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Abstract: This study investigates the growth of gallium arsenide nanowires, using lead as a catalyst.
Typically, nanowires are grown through the vapor–solid–liquid mechanism, where a key factor is the
reduction in the nucleation barrier beneath the catalyst droplet. Arsenic exhibits limited solubility in
conventional catalysts; however, this research explores an alternative scenario in which lead serves as
a solvent for arsenic, while gallium and lead are immiscible liquids. Liquid lead easily dissolves in
Si as well as in GaAs. The preservation of the catalyst during the growth process is also addressed.
GaAs nanowires have been grown by molecular beam epitaxy on silicon Si (111) substrates at varying
temperatures. Observations indicate the spontaneous doping of the GaAs nanowires with both lead
and silicon. These findings contribute to a deeper understanding of the VLS mechanism involved in
nanowire growth. They are also an important step in the study of GaAs nanowire-doping processes.

Keywords: semiconductor nanowires; vapor–liquid–solid growth; catalyst; doping; growth modeling;
structural characterization; crystal phase

1. Introduction

AIIIBV nanowires (NWs) are a promising material for use in opto- and nanoelectronics
devices [1,2]. Also, recently, AIIIBV NWs have demonstrated their importance in modern
nanophotonics [3,4]. For example, single-photon sources could be constructed from GaAs
quantum dots embedded in (Al, Ga)As NWs, as well as from crystal-phase quantum dots
in NWs [5–7]. Heterostructured (Al, Ga)As NWs have great promise as a building block for
modern cryptography and photonic quantum information technologies [4,5]. The capability
of electric pumping is crucial to have, in order to ensure the efficient use of such structures.
Thus, the practical application of GaAs NWs requires precisely controlled doping, both p-
and n-type.

In general, heterostructured (Al, Ga)As NWs are formed via the so-called vapor–liquid–
solid (VLS) mechanism [8–10]. The presence of a liquid droplet introduces complications
to the growth and doping of heterostructures that are not present in bulk growth. One
significant challenge is the inability to use Si or Sn for n-type doping [11–13]. Typically, Si
and Sn produce p-type doping in GaAs in VLS growth [11].

The second problem is the so-called reservoir effect [10,14,15] attributed to the solu-
bility of one or more growth species in the droplet. The reservoir effect has the effect of
blurring heterointerfaces [14,15].

The first challenge could be solved using a group VI element for n-type doping [11].
These elements are volatile and violate the conditions of the ultra-high vacuum. Here, an
alternative solution has been proposed.
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The growth of NWs usually occurs in a nonequilibrium mode [8,9]. The composition
of the NW and the incorporation of impurities is determined by kinetics rather than
thermodynamics. The impurity embedded in the lattice kinks turns out to be covered by
the following layers of material, and does not have time to return to the solution. Therefore,
the place of the incorporation of the impurity is determined by the presence of free lattice
kinks in the layer. In this case, the composition of the NWs and the incorporation of
amphoteric impurities into the NWs is determined by the composition of the catalyst
droplet. Most often, a drop of catalyst contains a lot of gallium and little arsenic [12]. If
there is a lot of Ga in the droplet, then it is easier for silicon to incorporate into GaAs in
place of As. That is, Si will be the acceptor. It is natural to expect that if there is a lot of As
in the drop, then Si will be embedded in the place of Ga and will be a donor.

There are not many materials that dissolve As well and are liquid at typical GaAs NW
growth temperatures. Some of them are poisonous, such as thallium. Interesting examples
of such materials are tin (Sn) and lead (Pb), which could easily dissolve each of the elements
Ga and As, but not simultaneously [16–19].

The growth of GaAs NWs with a Sn catalyst in both modes has already been demon-
strated. Arsenic-rich growth has been demonstrated in Lund University [20]. Gallium-rich
growth has been demonstrated in Ioffe institute, St. Petersburg [21]. In all cases of GaAs
growth, NW with a Sn catalyst led to a higher level of contamination of NW by the catalyst
material [22]. The binary and triple-phase diagrams of Pb with Ga-As and Sn with Ga-As
are very similar. It can be expected that the growth of GaAs NWs with a Pb catalyst is also
possible. The incorporation coefficient for Pb in GaAs is less than for Sn in GaAs. Therefore,
it can be expected that the growth of GaAs NWs with Pb will be more stable, and the Pb
contamination in GaAs NWs will be less than Sn. The reservoir effect problem can also be
partially solved by growing in an As-rich regime. When growth (Al, Ga) As NWs occurs in
an As-rich mode, the concentration of both group III elements in a droplet is very low. The
GaAs/AlAs group III heterojunction becomes sharp without additional effort.

2. Materials and Methods

This study examines the growth of gallium arsenide (GaAs) nanowires using lead as a
catalyst. The growth conditions were chosen for synthesis on an arsenic-rich catalyst. So,
we chose conditions under which the solubility of arsenic in a lead liquid exceeds 20%,
while the solubility of gallium is less than 10%; see Figure 1. The non-miscibility gap of
lead and gallium disappears at a temperature of 600 ◦C [16]. Lead dissolves less than
10% of gallium at a temperature of about 400 ◦C and below [16]. Therefore, the growth
temperature should be below or around 400 ◦C. The eutectic temperature of arsenic and
lead is 291 ◦C [19], while the liquid contains only 7% arsenic. The solubility of arsenic in
liquid lead reaches 20% at a temperature of about 350 ◦C and above [19]. Therefore, the
growth temperature should be above 350 ◦C. Therefore, all growth processes took place in
the temperature range from 350 ◦C to 410 ◦C.

GaAs nanowires (NWs) were grown on Si (111) with a predeposited thin lead layer in
the solid-source molecular beam epitaxy (MBE) system Riber Compact 21 (Paris, France),
equipped with effusive sources of gallium and arsenic.

First, the substrate was treated with a weak hydrochloric acid solution to remove the
defective oxide layer. Then, a 10 nm thick lead film was applied using a BOC Edwards Auto
500 (Burgess Hill, UK) thermal resistance evaporator with oil-free injection and residual
vacuum of at least 5 × 10−6 Torr, at a substrate temperature of about 80 ◦C. The thickness of
the film was controlled by the transmission of light on the satellite glass. The optical circuit
included a monochromatic light source (in our case, a 650 nm laser), a beam splitter, and
control and measuring photodetectors. The source and receivers operated in pulse mode,
which eliminates the influence of backlight. The thickness was determined according to the
Lambert–Bouguer–Lambert extinction law (the exponential dependence of the signal on
thickness). The thickness of the half-transmission was determined previously on a plate
with a known thickness of the order of 100–200 nm.
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Figure 1. As-Pb (a), Ga-Pb (b), and Pb-Si (c) phase diagrams generated using the data from papers 
[16,19,23]. 

Figure 1. As-Pb (a), Ga-Pb (b), and Pb-Si (c) phase diagrams generated using the data from
papers [16,19,23].
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Next, the substrate was transferred to the growth chamber of MBE system. The
substrate was heated to a growing temperature in the range from 350 ◦C to 410 ◦C. Even
a short-time annealing of the substrate leads to the dissolution of lead in silicon, which
prevents the formation of lead catalyst droplets. NW growth without initial droplets at
such temperatures doesn’t proceed. Therefore, the annealing of substrate wasn’t done, and
oxide layer wasn’t desorbed.

The shutters were opened simultaneously, and NW growth began immediately after
growth temperature was reached. The gallium deposition rate was 0.7 ML/s. The total
growth time was 10 min. The arsenic flux was ten times higher than the gallium flux. The
flux calibration was based on the reflection high-energy electron diffraction (RHEED) on
the surface of GaAs (100). The growth was stopped by simultaneously shutting down the
fluxes and cooling the substrate.

NW shape studies were performed with a field-emission scanning electron microscope
(SEM) Supra 25 (C. Zeiss, Oberkochen, Germany) operated at 20 kV, equipped with the
microanalysis tool Ultim (Oxford Instruments Inc., Abingdon, UK) for energy dispersive
spectrometry (EDS). An investigation of the structural properties and the composition of
NWs were conducted by methods of a transmission electron microscopy (TEM) on Zeiss
Libra 200FE microscope (Oberkochen, Germany), equipped with an energy-dispersive
X-Max X-ray detector (EDX). The samples for TEM were obtained by depositing NWs onto
carbon-film-coated copper grids by gently rubbing the grid against the sample, in most
cases breaking the NWs off at the base.

3. Results and Discussion

The typical array of NWs grown under the aforementioned conditions are shown in
Figure 2. The obtained results demonstrate the growth of freestanding NWs. The NWs
exhibited a conical shape, with the exception of the low-temperature sample. This shape is
attributed to the incorporation of Pb in GaAs. At a low temperature, some NWs displayed
a flat facet or particle on the tip. At all temperatures, the NWs are misoriented, most likely
due to the oxide layer. As shown previously, annealing is necessary to obtain well-oriented
nanowire arrays [24–26]. In our case, this was not possible, since long-time annealing
causes the dissolution of the lead in the wafer.
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The EDS measurements confirmed that the majority of the NWs are GaAs, with the
potential presence of Si. Traces of Pb as well as Si were found in all NWs by using the EDX
detector of TEM.

The typical results of TEM studies are presented in Figure 3, which reveals that the
NWs exhibit a polytypic structure, consisting of both the wurtzite and sphalerite phases.
This observation applies to all analyzed samples and has also been confirmed by RHEED.
It is likely that the unusually low growth temperatures (350–410 ◦C) for GaAs NWs are
responsible for a polytypic structure.
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Figure 3. TEM image of nanowire grown at 350 ◦C.

Elemental analysis by EDX on samples grown at high temperatures (380 ◦C, 410 ◦C)
revealed a significant presence of silicon, evenly distributed throughout the NWs. Single-
point EDX analysis shows traces of silicon, while signals collected from large areas give
values in range 0.05–2%. This allows us to conclude that silicon concentrations reached
levels between 1019 and 102 cm−3. However, lead in NWs grown at high temperatures
were not detected, even when col-lecting the EDX signal from the NW stack on the TEM
grid, with a scan area of 200 × 200 nm. This means that the doping level achieved with
lead is below 1018 cm−3. It is most probable that Pb diffuses to the substrate surface and
dissolves in silicon.

An EDX analysis of samples grown at a lower temperature (350 ◦C) yielded more
interesting results. Lead was unambiguously detected by single-point EDX analysis in
both cases in the body and tip of the NWs. The TEM image of the NW tip showed clear
elemental contrast; see Figure 4a.

The silicon concentration within the NWs showed a remarkable variation. The silicon
concentration ranged from about 5% at the base to almost the limit of sensitivity in the
middle, and then reached high values of more than 10% at the NW tip; see Figure 5. It can
be reasonably concluded that the silicon concentration within the body of the NWs is in the
order of a few percent. Silicon concentrations measured at the NW tip ranged significantly
from 5% to 20% depending on the tip morphology. The lead content remained minimal in
all cases, see Figure 4b.

The arsenic clearly predominates over gallium at the tip of the NW; see Figure 4b.
Moreover, the arsenic content in the upper part exceeds 50%. There is practically no lead
detected at the top, and the solubility of arsenic in lead is limited. The lead content detected
at the top of the nanowire is near the sensitivity threshold of the energy-dispersive X-Max
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X-ray detector. In some cases, lead lines even fall below the threshold. Pure arsenic desorbs
from GaAs at the growth temperature used in our study. A possible explanation of high
arsenic content, see Figure 4b, is the presence silicon arsenide’s SiAs and SiAs2 at the
nanowire tip. That is, the NW tip likely consists of silicon arsenide. This makes it possible
to suppose that the NW catalyst was not a liquid solution of As and Si in a lead–gallium
droplet, but a solid silicon arsenide particle with Ga and Pb impurities.
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Figure 4. TEM image of nanowire tip grown at 350 ◦C (a) and its composition according to EDX
measurements (b).
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Figure 5. Si content along the NW length for different nanowires grown at 350 ◦C, first NW—black,
second NW—red.

In the case of MBE NW growth, the catalyst at the tip primarily reduces the surface
energy and lowers the nucleation barrier. Perhaps the lead at the NW tip acts as a chemical
catalyst. Lead accelerates one of the following chemical reactions: 2SiAs + As2 → 2SiAs2
or SiAs2 + Ga → SiAs + GaAs. It is noteworthy that such catalyst behavior has not been
described, even in cases of GaAs NW growth with an arsenic-rich catalyst [20,27]. This
hypothesis requires further verification. Future investigations of GaAs nanowire growth
with Pb catalyst are planned at temperatures near or even below the eutectic point of lead
and arsenic to better understand the underlying mechanisms.

Liquid lead easily dissolves in Si as well in GaAs. It is well known that lead and
silicon form a continuous series of solid solutions. Thus, the annealing of lead thin-film
on silicon results in the dissolution of lead in the substrate rather than droplet formation.
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The films, with a thickness of 1–3 nm, underwent dissolution in silicon when heated to
350 ◦C and subsequently cooled. A 30 s annealing period under an arsenic flux of a 10 nm
film at a temperature of 300 ◦C yielded comparable results. The sole remaining evidence
of the lead is the etching holes, as illustrated in Figure 6. NW growth is not initiated on
these substrates. While the solubility of lead in GaAs is less than that in silicon, the issue of
preserving the catalyst remains a significant concern. The consumption of lead during the
growth process results in the formation of cone-shaped NWs and uncontrollable doping.
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So, long-period annealing is not possible in our case of growth on Si substrate, and
the growth of well-oriented Pb-catalyzed GaAs remains a challenge. Since well-oriented
arrays require the removal of oxide [24–26], the Pb dissolves in GaAs slower. We expect
that growth on GaAs substrate will allow us to remove the oxide layer from the GaAs
substrate with Pb film and grow well-oriented NWs.

Our studies indicate the spontaneous doping of the GaAs nanowires with both lead
and silicon. The silicon content in the body of GaAs NWs at low temperatures (350 ◦C)
reaches 5%. The silicon is easily visible in single-point EDX as well as in linescan EDX, and
even in EDS measurements. As the temperature increased, the silicon content decreased.
A detectable Si signal below 0.5% from NW grown at 410 ◦C was collected only from the
NW stacks on TEM grid. The active lead-etching of silicon substrate was observed; see
Figure 6. Also, silicon incorporation into GaAs NWs was observed; see Figure 5. This effect
disappears with the increase in temperature. Yet, the As-rich growth of NW is impossible
at higher temperatures. The Ga-Pb miscibility gap becomes narrower with increasing
temperature and closes near 600 ◦C. At the moment, the study of growing GaAs NW with
a Pb catalyst on a GaAs substrate is in progress.

4. Conclusions

To conclude, the cumulative data presented in this paper support the following three
related points. First, lead can readily act as a catalyst for GaAs NW growth, at least in the
temperature range of 350–410 ◦C. Second, lead slowly dissolves in the GaAs NWs during
the growth. The droplets gradually diminish in size. This process results in the formation
of cone-shaped nanowires and, finally, could stop NW growth. Third, lead reduces the
incorporation barrier of Si in GaAs nanowires. This could subsequently result in the
formation of a Si-GaAs alloy. The potential role of lead as a catalyst within an arsenic-rich
environment presents a novel perspective that merits further exploration. These findings
contribute to a deeper understanding of the VLS mechanism involved in nanowire growth.
We hope that further studies of the GaAs NWs growth in the arsenic-rich droplet mode will
make it possible to select growth parameters for controlled doping with n-type impurities,
which will expand the functionality of using GaAs NWs in various applications.
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