, Sn > −1}.

To compute the payoff, we need to know the probability of an arbitrary
trajectory getting from point (0, 0) to point (n, j). Let us find this probability,
e.g., for the case where p successes were followed by n − p failures.

P (n, j) = P ((0, 0); (n, j)) =
p−1∏

i=0

1
2

(

1 +
i

i + 2

) n−1∏

i=p

1
2

(

1 − 2p − i

i + 2

)

,

where p =
n + j

2
is the number of successes.

Simplifying the last expression, we get

P (n, j) =
2

n + j + 2

n−1∏

i=p

2i − n − j + 2
2(i + 2)

=
1

p + 1

n−1∏

i=p

i − p + 1
i + 2

=
1

(
n

p

)

(n + 1)
.

This proves to be valid for any trajectory.
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Harmonic Numbers in Gambler’s Ruin Problem 5

Fig. 3. Payoff when stopping at −1.

Lemma 1. The probability of getting from point (0, 0) to point (n, j), where
n + j is even and −n ≤ j ≤ n, via any trajectory does not depend on the travel
path and equals

P (n, j) =
1

(
n

p

)

(n + 1)
, (1)

where p =
n + j

2
.

Proof. Let us prove the lemma by induction on n. For n = 1 and n = 2, formula
1 is validated directly. E.g., for n = 2 the point (2, 0) can be reached by two

paths via (1, 1) and (1,−1) with equal probability
1
6
, which coincides with (1)

since n = 2, p = 1, and P (2, 0) =
1

2 · 3
=

1
6
.

Assuming this statement has been proved for any n− 1, let us prove it for n.
Let j be such that n+ j is an even number and −n ≤ j ≤ n. There are two ways
for the trajectory to get to the point (n, j) from the initial point (0, 0): via the
point (n − 1, j − 1) and via the point (n − 1, j + 1) (see Fig. 4). The probability
of getting from the point (n − 1, j − 1) to the point (n, j) is

P
(
(n − 1, j − 1); (n, j)

)
=

1
2

(

1 +
j − 1
n + 1

)

,

and the probability of getting from the point (n − 1, j + 1) to the point (n, j) is

P
(
(n − 1, j + 1); (n, j)

)
=

1
2

(

1 − j + 1
n + 1

)

.
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6 V. Mazalov and A. Ivashko

Fig. 4. Trajectories of getting from point (0, 0) to point (n, j).

Then, according to the induction proposition for n − 1, the probability of
the trajectory connecting the points (0, 0) and (n, j) and traveling via the point
(n − 1, j − 1) will be

P1(n, j) =
1
2

(

1 +
j − 1
n + 1

)

· 1
(

n − 1
n+j−2

2

)

n

=
1

(
n

n+j
2

)

(n + 1)
.

Similarly, the probability of the trajectory connecting the points (0, 0) and
(n, j) and traveling via the point (n − 1, j + 1) will be

P2(n, j) =
1
2

(

1 − j + 1
n + 1

)

· 1
(

n − 1
n+j

2

)

n

=
1

(
n

n+j
2

)

(n + 1)
.

The two probabilities are equal and coincide with the expression (1). The
Lemma is proved.

To find Un and Un, we use the following lemma based on the geometrical
principle of trajectory reflection.

Lemma 2 (Feller [1]). If a > 0 and b > 0, then the number of paths
(s1, s2, ..., sn) such that s1 > −b, s2 > −b, ..., sn−1 > −b, sn = a equals

Nn,a − Nn,a+2b, where Nn,x =
(

n

p

)

, p =
n + x

2
.

Applying this lemma, we find that the number of trajectories from point
(0, 0) to point (n, j) lying in the non-negative half-plane is

Nn,j − Nn,j+2 =
(

n

p

)

−
(

n

p + 1

)

,
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Harmonic Numbers in Gambler’s Ruin Problem 7

where p =
n + j

2
.

Then, for j = p − q > 0 (q is the number of losses) the following holds

P{S1 > −1, S2 > −1, ..., Sn−1 > −1, Sn = j} =
((

n

p

)

−
(

n

p + 1

))

P (n, j)

=
(

n

p

)
p − q + 1

p + 1
P (n, j) = 2

(
n

n+j
2

)
j + 1

n + j + 2
P (n, j).

The payoff when stopping at the last step at a non-negative value is

Un =
n∑

j≥0

j · P{S1 > −1, S2 > −1, ..., Sn−1 > −1, Sn = j}

=
n∑

j>0

j · P{S1 > −1, S2 > −1, ..., Sn−1 > −1, Sn = j}

=
n∑

p−q>0

(p − q) ·
(

n

p

)
p − q + 1

p + 1
· 1
(

n

p

)

(n + 1)

=
n∑

p−q>0

(p − q)(p − q + 1)
(p + 1)(n + 1)

. (2)

The payoff when stopping at the value −1 has the form

Un = −
(

1 −
n∑

p−q>−1

p − q + 1
(p + 1)(n + 1)

)

. (3)

3 Payoff for Different Values of n

3.1 The Case of Even Values of n

For even n = p+q = 2m (j = p−q = 2s, p = m+s, s = −m, ...,m) the formulas
2 and 3 take the form

Un =
n∑

p−q>0

(p − q)(p − q + 1)
(p + 1)(n + 1)

=
m∑

s=1

2s(2s + 1)
(m + s + 1)(2m + 1)

= 2
(−m2 + m + 1

2m + 1
+ (m + 1)

( 2m∑

s=1

1
s

+
m+1∑

s=1

1
s

))

,

Un = −
(

1 −
n∑

p−q>−1

p − q + 1
(p + 1)(n + 1)

)

= −
(

1 − 1
2m + 1

m∑

s=0

2s + 1
m + s + 1

)

= −
m−1∑

s=0

(
1

2s + 1
− 1

2s + 2

)

= −
2m∑

s=m+1

1
s

= −
2m∑

s=1

1
s

+
m∑

s=1

1
s
.
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Then the payoff in this problem is

Vn = Un + Un

= 2
(−m2 + m + 1

2m + 1
+ (m + 1)

( 2m∑

s=1

1
s

+
m+1∑

s=1

1
s

))

−
2m∑

s=1

1
s

+
m∑

s=1

1
s

= −2m(m + 1)
2m + 1

+ (2m + 1)
( 2m∑

s=1

1
s

−
m∑

s=1

1
s

)

.

3.2 The Case of Odd Values of n

For odd values of n = 2m + 1 (j = 2s + 1, p = m + s + 1, s = −m, ...,m), the
formulas 2 and 3 have the form

Un =
n∑

p−q>0

(p − q) · p − q + 1
p + 1

1
n + 1

=
m∑

s=0

(2s + 1)(s + 1)
(m + s + 2)(m + 1)

= −m − 1 + (2m + 3)
2m+2∑

s=m+2

1
s
,

Un = −
(

1 −
n∑

p−q>−1

p − q + 1
(p + 1)(n + 1)

)

= −
(

1 −
m∑

s=0

s + 1
(m + s + 2)(m + 1)

)

= −
2m+2∑

s=m+2

1
s
.

Then the payoff in this problem is

Vn = Un + Un = −m − 1 + (2m + 3)
2m+2∑

s=m+2

1
s

−
2m+2∑

s=m+2

1
s

= −m − 1 + (2m + 2)
2m+2∑

s=m+2

1
s

= −m + (2m + 2)
2m+1∑

s=m+2

1
s
.

Thus, the following theorem has been proved.

Theorem 1. In the gambler’s ruin problem, the payoff Vn has the form
1) for even values of n = 2m

Vn = −2m(m + 1)
2m + 1

+ (2m + 1)
(

H2m − Hm

)

,

2) for odd values of n = 2m + 1

Vn = −m + (2m + 2)
(

H2m+1 − Hm+1

)

,

where Hm =
m∑

s=1

1
s

is a harmonic number.
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Harmonic Numbers in Gambler’s Ruin Problem 9

The results presented in the theorem show that the payoff in this ruin problem
contains harmonic numbers. Interestingly, harmonic numbers occur in optimal
stopping problems. To wit, in the best choice problem in [13], the probability of
choosing the best item from the set of items N using an optimal strategy k∗ is

equal to
k∗ − 1

N

(

HN−1 − Hk∗−2

)

.

For large values of n = 2m we have an approximation Hm ≈ ln(m). Then,

Vn = −2m(m + 1)
2m + 1

+ (2m + 1)
(

H2m − Hm

)

≈ −2m(m + 1)
2m + 1

+ (2m + 1) ln 2 ≈ m(ln 4 − 1) ≈ 0.193n.

Remark 2. For the probability of gambler’s ruin we get an asymptotic estimate

P r
n = H2m − Hm−1 ≈ ln 2 ≈ 0.693.

Although the probability of gambler’s ruin in the strategy under study is
high, his/her average payoff grows without limit with a growing number of game
rounds.

Remark 3. For a symmetric random walk, the probability of the gambler’s ruin

with the given strategy is approximately 1− 1√
πm

for even values of n = 2m. For

greater values of n, the probability of ruin tends to 1, contrary to the suggested
random walk.

Table 1 gives the numerical results for payoff values Vn at different values
of n.

Table 1. Player’s payoff for different values of n

n 2 3 4 5 6 7 8 9 10 100 200 300

Vn 0.167 0.333 0.517 0.7 0.888 1.076 1.266 1.456 1.647 19.010 38.324 57.638

4 Conclusion

We investigated the problem of gambler’s ruin during a given time interval n. It
is assumed that the probability of the player winning at each next step depends
on the ratio of wins and losses in the previous steps. The player continues playing
until the number of losses exceeds the number of wins. The player’s payoff in
this problem was determined for different values of game duration. The payoff
is related to harmonic numbers. An asymptotic formula was built for computing
the player’s payoff at large values of n.

Further studies may focus on other models related to the ruin problem based
on the suggested random walk scheme. Here the player’s goal is to increase
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10 V. Mazalov and A. Ivashko

his/her capital without going ruin. Or, in other words, it is required to stop the
random walk with the maximum possible value. Note that the payoff function
can have a different form, for example, it can be any arbitrary increasing function
of the stopped value. In particular, it would be interesting to examine the ruin
problem with two players where the game continues until one of the players is
ruined.
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