Научное направление конференции: Физика квантовых структур

Измерение времени жизни экситона в двойной полумагнитной квантовой яме с помощью магнитооптического эффекта Керра

Г.Р. Дейсадзе¹, М.М. Афанасьев¹, Б.Ф. Грибакин², К.В. Кавокин², Ю.Г. Кусраев¹, В.К. Калевич¹

¹ФТИ им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия ²Санкт-Петербургский Государственный Университет, Санкт-Петербург, Россия E-mail: kalevich@solid.ioffe.ru

Аннотация

Магнитооптический эффект Керра, возникающий в слабом переменном магнитном поле в геометрии Фарадея, использован для измерения радиационного Γ_0 и нерадиационного Γ уширения экситонного резонанса в полумагнитной квантовой яме Cd_{0.984}Mn_{0.016}Te, отделенной от более широкой немагнитной ямы CdTe туннельно прозрачным барьером. Измеренные значения, выраженные в энергетических единицах, составили $\hbar\Gamma_0 \approx 114$ µeV и $\hbar\Gamma \approx 4.6$ meV. Большому значению Γ соответствует туннелирование носителей заряда из узкой ямы за время короче 0.1 ps.

Ключевые слова: полумагнитные полупроводниковые наноструктуры,

магнитооптический эффект Керра.

Экситонные эффекты оказывают существенное влияние на оптические свойства квантоворазмерных полупроводниковых структур и должны учитываться при проектировании перспективных устройств оптоэлектроники. Теория экситонных вкладов в спектры поглощения, отражения и фотолюминесценции [1], ключевыми параметрами которой являются радиационное, $\hbar\Gamma_0$, и нерадиационное, $\hbar\Gamma$, уширения экситонной

линии, хорошо развита и подтверждается многочисленными экспериментами [1-5]. В то же время, экспериментальное определение ключевых параметров экситонных резонансов в конкретных структурах может сталкиваться со значительными трудностями. В частности, в двойных квантовых ямах (КЯ), разделенных тонким барьером, туннелирование фотовозбужденных носителей из узкой ямы в широкую может приводить к существенному сокращению времени жизни экситонов [6] и уширению экситонного резонанса в узкой яме, что затрудняет использование стандартных методов спектроскопии люминесценции и отражения.

Настоящая работа посвящена измерению величин $\hbar\Gamma_0$ и $\hbar\Gamma$ в узкой (8 nm) квантовой яме из Cd_{0.984}Mn_{0.016}Te, отделенной от более широкой (20 nm) ямы из CdTe туннельно-прозрачным (1.6 nm) барьером из Cd_{0.88}Mg_{0.12}Te. Структура выращена методом МЛЭ на (100)-подложке из GaAs. Буферный слой из Cd_{0.88}Mg_{0.12}Te толщиной $\approx 4 \mu m$, отделяет широкую яму от подложки. Узкая яма, и, следовательно, вся структура прикрыта слоем Cd_{0.88}Mg_{0.12}Te толщиной 50 nm.

Недавние исследования спектров экситонного отражения в изолированных (одиночных) КЯ А2В6 показали, что радиационное уширение $\hbar\Gamma_0$ практически не зависит от ширины ямы и составляет несколько десятков µeV, см., например, данные для КЯ CdTe/CdZnTe в [5]. Величина нерадиационного уширения $\hbar\Gamma$ может меняться в широких пределах в зависимости от условий эксперимента. Так, экситонное рассеяние, связанное с резервуаром темных экситонов, сопровождается увеличением $\hbar\Gamma$ до нескольких сотен µeV [5]. Можно предположить, что в двойной КЯ этот эффект существенно ослабляется для экситонов в узкой яме за счет их ухода в широкую яму. С другой стороны, само по себе туннелирование в широкую яму должно приводить к увеличению $\hbar\Gamma$ за счет сокращения эффективного времени жизни экситонов. При этом радиационное уширение $\hbar\Gamma_0$ не должно существенно меняться.

Рис. 1. Спектр отражения исследованной структуры, измеренный в нулевом магнитном поле при температуре T = 6 K (сплошная линия). Вертикальные стрелки показывают резонансные длины волн для экситонов X_{WQW} и X_{NQW} в широкой и узкой ямах, штриховой прямоугольник показывает область возбужденных состояний в широкой яме. В качестве источника света использовалась лампа накаливания. Штриховая кривая представляет спектр отражения, рассчитанный по формуле (3) с учетом зависимости показателя преломления в эпитаксиальном слое $Cd_{0.88}Mg_{0.12}$ те от длины волны.

Экспериментально проверить эти предположения, применив обычно используемые для этой цели методы, основанные на измерении ширины экситонной линии в спектрах фотолюминесценции или пропускания, оказалось невозможным. Дело в том, что фотолюминесценция из узкой ямы не наблюдается вследствие быстрого туннелирования фотовозбужденных носителей заряда в широкую яму. Исследованная структура выращена на подложке из GaAs, поэтому она является непрозрачной для длин волн в области экситонного резонанса в узкой яме. Использовать стандартный метод отражения излучения лампы накаливания также оказалось затруднительным, поскольку экситонный резонанс в узкой яме сильно уширен за счет короткого времени жизни экситонов, а спектр отражения структуры сильно искажен в результате интерференции со светом, отраженным от GaAs подложки (Рис. 1).

Поэтому для измерения $\hbar\Gamma_0$ и $\hbar\Gamma$ мы воспользовались тем обстоятельством, что материал узкой квантовой ямы, Cd_{0.984}Mn_{0.016}Te, является магниторазбавленным

(полумагнитным) полупроводником, и использовали магнитооптический эффект Керра, который эффективен для изучения намагниченности и определения параметров экситонов в структурах на основе магниторазбавленных полупроводников [1,7]. Обменное взаимодействие носителей заряда с *d*-электронами ионов Mn²⁺ значительно усиливает расщепление спиновых состояний носителей и экситонов при приложении магнитного поля [7], что позволяет регистрировать магнитооптические эффекты даже в слабых магнитных полях порядка 1 G.

В основе использованного нами метода лежит то обстоятельство, что измеряемый в эффекте Керра малый угол поворота плоскости линейной поляризации отраженного луча равен $\theta = (I_1 - I_2)/2(I_1 + I_2)$, где I_1 и I_2 – интенсивности отраженных компонент, линейно поляризованных под углами +45° и -45° к плоскости поляризации падающего света, которые одновременно регистрируются фотодиодами 1 и 2, входящими в состав балансного фотоприемника [8]. Обычно угол θ мал, поэтому $I_1 \approx I_2$, и влияние нечувствительной к поляризации интерференционной компоненты отраженного света на измеряемый угол существенно подавлено.

Эффект Керра возникает из-за различия фаз амплитудных коэффициентов отражения от структуры световых волн, поляризованных по правому (r_+) и левому (r_-) кругу [1,9]. В условиях нашего эксперимента, когда вклад экситона в узкой квантовой яме в общий амплитудный коэффициент отражения структуры $r_0 = (r_+ + r_-)/2$ мал, керровский угол равен (см. главу 3 в [1]):

$$\theta = -\operatorname{Im}\left[\frac{r_{+} - r_{-}}{2r_{0}}\right].$$
(1)

При вычислении r_0 можно пренебречь вкладом квантовой ямы и учесть только отражение от поверхности структуры и от гетерограницы с подложкой. В результате с учетом формулы (3.242) в [1] получаем

$$r_{0} = -\frac{n-1}{n+1} \cdot \frac{1 - \frac{n+1}{n-1} |r_{m}| \exp(2i\varphi_{m0} + i\varphi_{m})}{1 - \frac{n-1}{n+1} |r_{m}| \exp(2i\varphi_{m0} + i\varphi_{m})} , \qquad (2)$$

где *n* – показатель преломления эпитаксиального слоя Cd_{0.88}Mg_{0.12}Te, $|r_m|$ и φ_m – модуль и фаза коэффициента отражения световой волны от границы с подложкой, $\varphi_{m0} = 2\pi nL/\lambda$ – набег фазы световой волны при проходе через эпитаксиальный слой толщиной *L*, λ – длина волны света в вакууме. Соответственно, коэффициент отражения по интенсивности равен

$$R = \left|r_{0}\right|^{2} = \left(\frac{n-1}{n+1}\right)^{2} \cdot \frac{1 + \left(\frac{n+1}{n-1}\right)^{2} \left|r_{m}\right|^{2} - 2\frac{n+1}{n-1} \left|r_{m}\right| \cos\left(2\varphi_{m0} + \varphi_{m}\right)}{1 + \left(\frac{n-1}{n+1}\right)^{2} \left|r_{m}\right|^{2} - 2\frac{n-1}{n+1} \left|r_{m}\right| \cos\left(2\varphi_{m0} + \varphi_{m}\right)}$$
(3)

Подгонка спектральной зависимости интенсивности отраженного от структуры света (Рис. 1) этой формулой позволяет определить значения $|r_m|$, φ_m и *L*.

Экситонные вклады в коэффициент отражения структуры для двух циркулярных поляризаций [10-11, см. также формулу (3.241) в [1]] даются следующим выражением:

$$r_{\pm} = r_{\pm}^{ex} \frac{4n}{(n+1)^2} \exp(2i\varphi_w) \left(\frac{1 + |r_m| \exp(2i\varphi_{mw} + i\varphi_m)}{1 - \frac{n-1}{n+1} |r_m| \exp(2i\varphi_{m0} + i\varphi_m)} \right)^2.$$
(4)

Здесь $r_{\pm}^{ex}(\omega) = i\Gamma_0 / [\omega_{0,\pm} - \omega - i(\Gamma_0 + \Gamma)], \omega$ – частота световой волны, $\omega_{0,\pm}$ – частоты экситонного резонанса для право и лево поляризованных компонент, Γ_0 и Γ – радиационное и нерадиационное уширения экситонного уровня, φ_w – набег фазы световой волны, отраженной от ямы, на пути от середины КЯ до поверхности структуры, φ_{mw} – набег фазы световой волны на пути между гетерограницей с подложкой и квантовой ямой [1]. В магнитном поле *B*, приложенном в геометрии Фарадея, $\omega_{0,\pm} = \omega_0 \mp (\omega_e + \omega_h)/2$, где расщепление экситонного уровня складывается из наведенных магнитным полем

расщеплений электронного и дырочного уровней $\hbar \omega_e$ и $\hbar \omega_h$ и равно $\hbar (\omega_e + \omega_h) = \hbar AB$. В полумагнитном полупроводнике величина A определяется s/p-d обменным взаимодействием электронов и дырок с ионами марганца и в линейном по магнитному полю приближении равна:

$$A = \frac{(P_e \alpha N_0 - P_h \beta N_0)}{\hbar} \cdot \frac{S(S+1)}{3} x_{eff} \frac{g_{Mn} \mu_B}{k_B (T+T_0)} , \qquad (5)$$

где $\alpha N_0 = 0.22 \text{ eV}$ и $\beta N_0 = -0.88 \text{ eV}$ – константы обменного взаимодействия электронов и дырок с ионами марганца, S = 5/2 и $g_{Mn} = 2$ – спин и *g*-фактор иона Mn, $T_0 = 0.54$ K и $x_{eff} \approx [0.265 \exp(-43.34x) + 0.735 \exp(-6.19x)]x = 0.013$ – феноменологические параметры, учитывающие антиферромагнитное обменное взаимодействие ионов марганца [7], x = 0.016 – содержание марганца в полумагнитной яме. Значения интегралов перекрытия квадратов волновых функций электрона и дырки с полумагнитной ямой $P_e = 0.71$ и $P_h = 0.73$ мы получили путем численного расчета, в котором учитывался как квантоворазмерный потенциал структуры [12], так и кулоновское взаимодействие электрона и дырки. Параметры полупроводниковых слоев взяты из работы [13].

Для увеличения чувствительности измерения мы использовали переменное магнитное поле $B(t) = B_1 \cos(\Omega t)$ и синхронное детектирование. В этом случае $\theta(\omega, t) = \theta_0(\omega) \cos(\Omega t)$, где при выполнении условия $\Gamma_0 \ll \Gamma$

$$\theta_0(\omega) = \frac{2n|D|}{n^2 - 1} \operatorname{Im} \left\{ \frac{i\Gamma_0 AB_1 \exp\left[2i\varphi_w + \arg\left(D\right)\right]}{\left(\omega_0 - \omega\right)^2 - \Gamma^2 - 2i\Gamma\left(\omega_0 - \omega\right)} \right\}$$
(6)

Здесь безразмерный комплексный множитель

$$D = \frac{\left[1 + |r_{m}|\exp(2i\varphi_{mw} + i\varphi_{m})\right]^{2}}{\left[1 - \frac{n-1}{n+1}|r_{m}|\exp(2i\varphi_{m0} + i\varphi_{m})\right] \cdot \left[1 - \frac{n+1}{n-1}|r_{m}|\exp(2i\varphi_{m0} + i\varphi_{m})\right]}$$
(7)

учитывает отражение от подложки.

Рис. 2. Экспериментальная (кружки) и расчетная (сплошная кривая) спектральные зависимости амплитуды керровского угла в области экситонного резонанса в полумагнитной квантовой яме в продольном магнитном поле $B(t) = B_1 \cos(\Omega t)$ при $B_1 = 0.8$ G, $\Omega = 130$ Hz и температуре T = 6 K.

Спектральная зависимость амплитуды керровского угла $\theta_0(\omega)$, измеренная в области экситонного резонанса в полумагнитной квантовой яме в продольном магнитном поле $B(t) = B_1 \cos(\Omega t)$ при температуре T = 6 K для $B_1 = 0.8$ G и $\Omega = 130$ Hz, показана кружками на Рис. 2. Эта зависимость имеет ярко выраженный резонансный характер. Ее аппроксимация с помощью формулы (6) (сплошная кривая) показала, что энергия экситонного резонанса $\hbar \omega_0 = 1.6531$ eV, радиационное уширение $\hbar \Gamma_0 \approx 114$ µeV, а нерадиационное уширение $\hbar \Gamma \approx 4.6$ meV. При таком соотношении Γ_0 и Γ наблюдаемая ширина резонанса определяется нерадиационным уширением, в то время как радиационное уширение задает его амплитуду.

Следует заметить, что видимая ширина экситонного резонанса может увеличиваться вследствие неоднородного уширения, обусловленного, например, технологическими флуктуациями ширины квантовой ямы. Однако в одиночных полумагнитных квантовых ямах аналогичного состава и такой же температуре кристалла неоднородное уширение экситонного резонанса составляет $\hbar\Gamma_{inh} \sim 0.7$ meV [14], что почти на порядок меньше измеренной нами величины $\hbar\Gamma \approx 4.6$ meV. Соответственно, влиянием неоднородного уширения на ширину резонанса и величины определенных в наших экспериментах параметров можно пренебречь. Поэтому можно сделать вывод, что в исследованной структуре с двойной квантовой ямой значительная ширина экситонного резонанса в узкой яме обусловлена быстрым туннелированием носителей заряда в широкую яму, характерное время которого $\tau = 1/2\Gamma \approx 0.1$ ps.

Таким образом, мы продемонстрировали потенциал магнитооптического эффекта Керра в качестве метода измерения параметров экситонного резонанса, в том числе излучательного и безызлучательного времен жизни. Метод позволяет исследовать экситонные состояния в структурах с короткими безызлучательными временами, где традиционные методы спектроскопии фотолюминесценции, пропускания и отражения могут быть неприменимы или неэффективны.

Благодарности

Авторы благодарны G. Karczewski за предоставление структуры для исследования.

Финансирование работы

Измерение эффекта Керра и спектров отражения выполнены (Г.Р.Д., М.М.А. и В.К.К.) в рамках проекта Российского Научного Фонда № 23-12-00205, Б.Ф.Г. и К.В.К. благодарят научный проект 122040800257-5 Санкт-Петербургского Государственного Университета за поддержку теоретических расчетов, анализ полученных результатов проведен при поддержке проекта РНФ № 22-12-00125 (Ю.Г.К.).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] E.L. Ivchenko, Optical spectroscopy of semiconductor nanostructures (Springer, 2007).
- [2] E.S. Khramtsov, P.S. Grigoryev, D.K. Loginov, I.V. Ignatiev, Yu.P. Efimov, S.A. Eliseev,
 P.Yu. Shapochkin, E.L. Ivchenko, M. Bayer, Phys. Rev. B, 99, 035431 (2019).
 DOI:10.1103/PhysRevB.99.035431
- [3] O.V. Borovkova, F. Spitzer, V.L. Belotelov, I.A. Akimov, A.N. Poddubny, G. Karczewski,
 M. Wiater, T. Wojtowicz, A.K. Zvezdin, D.R. Yakovlev, M. Bayer, Nanophotonics, 8(2),
 287 (2019). DOI.org/10.1515/nanoph-2018-0187
- [4] Д.Ф. Мурсалимов, А.В. Михайлов, А.С. Курдюбов, А.В. Трифонов, И.В. Игнатьев,
 ФТП, 55(11), 963 (2021). DOI: 10.21883/FTP.2021.11.51547.43
- [5] А.В. Михайлов, А.С. Курдюбов, Е.С. Храмцов, И.В. Игнатьев, Б.Ф. Грибакин,
 S. Cronenberger, D. Scalbert, М.Р. Владимирова, R. Andr'e, ФТП, 57(7), 603 (2023).
 DOI: 10.61011/FTP.2023.07.56837.23k
- [6] V. Agekyan, N. Filosofov, G Karczewski, A. Serov, I. Shtrom, A. Reznitsky, Journal of Physics: Conference Series, 2103, 012102 (2021). DOI:10.1088/1742-6596/2103/1/012102
- [7] Introduction to the physics of diluted magnetic semiconductors, eds. J. Kossut, J.A. Gaj, (Springer, 2010).
- [8] В качестве балансного фотоприемника был использован Nirvana Auto-balanced Photoreceiver (model 2007).
- [9] М.М. Глазов, Физика твердого тела, 54(1), 3 (2012).
- [10] C. Gourdon, V. Jeudy, M. Menant, D. Roditchev, Le Anh Tu, E.L. Ivchenko,G. Karczewski, Solid State Communication, **123**, 299 (2002).
- [11] C. Gourdon, G. Lazard, V. Jeudy, C. Testelin, E.L. Ivchenko, G. Karczewski, Appl. Phys. Lett., 82, 230 (2003). http://dx.doi.org/10.1063/1.1534617
- [12] E. Kirstein, N.V. Kozyrev, M.M. Afanasiev, V.N. Mantsevich, I.S. Krivenko,
 V.K. Kalevich, M. Salewski, S. Chusnutdinow, T. Wojtowicz, G. Karczewski,
 Yu.G. Kusrayev, E.A. Zhukov, D.R. Yakovlev, M. Bayer, Phys. Rev. B, 101, 035301
 (2020). DOI: 10.1103/PhysRevB.101.035301
- [13] A.A. Kiselev, E.L. Ivchenko, A.A. Sirenko, T. Ruf, M. Cardona, D.R. Yakovlev, W. Ossau, A. Waag, G. Landwehr, J. Cryst. Growth, 184-185, 831 (1998).
- [14] G.V. Astakhov, et al., Eur. Phys. J., B 24, 7 (2001). DOI: org/10.1007/s100510170016