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Precise individual addressing of single atoms in quantum registers formed by optical trap arrays is
essential to achieve high-fidelity quantum gates in neutral-atom quantum computers and simulators.
Two-qubit quantum gates are typically realized using coherent two-photon laser excitation of atoms
to strongly interacting Rydberg states. However, two-photon excitation encounters challenges in
individual addressing with tightly focused laser beams due to atom position uncertainty and the
spatial inhomogeneity in both Rabi frequencies and light shifts. In this work, we theoretically
demonstrate that the fidelity of individual addressing can be improved by employing coherent three-

photon laser excitation of Rydberg states. For a specific example of 5s1/2
Ω1−−→ 5p3/2

Ω2−−→ 6s1/2
Ω3−−→

np excitation in 87Rb atoms, we find that upon strong laser coupling in the second step (Rabi
frequency Ω2) and moderate coupling in the first and third steps (Rabi frequencies Ω1 and Ω3),
the three-photon Rabi frequency is given by Ω =Ω1Ω3/Ω2. If the spatial distributions of (Ω1Ω3)
and Ω2 are arranged to be identical, Ω becomes independent of atom position, even within very
tightly focused laser beams. This approach dramatically improves individual addressing of Rydberg
excitation for neighboring atoms in trap arrays compared to conventional two-photon excitation
schemes. Our findings are crucial for large-scale quantum registers of neutral atoms, where distances
between adjacent atoms should be minimized to ensure stronger Rydberg interactions and compact
arrangement of atom arrays.

PACS numbers: 32.80.Ee, 32.70.Jz, 32.80.Rm, 03.67.Lx

Neutral-atom-based quantum computers and simula-
tors represent a rapidly growing research field, which is
close to practical realization [1–5]. The main advantage
of this platform is its nearly unlimited potential for scal-
ability to very large numbers of qubits, represented by
single atoms trapped in optical dipole trap arrays [6].
Several recent studies have demonstrated quantum regis-
ters with thousands of qubits [7–9]. High-fidelity single-
qubit gates in atomic arrays have been demonstrated
both without individual addressing [10, 11] and with indi-
vidual addressing [12, 13], though with a slight reduction
in fidelity. Implementing two-qubit gates, which are es-
sential for a universal quantum computer, poses a greater
challenge. These gates rely on laser excitation to strongly
interacting Rydberg states and on the associated Ryd-
berg blockade effect [1–5, 14]. High-fidelity two-qubit
gates using spatially homogeneous laser beams for Ryd-
berg excitation have recently been demonstrated [15–22],
with fidelities reaching 0.997 [22]. These fidelities are
comparable to those achieved in superconducting [23] or
ion [24] qubits, which, however, have not yet been scaled
to thousands of qubits. Unfortunately, using tightly fo-
cused laser beams for individual addressing of single pairs
of atoms in the array reduces two-qubit gate fidelities
to around 0.95 [25]. This presents a significant obsta-

cle to building a universal quantum computer. With-
out individual addressing, coherent transport in atomic
arrays partially resolves this issue by controlling inter-
atomic interaction energy through adjustments in atom
spacing [17]. However, this approach requires constant
rearrangement of the atomic array for each quantum al-
gorithm, which is technically challenging.

The primary challenge in achieving higher fidelity with
neutral atoms is the finite atom temperature, typically in
the microkelvin range for optical dipole trap experiments.
While lower temperatures are possible through sideband
Raman cooling [26], laser excitation to Rydberg states
reheats the atoms to the microkelvin scale. Residual
thermal atom motion introduces inhomogeneity in the
Rabi frequency of Rydberg excitation when tightly fo-
cused laser beams are used, as the local laser field varies
with atom position within the beam. In two-photon exci-
tation schemes, spatially inhomogeneous light shifts that
depend on atom position also induce decoherence in Ryd-
berg excitation. To reduce inhomogeneity effects in two-
photon excitation, less focused laser beams are required,
which reduces single-qubit addressability and increases
cross-talk with neighboring qubits. Mitigating the cross-
talk requires increased spacing between adjacent atoms,
yet in large-scale quantum registers, minimizing atom
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distances is essential to ensure stronger Rydberg inter-
actions and a compact atomic array layout.

In this paper, we theoretically demonstrate the poten-
tial for dramatically improving the fidelity of individual
addressing and quantum gates by eliminating light shifts
and inhomogeneity effects within the framework of three-
photon excitation of Rydberg states. Several of our pre-
vious works have highlighted distinctive features of three-
photon schemes. For instance, we have shown that both
Doppler and recoil effects can be completely suppressed
in the geometry of three laser beams with a zero sum
of their wave vectors [27]. Figure 1(a) shows the three-
photon excitation scheme 5s1/2 → 5p3/2 → 6s1/2 →np in
87Rb atoms, previously used in our experimental studies
of Rydberg states [3, 28–33]. In our most recent work
[33], we observed three-photon Rabi oscillations in the
Rydberg excitation of a single 87Rb atom in an optical
dipole trap for the first time. To observe these Rabi os-
cillations, we applied a strong resonant radiation on the
second step, while the resonant radiations on the first
and third steps were set to moderate levels. Preliminary
theoretical analysis had shown that a strong coupling in
the second step induces ac Stark splitting of the inter-
mediate levels 5P3/2 and 6S1/2, and introduces effective
detunings on the intermediate transitions, ensuring co-
herence in the three-photon excitation.

To illustrate the key advantages of introducing the
auxiliary intermediate 6s1/2 state, we examine the three-
step ladder excitation of Fig. 1(a) with strong laser cou-
pling in the second step and compare its properties to
the two-photon excitation scheme 5s1/2→ 6p3/2→ns1/2
of Fig. 1(b), which is commonly used in quantum in-
formation processing experiments with Rydberg atoms
[15–17, 19, 20]. The corresponding two-photon linkage
diagram is depicted in Fig. 1(c), where the laser Rabi
frequencies Ω1,2(r) are functions of the radial coordinate
r of coaxial laser beams [see Eq. (7) below]. Far from
single-photon resonance, δ1 ≫ Ω1,2, the spatially inho-
mogeneous two-photon Rabi frequency Ω(r) and the two-
photon detuning ∆(r) [see Fig. 1(c)] are given [34] by

Ω=Ω1(r)Ω2(r)/(2δ1); ∆=[Ω2
2(r)− Ω2

1(r)]/(4δ1) . (1)

In further discussion of the three-photon scheme fea-
tures, we denote states 5s1/2, 5p3/2, 6s1/2, np in Fig. 1(a)
as states|1⟩, |2⟩, |3⟩, |4⟩ respectively [see the correspond-
ing linkage diagram in Fig. 1(e)]. For each intermedi-
ate single-photon transition j = 1, 2, 3 we denote the
respective detunings as δj and the Rabi frequencies as
Ωj = djEj/ℏ. Here dj are dipole moments of the single-
photon transitions and Ej are electric-field amplitudes
of the linearly polarized light fields. Due to the strong
laser radiation (Ω2≫Ω1,3) driving the second excitation
step, the corresponding strong ac Stark splitting of the
intermediate levels 5P3/2, 6S1/2 results in large effective
detunings ≃ Ω2/2 [see Fig. 1(d)], rendering these levels
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FIG. 1. (a) Three-photon [3, 28–33] and (b) two-photon
[15–17, 19, 20] excitation schemes of Rydberg nP , nS states
in 87Rb atoms with the corresponding linkage diagrams (e,d),
(c) in the rotating-wave approximation. The case of exact
resonances [δ1,2,3=0 in Eq. (3)] for all three lasers in frames
(d,e) and two-photon resonance with single-photon detuning
δ1 in frame (c) are presented. All intermediate states, with
lifetimes τ marked in pink, become virtual either due to the
high intensity (Ω2 ≫ Ω1,3) of the intermediate laser [frames
(e,d)] or due to the large (δ1 ≫ Ω1,2) single-photon detun-
ing [frame (c)]. Both the ground 5S1/2 and the Rydberg nS
states in frame (c) experience different ac Stark shifts (marked
in red), leading to a spatially inhomogeneous two-photon de-
tuning ∆(r) (1). In frame (e), a very strong laser coupling
between the intermediate states |2⟩, |3⟩ transforms them into
virtual |±⟩=(|2⟩±|3⟩)/

√
2 states as shown in frame (d). Due

to the resulting mirror-symmetric atomic states configuration,
each of the states |1⟩, |4⟩ experiences two identical ac Stark
shifts (indicated by the red vertical arrows) with opposite
signs, which makes the aggregate light shifts of states |1⟩, |4⟩
vanish for any choice of Rabi frequencies Ω1,Ω3.

nearly unpopulated. Therefore, as a reasonable approxi-
mation [35], instead of using the density matrix formal-
ism to describe the temporal dynamics of a four-level
system with radiatively decaying intermediate states, we
can work in terms of the probability amplitudes Cj(t) of
the levels satisfying the reduced Schrödinger equation

iĊ1=Ω1C2e
iδ1t/2 ,

iĊ2=
(
−iC2/τ2+Ω1C1e

−iδ1t+Ω2C3e
iδ2t

)
/2 ,

iĊ3=
(
−iC3/τ3+Ω2C2e

−iδ2t+Ω3C4e
iδ3t

)
/2 ,

iĊ4=
(
−iC4/τ4+Ω3C3e

−iδ3t
)
/2 ,

(2)

written in the rotating wave approximation. The radia-
tive decays of both virtual intermediate and long-lived
Rydberg states with radiative lifetimes τj are taken into
account in Eq. (2) by adding relaxation rate constants
1/τj to the imaginary parts of the corresponding state
energies [34–36].
The strong coupling of the intermediate states |2⟩, |3⟩,
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accompanied by their large splitting ≈ Ω2, much larger
than all other laser Rabi frequencies Ωj and detunings
δj , allows an important simplification. Namely, for the
amplitudes C2,3 of the intermediate states one can apply
the adiabatic elimination procedure [35, 37, 38], accord-
ing to which the derivatives Ċ2, Ċ3≈0, since their values
are expected to be much smaller than the other terms.
As a result, Eqs. (2) are reduced to equations

iĊ1≈
(
−iγ1C1−Ω·C4e

iδt
)
/2 ,

iĊ4≈
(
−iγ4C4−Ω·C1e

−iδt
)
/2

(3)

for an effective two-level system, involving only ampli-
tudes C1, C4. The three-photon detuning δ, reduced Rabi
frequency Ω and relaxation constants γ1,4 have the fol-
lowing form:

δ=δ1+δ2+δ3; Ω=Ω1Ω3/Ω2; γ1=γ ·Ω2
1/Ω

2
2;

γ4=γ ·Ω2
3/Ω

2
2+1/τ4; γ=(1/τ2+1/τ3)/2.

(4)

Importantly, when τ2 ̸= τ3 the conventional adiabatic
elimination procedure (Ċ2,3 → 0) requires some correc-
tions [38], which we have taken into account for the rate
constants γ1,4 in Eq. (4).
Since we are concerned with the case Ω2≫Ω1,3, 1/τj ,

|δ|, Eq. (4) gives us an important set of inequalities:

γj=
γ

Ω2

Ωj

Ωk ̸=j
Ω≪Ω; j, k=1, 4 . (5)

This significantly simplifies the formulaic representations
of Eq. (3) solutions along with the corresponding Ryd-
berg states population n4= |C4|2, which under the initial
conditions C1(0)=1, C4(0)=0 acquires a compact form

n4≈
Ω2

2Ω
2

[
1−cos

(
Ω·t

)]
e−Γt/2;

Ω=
√
Ω2+δ 2; Γ=

Ω2
1+Ω2

3

Ω2
2

γ+
1

τ4
,

(6)

describing slowly fading coherent three-photon Rabi os-
cillations at frequency Ω. The first term in the decay
constant Γ of Eq. (6) accounts for decoherence due to a
small partial population of the short-lived intermediate
states |2⟩, |3⟩, while the second term is due to the long
lifetime of the Rydberg state |4⟩. In the following dis-
cussion we mainly focus on the case of resonant lasers
with δ1,2,3=0, i.e when the three-photon detuning δ=0
and Ω=Ω. The one exception is the spectral profiles in
Fig. 2(a), obtained by varying δ3 around zero.
Noteworthy, the three-photon Rabi frequency (4) takes

a form similar to the two-photon case (1), with the Rabi
frequency Ω2/2 taking the role of the single-photon de-
tuning δ1 in Fig. 1(c). The large Ω2 in Fig. 1(e) forms
two adiabatic states |±⟩= (|2⟩±|3⟩)/

√
2, thus virtually

converting the three-photon excitation into a double two-
photon scheme depicted in Fig. 1(d) by inducing light
shifts ±Ω2/2 with two fundamentaly new properties:
First, if we arrange the spatial distributions of (Ω1Ω3)

and Ω2 to be identical, then Ω becomes independent of
the atom position, even with tightly focused laser beams.
This enables a significantly improved individual address-
ing of Rydberg excitations for adjacent atoms in trap
arrays, compared to two-photon excitation schemes. In
addition, tight focusing strongly reduces the total laser
power required to excite Rydberg atoms in large-scale
quantum registers of neutral atoms.
Second, the essential trait of the reduced Eq. (3) is

the total elimination of ac Stark shifts ∆j=1,4 for both
the ground and Rydberg states. Because of the mirror-
image arrangement of the virtual levels |±⟩ in the linkage
diagram, associated with Eq. (2) and shown in Fig. 1(d),
they cause two partial identical but opposite optical shifts
∆j± of each j -state, making the overall shift ∆j zero at
arbitrary laser intensities. As a result, the three-photon
detuning ∆ = ∆4 −∆1 turns out to be insensitive to
any spatial inhomogeneities of the laser fields. There-
fore, even in tightly focused laser beams with radically
different Ω1 and Ω3 values, the spatially inhomogeneous
light shifts will be absent. The latter can significantly
increase the coherence and fidelity of Rydberg quantum
gates.
The above simple analysis highlights the main advan-

tages of using three-photon laser excitation of Rydberg
states for both individual addressing and light-shift sup-
pression. Next we demonstrate how these advantages
are manifested in accurate numerical calculations of light
shifts and Rabi oscillations.
A full rigorous theoretical analysis must deal with the

density matrix formalism and the optical Bloch equations
[35, 37], traditionally used to describe atom-light interac-
tion processes, and taking into account the real hyperfine
and Zeeman structures of all states involved in the inter-
action. In our previous works [39, 40] we developed an
efficient algorithm based on the split operator technique
[41, 42], which provides robust symplectic [43, 44] numer-
ical simulations of laser excitation of alkali metal atoms.
Details of the algorithm specific parameters as applied to
Rb and Na atoms can be found in [40, 45].
Figure 2 presents results of our numerical simulations

of the spectra profiles for the cases of (a) three-photon
and (b) two-photon Rydberg states excitation in 87Rb
atoms for a fixed interaction time of 0.125µs. The ra-
diative lifetimes of the Rydberg states at T=300 K are
τ(70p3/2) = 190µs and τ(70s1/2) = 152µs, respectively.
The lifetimes of intermediate states are schematically
shown in Fig. 1. The strong coupling of intermediate
states in case (a) and the large single-photon detuning δ1
in case (b) make all the intermediate states virtual. Our
numerical simulations clearly demonstrate in Fig. 2(a)
the absence of ac Stark shifts for arbitrary values of the
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FIG. 2. (a) Numerically obtained spectra of the three-photon
excitation 5s1/2 → 5p3/2 → 6s1/2 → 70p3/2 [see Fig. 1(a)]

in 87Rb atoms for an interaction time of 0.125µs at a high
second-step laser Rabi frequency Ω2/(2π)= 4 GHz and vari-
ous ratios between the modest first-step Ω1 and third-step Ω3

frequencies, providing a fixed three-photon Rabi frequency
Ω/(2π) = 4 MHz. No light shift is observed for any combi-
nation of Ω1,3. (b) The same for the two-photon excitation
5s1/2 → 6p3/2 → 70s1/2 [see Fig. 1(b)] in 87Rb atoms for an
interaction time of 0.125µs at first-step detuning δ1/(2π)=1
GHz and various ratios between the first-step Ω1 and second-
step Ω2 laser frequencies, resulting in the same two-photon
Rabi frequency Ω/(2π)=4 MHz. A strong two-photon detun-
ing ∆ is observed when Ω1 ̸=Ω2 in agreement with Eq. (1).
All spectra in both frames (a), (b) refer to the case of wide
laser beams.

laser Rabi frequencies Ω1,3. In contrast, Fig. 2(b) demon-
strates a strong dependence of the two-photon resonance
position on the imbalance parameter Ω2/Ω1 between the
Rabi frequencies. Therefore, spatial inhomogeneity or in-
tensity fluctuations of the laser radiations would strongly
affect two-photon excitation, while three-photon excita-
tion is robust against these factors.

The ability to achieve a spatially homogeneous Rabi
frequency Ω (4) with a special laser beam arrangement is
the most distinctive feature of the three-photon scheme.
This configuration enables highly coherent excitation of
Rydberg states even in very tightly focused beams, as
illustrated in Figs. 3, 4. In cylindrical coordinates r, φ,
the coaxial laser beams have Gaussian Rabi frequency
profiles with respect to the transverse radial coordinate

Ωj(r)=Ωje
−r2/w2

j ; Ωj≡Ωj(r=0). (7)

The parameters wj (j = 1 − 3) represent the 1/e2 laser
focal spot radii, usually measured in experiments. The
following relationship

w1=w3=
√
2w2≡w; ⇒ Ω(r)=

Ω1(r=0)Ω3(r=0)

Ω2(r=0)
(8)

between laser spots guarantees the constancy of the
three-photon Rabi oscillation frequency for any spatial
position of the atom. This is a very important find-
ing, since the atom in an optical dipole trap is not lo-
calized point-wise. Instead, the atom density has some
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FIG. 3. (a) Rabi oscillations simulations for three-photon
excitation 5s1/2 → 5p3/2 → 6s1/2 → 70p3/2 in 87Rb atoms
with strong second-step laser coupling Ω2/(2π)=4 GHz and
moderate first and third-step Rabi frequencies Ω1/(2π) =
Ω3/(2π) = 126.5 MHz. The dashed red curve corresponds
to spatially uniform (wide) laser beams, while the solid blue
curve describes the spatially averaged oscillations ⟨n4⟩ at
a = 1µm and w = 1µm for the radii of the atomic a (9)
and the laser w (8) spots, respectively. Spatial variation of
Rabi frequencies Ωj(r) does not noticeably affect contrast
of the curve. (b) The same for the two-photon excitation
5s1/2 → 6p3/2 → 70s1/2 in 87Rb atoms for single-photon de-
tuning δ1/(2π) = 1 GHz and first- and second-step Rabi fre-
quencies Ω1/(2π)=160 MHz, Ω2/(2π)=50 MHz, respectively,
as used in [16]. Laser spot radius varies from a very large value
(wide beams) to w=5, 2, 1µm. The spatial variations of Rabi
frequencies Ω1,2(r) strongly reduce the contrast in tightly fo-
cused laser beams.

azimuthally invariant radial distribution ρ(r), reasonably
well approximated by a normalized Gaussian function
[34]

ρ(r)=
2

πa2
e−2r2/a2

. (9)

The parameter a is the atom spot radius for the proba-
bility level 1/e2. It is determined by the waist radius w0

of the optical dipole trap, atom temperature T , and trap
depth U0, and can be estimated as a∼w0

√
kBT/U0 [34],

where kB is the Boltzmann constant. For the typical trap
depth∼ 1 mK and atom temperature∼ 10 µK, one has
a∼w0/10.
The Rabi oscillations observed in an experiment rep-

resent the average population ⟨n4⟩ (6) over spatial co-
ordinates r, φ, with the weight function ρ(r) (9). Fig-
ure 3 presents numerically calculated Rabi oscillations of
(a) three-photon and (b) two-photon excitation in 87Rb
atoms. The data in frame (a) are calculated for a large
laser Rabi frequency in the second step, and equal moder-
ate Rabi frequencies applied to the first and third excita-
tion steps. The two-photon oscillation curves in frame (b)
were calculated using the single-photon detuning and the
first- and second-step Rabi frequencies values from [16].
The dashed red curves in both frames of Fig. 3 corre-
spond to spatially uniform (wide) laser beams. Both
curves have the same three- and two-photon Rabi os-
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cillation frequencies of 4 MHz and identical oscillation
contrasts. The other curves in Fig. 3 show how the spa-
tially averaged Rabi oscillations depend on different rela-
tionships between the uncertainty of the atomic position
and the laser spot size. The curves indicate a completely
different character of the destructive influence of spatial
inhomogeneities of laser fields on the oscillation contrast
for two- and three-step schemes. In a more detailed dis-
cussion below, we will obtain a formulaic description for
the effects of spatial variation in laser intensities.

For our three-photon excitation, the radial dependence
of the Rydberg state population (6) arises only due to
variation in the effective relaxation constant Γ included
in the amplitude part of Eq. (6):

Γ(r)=
Ω2

1(0)+Ω2
3(0)

2Ω2
2(0)

(
1

τ2
+

1

τ3

)
e2r

2/w2

+
1

τ4
, (10)

which is a consequence of the relation (8) for laser focal
spots. Importantly, the population averaging procedure
affects only the relaxation factor, leaving the oscillatory
part in Eq. (6) unchanged.

The main practically important parameter of Rabi os-
cillations, which directly defines the maximum achievable
fidelity of Rydberg quantum gates, is the amplitude A1 of
the first oscillation peak in Eq. (6). The latter occurs at
time t=π/Ω. For a given spatial point with coordinate
r and for Ω≫Γ(r), the peak height is expressed as

n4(r)max=e−Γ(r)t/2≈1−πΓ(r)/(2Ω) . (11)

Averaging of Eq. (11) over cylindrical spacial coordinates
r, φ with the weight function (9) yields

A1≡⟨n4(t)⟩max ≈1− π

2Ω

[
Γ(0)ξ2

ξ2−1
− τ−1

4

ξ2−1

]
, (12)

where the “coverage” parameter ξ=w/a shows how much
the Rydberg laser spot exceeds (“covers”) the atom spot.

Figure 4(a) shows the numerically identified (circles)
and analytically calculated using Eq. (12) (blue curve)
dependences of the spatially averaged amplitude A1 on
the ratio w/a for three-photon excitation in 87Rb atoms,
with the same parameters as in Fig. 3(a). A fairly good
agreement between the analytical model and numerical
simulation is observed for w/a≥ 2. We also see a slow
decline in A1 in the interval 1 ≤ w/a ⩽ 2, where the
amplitude remains close to its maximum possible value of
0.9957. Moreover, even for w/a=1 the value of A1 drops
to only slightly lower value of 0.9877. This change in A1

is almost imperceptible in the Rabi oscillations shown in
Fig. 3(a). Our simulations confirm the validity of the
above proposal for high precision addressing with three-
photon Rydberg excitation, and show that it should be
experimentally feasible.

The obtained results open up prospects for an exper-
imental solution to the problem of local addressing in
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FIG. 4. (a) Numerically (circles) and analytically (blue
curve) obtained spatially averaged amplitude A1 of the first
Rabi oscillation at three-photon excitation 5s1/2 → 5p3/2 →
6s1/2 → 70p3/2 in 87Rb atoms, for the same parameters as
in Fig. 3(a). The circles and the curve demonstrate the de-
pendence of amplitude A1 on the “coverage” parameter w/a.
Fairly good agreement is observed for w/a ≥ 2. (b) Com-
parison of numerically calculated spatially averaged ampli-
tude A1 for three-photon excitation corresponding to frame
(a) and two-photon excitation 5s1/2→6p3/2→70s1/2 in 87Rb
atoms, for the same parameters as in Fig. 3(b). Under three-
photon excitation, contrast of the first peak remains virtually
unchanged even in fairly narrow laser beams with a coverage
parameter of w/a=2. In contrast, the two-photon oscillations
exhibit a significant drop of A1 amplitude in moderately nar-
row beams with w/a≤5.

atomic arrays. A typical experiment with single atoms
in quantum registers assumes the values of atomic and
laser spots to be a∼1µm and w∼2−3µm, respectively,
and the distance between neighboring atoms of∼ 5µm.
At the Rabi frequencies Ωj used in Fig. 4(a), the cal-
culated amplitude A1 of the first oscillation is 0.9951 at
w/a=2. The significant exponential drop of Ωj in Eq. (7)
strongly suppresses the Rydberg excitation of the neigh-
boring atoms: the calculations yield a negligible value of
∼10−5−10−6 for their Rydberg state populations.

The above observation is not the case for two-photon
excitation. Figure 4(b) shows the comparison of numer-
ically calculated spatially-averaged amplitudes A1 of the
first Rabi oscillation at three-photon excitation and two-
photon excitation in 87Rb atoms for the same parameters
as in Fig. 3(b). While the three-photon amplitude A1 in
Fig. 4(b) is almost independent of the change in w/a,
the two-photon amplitude decreases significantly start-
ing from w/a = 5. At w/a = 1 it drops to 0.662 com-
pared to 0.9949 for w/a = 10 and 0.9956 for wide laser
beams. At w/a=2 the two-photon amplitude A1 takes
the value 0.912, which is no longer suitable for quantum
gates. Therefore, precise individual addressing cannot
be implemented with two-photon Rydberg excitation in
atom arrays with spacing of∼ 5 µm. To avoid crosstalk
problems, the distance should be increased to at least∼20
µm, while using wide laser beams with w/a∼ 10. This
prevents implementation of large-scale quantum registers
with neutral atoms, where the smallest possible distance
between adjacent atoms is necessary to ensure strong
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interaction of Rydberg states and compact packing of
atomic arrays.

In conclusion, we have shown theoretically that high-
fidelity individual addressing of single atoms and the mit-
igation of crosstalk in optical dipole trap arrays can be
achieved using three-photon laser excitation of Rydberg
states, provided that strong laser radiation in the second
step induces a dominant ac Stark splitting of the two in-
termediate states. Moreover, this excitation method sup-
presses the light shift of the three-photon resonance, even
in cases of arbitrary imbalance between the Rabi frequen-
cies in the first and third steps. Thus, three-photon Ry-
dberg excitation offers a substantial advantage over the
commonly used two-photon excitation, in which individ-
ual addressing and light-shift suppression are challenging
to implement experimentally.
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