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SPECOM 2024 Preface

SPECOM is a conference with a long tradition that attracts researchers in the area of
speech technology, including automatic speech recognition and understanding, text–
to–speech synthesis, speaker and language recognition, as well as related domains like
digital speech processing, natural language processing, text analysis, computational par-
alinguistics, multi–modal speech, and data processing or human–computer interaction.
The SPECOM conference is an ideal platform for know–how exchange – especially for
experts working on Slavic languages (e.g. Russian, Serbian, Croatian, Polish, Bulgarian,
Czech, etc.) or other inflectional spoken languages – including both under–resourced
and regular well–resourced ones.

The International Conference on Speech and Computer (SPECOM) has become
a regular event since the first SPECOM, held in St. Petresburg, Russia, in October
1996. The SPECOM conference series was established more than 28 years ago by the
St. Petresburg Institute for Informatics and Automation of the Russian Academy of
Sciences (SPIIRAS).

In its long history, the SPECOM conference was organized alternately by the
St. Petresburg Federal Research Center of the Russian Academy of Sciences (SPC
RAS)/SPIIRAS and by the Moscow State Linguistic University (MSLU) in their home
towns. Furthermore, in 1997 it was organized by the Cluj–Napoca subsidiary of the
Research Institute for Computer Technique (Romania), in 2005 and 2015 by the Uni-
versity of Patras (in Patras and Athens, Greece), in 2011 by the Kazan Federal Univer-
sity (in Kazan, Russia), in 2013 by the University of West Bohemia (in Pilsen, Czech
Republic), in 2014 by the University of Novi Sad (in Novi Sad, Serbia), in 2016 by the
Budapest University of Technology and Economics (in Budapest, Hungary), in 2017
by the University of Hertfordshire (in Hatfield, UK), in 2018 by the Leipzig University
of Telecommunications (in Leipzig, Germany), in 2019 by the Bogaziçi University (in
Istanbul, Turkey), in 2020 and 2021 by SPC RAS/SPIIRAS (fully online), in 2022 by
the KIIT (in Gurugram, New Delhi, India), and in 2023 by the IIT/IIIT Dharwad (in
Hubli–Dharwad, Karnataka, India).

SPECOM 2024 was the 26th event in the conference series (https://specom2024.ftn.
uns.ac.rs), and the second time SPECOMwas in the Republic of Serbia. SPECOM 2024
was organized jointly by the Faculty of Technical Sciences at the University of Novi Sad
and theSchool ofElectrical Engineering at theUniversity ofBelgrade in cooperationwith
the Telecommunications Society of Serbia. The conference was held between the 25th
and 28th November 2024, in a hybrid format, mostly in–person in the capital of Serbia,
Belgrade, at the Crowne Plaza Hotel and online via video conferencing. Moreover,
SPECOM 2024 was organized jointly and in parallel with the 32nd Telecommunications
Forum TELFOR 2024 (https://www.telfor.rs/en). SPECOM 2024 was sponsored and
supported by the Science Fund of the Republic of Serbia, as well as by the International
Speech Communication Association (ISCA).

https://specom2024.ftn.uns.ac.rs
https://www.telfor.rs/en


vi SPECOM 2024 Preface

During SPECOM 2024, two keynote lectures were given by Dr.–Ing. Kraljevski
(Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Dresden, Germany)
jointly with his German colleagues on “Preserving Language Heritage Through Speech
Technology: The Case of Upper Sorbian”, as well as by Prof. Milan Sečujski jointly
with his colleagues from the Faculty of Technical Sciences, University of Novi Sad
and AlfaNum company, Novi Sad, Serbia on “Retrospective and Perspectives of TTS &
STT Technology Development and Implementation for South Slavic Under-Resourced
Languages”.

This volume contains a collection of submitted papers presented at SPECOM 2024,
which were thoroughly reviewed by members of the Program Committee and additional
reviewers consisting of over 80 experts in the conference topic areas. In total, 53 reg-
ular full papers out of 90 submissions to SPECOM 2024 were carefully selected by
the Program Committee members for oral presentation at the conference, as well as for
inclusion in these SPECOM 2024 proceedings. Theoretical and more general contribu-
tions were presented in common plenary sessions. Problem–oriented sessions as well
as panel discussions brought together specialists in niche problem areas with the aim of
exchanging knowledge and skills resulting from research projects of all kinds.

We would like to express our gratitude to all authors for providing their papers on
time, to themembers of the SPECOM2024 ProgramCommittee for their careful reviews
and paper selection, and to the editors and correctors for their hard work in preparing the
conference proceedings. Special thanks are due to the members of the SPECOM 2024
Organizing Committee for their tireless effort and enthusiasm during the conference
organization. We are also grateful to the Faculty of Technical Sciences at the University
of Novi Sad, the School of Electrical Engineering at the University of Belgrade, and the
Telecommunications Society of Serbia for organizing and hosting the 26th International
Conference on Speech and Computer, SPECOM 2024, in Belgrade.

November 2024 Alexey Karpov
Vlado Delić
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Abstract. The current study deals with the automatic analysis of verbal irony
using artificial neural networks. Detection of verbal irony is an important task
nowadays, because the effectiveness of the communication depends on the cor-
rect interpretation of sentences with an ambiguous meaning. In the case, when
the context is lacking, the correct sense can be understood not from the lexical
content, but through phonetic features, as well as through co-speech mimics and
gestures. Thus we accomplished a new research on the material of the multimedia
corpus of Russian ironic speech, which contains the detailed phonetic annotation
and irony evaluation by native listeners in perceptual auditory experiments. Two
types of automated analysis were accomplished: based on acoustic feature and
facial expression extraction. The use of the fully connected neural network and of
the Wav2Vec 2.0 model for the automatic irony detection in audio signal demon-
strated high level of irony recognition. We also tested on a part of the corpus the
recognition of ironic facial expressions in video signal using convolutional neural
network and the PyFeat library, which allowed us to conclude that this model can
give good results when we increase the amount of the material.

Keywords: Irony · Multimedia Speech Corpus · Artificial Neural Networks ·
Acoustic Feature Extraction · Facial Expression Analysis

1 Introduction

Nowadays the volume of information is rapidly growing, the task of effectively under-
standing the meaning of statements becomes urgent and complex. One of the challenges
in this context is the recognition of irony – a phenomenon that carries polysemy and
ambiguity. Irony is often confusing and difficult to understand even for humans, which
poses a major obstacle to modern speech recognition technologies [4, 10, 15, 18].

In this context, the use of neural network technologies represents a promising way
to solve the problem of recognizing any kind of acoustic and paralinguistic information
that influences the speech and gives the information about the correct way to recognize
the text of the utterance. Neural networks demonstrate remarkable ability to analyze
complex patterns in data. The development of deep learning methods makes it possible
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to effectively extract features from both texts and audio, which is becoming an important
element in the development of irony recognition systems. That is why it is important to
test the performance of the machine learning systems and compare it to the information
obtained by expert acoustic analysis and perceptual evaluation of ironic or non-ironic
meaning by native listeners.

The relevance of this study is enhanced in the context of the increased influence of
irony in online environments, where it is actively used in digital dialogues and sociocul-
tural expressions. The need for automated irony recognition tools becomes an important
task in the context of various fields, such as sentiment analysis, cybersecurity, reputation
management and many others, where it is important to correctly interpret and analyze
the emotional and semantic context of statements.

Thus, research on irony recognition using neural network technologies is becoming
important in light of modern requirements for information processing and automated
analysis of audio data. However, the analysis of text data using deep learningmethods has
been much better developed compared to the audio data [35]. This analysis is commonly
based on the messages in social media and networks, as well as on comments on online-
newspapers [2, 6, 11, 12, 16, 19, 20, 26, 27].

Although the acoustic analysis of ironic speech has been carried out [7, 17, 30],
irony detection using neural network technologies is still not a fully solved task. One
of the most important investigation in this field has been recently done [14] on the
material of English naturalistic conversational speech with the extraction of acoustic
features including various parameters of pitch, intensity, timing, voice quality and Mel-
Frequency Cepstral Coefficients (MFCC). The data obtained showed a high accuracy of
irony detection in the material.

Research on facial expressions using deep learning has mostly dealt with various
emotions [31], while irony was studied with eye-tracking methods [28]. At the same
time, the instruments of facial expression analysis in video signal are well elaborated
nowadays [3, 5, 8, 9, 13, 24, 25, 29, 32, 33].

In order to test the ANN for the automatic irony detection in Russian speech we used
the Multimedia corpus of Russian ironic speech described in [22, 23, 34].

2 Multimedia Corpus of Russian Ironic Speech

ReadingMaterial andExperimentalDesign. We recorded thematerial in an equipped
studio at the Department of Phonetics of Saint Petersburg State University. Native Rus-
sian speakers read the sets of short texts and long coherent texts. The texts were printed
on paper. One session of recordings had 40 min duration as maximum. The speakers
read one set of short texts (2–4 sentences long) and one coherent text. They were given
a prompt to read in the way they would pronounce such sentences in their everyday
life. The term “irony” was avoided in the reading material. The reader was supposed to
read a sentence with or without irony depending on the surrounding context. The con-
text itself was read as well. In order to help the speaker, we constructed short ironic and
non-ironic monologues and dialogues with homonymous target fragments. The recorded
material has been presented in 2 formats: one folder with whole contexts with the target
fragments inside and another folder with target fragments fully annotated in Praat (con-
taining detailed phonetic annotation, as well as native speaker’s evaluation of presence
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or absence of irony in the target fragment). The annotation is presented in TextGrid files
with the following levels:

• target phrase – level s,
• stressed vowel – level v,
• stressed syllable – level syl,
• context – level c.

The contexts folder contains the audio of the entire utterance with the appropriate
markup.

Perceptual Analysis. The target fragments extracted from the ironic and non-ironic
short texts were presented to listeners. There were no context or lexical marker of pres-
ence or absence of the ironic meaning. The listeners were suggested to choose the
corresponding written context for the audio fragment they heard.

Acoustic Analysis. The expert acoustic analysis of the target fragments evaluated by
speakers as ironic and non-ironic allowed finding salient perceptually relevant features of
irony. These features were of 2 types: increasing of values (stress vowel duration, inten-
sity level, melodic range, spectral density) or decreasing of the same values. The concrete
strategy depended on the sentence type and individual characteristics of a speaker. But the
most important was the contrast between ironic and non-ironic homonymous sentences
that was present in all speech material.

Audio Signal Modifications. After establishing acoustic cues of irony we studied the
role each of them plays in a complex acoustic signal. For this purpose we carried out the
experiments with modified stimuli. We modified the duration, the intensity level and the
melodic pattern of the original non-ironic stimuli to make them ironic, and vice-versa:
we turned ironic statements into neutral ones. There were isolated modifications of each
parameter and complexmodifications. The results of the perceptual analysis showed that
the melodic parameter change is necessary for a successful evaluation of the presence
or absence of irony. Also it was showed that the modification of ironic fragments into
non-ironic were less effective than turning non-ironic into ironic. Such result was due
to the voice quality, which was not modified.

Expert Analysis of Paralinguistic Cues. At this stage of the analysis we compared
gestures and mimics in ironic and non-ironic fragments using ELAN software. The data
obtained showed the difference in types of gestures and facial expressions in two types
of fragments. But a more precise synchronization of the video signal with the annotated
audio signal is possible only using themathematical models of analysis, whichwasmade
in the current study.

3 Automatic Irony Detection Based on Acoustic Features

The task of this part of the work was to develop and implement a method for recognizing
irony in speech using neural network technologies. The main focus was on creating an
effective acoustic model capable of automatically identifying ironic statements, which
is of great practical importance for improving the quality of speech data analysis.
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The object of this study is the process of recognizing irony in speech using neural
network technologies using the example of a corpus of ironic speech. How it can be
improved through preliminary acoustic analysis of the material.

The subject of this part of the study was to consider various acoustic characteristics
of irony and methods for their isolation, used in the field of neural network technologies.
We analysed the approaches and neural network architectures, which can be effective
in solving this problem, as well as what features of an ironic statement should be taken
into account when developing appropriate models.

The following tasks were accomplished:

1. Collecting and preparing data for training and additional training of irony recognition
models.

2. Assessing the effectiveness of existing speech recognition systems.
3. Studying and testing the Wav2Vec 2.0 model.
4. Collecting a dataset with the acoustic characteristics of the speech signal.
5. Training a fully connected irony recognition model.
6. Retraining the Wav2Vec 2.0 model to recognize irony.
7. Identifying the most effective algorithm for recognizing irony.

3.1 Material

For this part of the study we used recordings of 56 speakers (32 women and 24 men); we
selected only the target fragments (with no surrounding context) from 4499 audio files
with corresponding TextGrid files containing annotation in Praat Software. We didn’t
add the contexts, because only the target fragments contain the acoustic information,
which is necessary for the acoustic feature extraction in a dataset.

3.2 Methods

We conducted two experiments:

• Training a fully connected neural network based on a data frame with acoustic
characteristics.

• Additional training of the Wav2Vec 2.0 model based on audio files.

The first part of the work was to extract relevant acoustic sound characteristics that
are responsible for irony in speech and subsequent training of a fully connected neural
network for the binary irony/neutral classification task. Based on the findings of previous
studies, a number of phonetic characteristics were selected to form the training dataset:

• Duration of stressed vowel and syllable;
• Intensity of stressed vowel, syllable and phrase;
• Average pitch frequency;
• Melodic range;
• Speech rate.

To collect these characteristics, the Parselmouth library was chosen. MFCC (Mel-
Frequency Cepstral Coefficients) coefficients were also calculated using the LibROSA
library, which provides tools for working with audio files in Python and a convenient
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interface for extracting MFCC and other acoustic features from audio signals. The
resulting dataset is saved in csv format and contains 4499 rows and 24 columns with
features.

The pre-trained Russian language model “jonatasgrosman/wav2vec2-large-xlsr-53-
russian” was loaded. This is a pre-trained Wav2Vec 2.0 model available in the Hugging
Face Transformers library. It is designed for processing and analyzing audio data in
Russian.

3.3 Results

The results obtained during training and testing of the model can be seen in Table 1.
The resulting model showed 94% accuracy on the training set and 72% on the test set
(Table 2).

Table 1. Accuracy on training and test samples before and after Feature importance

Heading level Accuracy Accuracy (Feature Importance)

X_train 0.94 0.96

X_test 0.72 0.75

Table 2. Classification report of a trained fully connected neural network

Precision Recall f1-score

Irony 0.73 0.76 0.74

Non-irony 0.76 0.73 0.75

Accuracy 0.75

Next, it was decided to analyze the usefulness of the features that were transferred
to training (Feature Importance) in order to increase the recognition accuracy. One of
these methods is to calculate the average value of the absolute values of gradients for
features at each learning step. The results are displayed in Fig. 1, where features with
higher absolute gradient values will be considered more important. The X-axis on the
graph will display the importance value of the features, and the Y-axis will display the
corresponding features.

The data obtained show that the following signs were the least indicative: stressed
vowel intensity, syllable intensity, melodic range, 1, 11, 12, 13MFCC coefficients. These
characteristics were removed from the training dataset. Then themodel was trained again
and the accuracy increased to 96% on the training set and to 75% on the test set.

The pre-trainedWav2Vec 2.0model showed an accuracy of 72%on the test set, which
is comparable to the results of amodel based on a fully connected neural network. Table 3
shows the classification report.
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Fig. 1. The results of the analysis of the usefulness of features that were transferred to training
(Feature Importance) to increase recognition accuracy. Calculation of the average value of the
absolute values of gradients by features at each learning step

Table 3. Classification report for the retrained Wav2Vec 2.0 model

Precision Recall f1-score

Irony 0.79 0.69 0.71

Non-irony 0.75 0.66 0.70

Accuracy 0.73

To increase the percentage of irony recognition, it was decided to use the data about
perceptual evaluation of the corpus. Since when recording the corpus, the speaker could
pronounce the phrasemore or less ironically, itwas impossible not to take into account the
percentage of phrases that are not perceived as such, therefore, to increase the efficiency
of the algorithm, we used the additional perceptual checking of the target phrases.

Phrases identified as ironic or neutral bymore than 60%of respondents were selected
for further research. As a result, the original corpuswas reduced by 23%. The final corpus
of ironic speech included 3,464 audio recordings.

Using the final corpus as an example, two experiments were repeated with training
a fully connected neural network and additional training of the Wav2Vec 2.0 model.
Table 4 presents the final results of the study.
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Table 4. Comparative results of two experiments after perceptual evaluation of the corpus

Accuracy Before perceptual evaluation of
the corpus

After perceptual evaluation of
the corpus

Fully connected neural
network

0.75 0.82

Wav2Vec 2.0 0.72 0.80

4 Automatic Irony Detection Based on Facial Expressions

The detailed phonetic annotation that was carried out in the Multimedia Corpus of
Russian ironic speech allowed us to determine the boundaries of the linguistic units, in
which the listeners evaluated the presence or absence of ironic meaning. Thus, we could
use the audio files and the corresponding TextGrid files with annotation and synchronize
them with the video recordings that were made in parallel with the audio recordings. It
let us to find the same linguistic units within the video files and annotate them as ironic
or non-ironic. The goal was to test the model capacity to recognize irony and the related
emotions using facial feature analysis.

4.1 Material and Method

For this preliminary analysis of the model capacity we selected the recordings of 1 set of
short texts read by 9 speakers who differed by their strategies in using facial expressions
and gestures when expressing irony in speech. We based our choice on the results of our
studies of facial expressions and gestures using the ELAN software that we conducted
at previous stage of the corpus analysis [22].

PreparingData forANNTrainingwith thePyFeatLibrary. To train a neural network
capable of detecting fragments with irony from video signal, it is required to prepare
two types of datasets – training and verification. Based on the training data set, basic
training takes place, and a test set is needed to determine that the network is not retrained
to recognize only training data, but is able to recognize those that are not involved in
training.

As the training and verification datasets should contain the values of changes in facial
facial muscles (action units), the PyFeat library was used to obtain this information from
preprocessed video clips.

PyFeat provides a Detector class with which it is possible to detect changes in facial
muscles and save these values to a separate file. Thus, we created the make_prediction
function based on this concept. An example of a generated table based on the created
csv file is given below (Fig. 2). Using this method a set of 558 fragments of 20 frames
was assembled. Each video clip can be either with the presence of irony or without it.

Informativeness of the Training Data. Before starting to train the network, it is nec-
essary to analyse the received data in detail. Based on the obtained data on the change
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Fig. 2. The result of processing a 25-s video

Fig. 3. Graph of facial muscle changes (AU) in a 24-s video clip

in AU (action units) provided by the analysis with the PyFeat Library, it is possible to
plot the changes in facial facial muscles in the video fragment (Fig. 3).

For a more detailed definition of the manifestation of irony, graphs of changes in
various muscle groups within the homonymous fragments with and without irony were
compared (see Fig. 4).

We observed in many different video fragments the similar correlation between the
presence of irony in a video fragment and the fact that AU 01 (raising the inner part of
the eyebrows) and AU 02 (raising the outer part of the eyebrows) do not intersect with
AU 04 (lowering the eyebrows). We also noticed that the facial expressions begin to
change a little before the announcer was supposed to start pronouncing the ironic target
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Fig. 4. Illustration of difference between eyebrow mimic movements in utterances without irony
(left-hand example) and with irony (right-hand example); female speech; speaker ED.

fragment. Thus, we can conclude that the use of neural networks can reveal more patterns
associated with the correlation of irony and changes in AU from different muscle groups.

Using Keras to Create a Neural Network. At the first stage of our work we defined a
scheme for building a neural network was defined (Fig. 5):

Fig. 5 Architecture of the neural network

Convolutional 2D layers serve as the implementation of convolutional layers, and
a maximum-based pooling layer is located between them. When compiling the model,
Adam is used as an optimizer, while the loss function is poisson or “poisson distribution”.
This loss function has experimentally proved to be the most effective. The summary
method was also used, which allowed us to output general information about the created
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network at the compilation stage, then the number of network parameters, the structure
of the layers and the change in the output form were displayed.

Then we prepared the data for training and verification, and started the learning pro-
cess. The data_path value or the “data path” for training was passed to the train_network
method. Before training the network, all files along the specified path were processed
and for each set of information about changes in facial muscles, the value of the presence
or absence of irony was adjusted.

4.2 Results of Training Irony Recognizer

Before training, we divided the data set into two – training (“Train”) and verification
(“Test”). First, the networkwas trained on information fromonly 4 speakers – two female
and two male, while all data about other speakers was placed in a test set. As a result of
the training of the ANN during 20 epochs, the following data were obtained (Fig. 6).

Fig. 6. Data on network training during 20 epochs (epochs 11–20 are displayed)

The accuracy of the ANN on the training data reached 87%, on the verification data –
64% (Fig. 35). The very fact that training a neural network based on data containing
changes in facial muscles, compared with the presence of irony in speech of only 4
speakers, is enough for the network to determine 64% correctly the presence of irony in
speech of the other 5 speakers; this reveals the potential of deep learning in the studied
field.

Then we changed the ratio of training data to verification data from 4 to 5 to 6 to
3, which increased the accuracy of the verification data, preventing the network from
getting hung up on specific values (Fig. 7).

The shift in the data ratio had its effect. Despite the fact that the accuracy on the
training data was only 80%, the accuracy on the verification data has already become
65%, while no changes have been made to the network architecture.

Thus, the results of the ANN work using convolutional layers showed that such an
expressive feature of speech as irony can be associated with the mimic components of
speech, namely changes in the position of AU (action units). The network, “knowing”
how facial muscles behave when irony is manifested in four speakers, is already able to
recognize it in 64% of cases for completely different people.
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Fig. 7. Data on network training during 10 epochs with a biased data ratio

5 Discussion and Conclusion

When expressing irony, a person uses various strategies for its implementation. It was
observed both in audio and in video signals.

Acoustic characteristics can be used both individually and in combination. Some
acoustic cues, such as phrase intensity, tempo, and vowel duration, could lead to false
positives. For example, high intensity could be misinterpreted by the model as an indi-
cator of irony, even though irony may be expressed in a calmer manner of speech if the
person chose a different strategy for expressing it. In contrast, if irony was expressed
through increasing the duration of the stressed vowel and slowing down the tempo with-
out increasing intensity, the model might not recognize irony because it did not take
these important criteria into account.

The complex nature of ironymust be taken into account. In real life, its determination
is not always possible with absolute certainty and accuracy. Thus, despite the presence
of two classes, this problem is not a strictly binary classification. An important aspect
is the degree of confidence with which one can say that an expression is ironic or
not. Although features such as tempo, duration, and mel-cepstral coefficients are very
important in determining irony, their interaction with other less relevant features (e.g.,
melodic range) can introduce noise into the model. As a result, the model could produce
false positives based on features that do not provide significant information for detecting
irony.

At the same time we can assume that the convolutional architecture is a successful
way for building artificial neural networks to find a correlation between facial muscles
changes of a person during speech with the manifestation of such an expressive feature
as irony. Enlarging data will allow to precise the concrete action units that are the most
important for the automatic irony detection in the video signal.

The future analysis will be focused on the complex and nuanced combinations of
acoustic features with the co-speech facial expressions and their synchronization, as well
as on modeling individual strategies of irony implementation basing on the acoustic and
paralinguistic parameters of speaker’s verbal behavior.
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