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Abstract. The essence of the research work is to consider the practical solution 

of the variational problem using iterative approach methods such as RRT* and 

RRT-connect. Originally, these algorithms were proposed to find the shortest 

trajectory connecting two given points on the terrain. In contrast with that the 

modifications presented in the present work allow us to search the trajectory, 

which is optimal in the sense of construction cost. This cost is defined as inte-

gral functional. The algorithms work based on randomly constructed graph-

trees to construct a piecewise linear approximation of the solution. Though a 

specific problem is considered, the resulting solution approach opens access to 

solving a large class of problems. By applying these algorithms in infrastructure 

development, civil engineering, and related fields, engineers and planners will 

be able to achieve a more streamlined process for creating road networks that 

minimize construction costs and address the unique challenges posed by differ-

ent terrains. 

Keywords: optimal path, graph tree, fast growing graph trees. 

1 Introduction 

The problem of finding the optimal in terms of construction costs path of a road con-

necting two given points, which naturally arises before various private organizations, 

government agencies and military structures, is a subject of study for many research-

ers. One of the most popular approaches to solving this problem is the Cost Path 

Analysis; it is based on the construction and analysis of a cost lattice. This paper con-

siders the variational problem of obtaining a road trajectory that is optimal in terms of 

construction cost, using other computational tools. To get the solution, a modified 

methods of rapidly-exploring random trees RRT* and RRT-connect are applied. In 

contrast to the original algorithms used for finding the shortest path ([3], [4], [5]), and 
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other modifications ([6], [7]), this paper proposes their adaptation for obtaining the 

trajectory on which the minimum of the construction cost functional is achieved. 

 

Let the points A and B be given on the terrain, acting as the start and end points, 

respectively. It is required to connect them by a road in such a way that the cost of its 

construction is minimized. Let us denote by α the cost of delivery of materials re-

quired to lay a unit length of roadbed per the unit length of the roadbed. We assume 

that the same amount of materials is required to build a unit of road, regardless of the 

terrain. Let us denote the cost of construction works per unit length of the roadbed as 

β: 𝑅2 → 𝑅, which is a continuous function that has continuous partial derivatives. As 

it was shown in [1], [2], the functional can be written in the form: 

J(y) =  
α

2
(∫ √1 + 𝑦′2(𝑥)

𝑥𝐵

xA

 dx )

2

+ ∫ β(x, y)
𝑥𝐵

xA

√1 + 𝑦′2(𝑥) dx (1) 

 

2 Main Part 

2.1 RRT* 

The algorithm works on the basis of randomly constructed graph-trees from the 

starting point until one node reaches the target point. We demonstrate how the RRT* 

algorithm can be used for solving our problem of calculus of variations. Using this 

approach, we obtain piecewise linear approximation of the solution. As it was men-

tioned in [5], the algorithm has time complexity 𝑂(𝑛𝑙𝑜𝑔(𝑛)) for processing, and  

𝑂(𝑛) for query. 

General conditions for graph construction. Let ρ be a given distance in the state 

space 𝑈, where 𝑈 is bounded, and a tree 𝑇 ⊂ 𝑈 (a tree is the union of a set of vertices 

and a set of edges). Let 𝑥0 denote the initial state, the first node of our model; 𝑥0 ∊ 𝑈, 

𝑥0 ∊ 𝑇, and 𝑥∗ denote the final state to be reached; 𝑥∗ ∊ 𝑈, 𝑥∗ ∊ 𝑇. Let Y represent the 

set of obstacles to be circumvented. The only thing we can say about the obstacles is 

whether the chosen state lies in the obstacle region or not. In this manner, 𝑈\𝑌 is the 

free region in which the path will lie; 𝑇 ⊂ 𝑈\𝑌. The value δ = 𝑐𝑜𝑛𝑠𝑡 is the step, and 

𝜀 ≥ 0 is the radius of the neighborhood of the endpoint, once in which the algorithm 

stops further work. 

Algorithm at the k-th step. We denote by 𝑋𝑘the set of vertices of the tree 𝑇 at step k, 

𝑋𝑘 ⊂ 𝑇. 

1. We choose a random state 𝑥𝑖 from a free region; 𝑥𝑖 ∊ 𝑈\𝑌. 

 

2. We find the nearest neighbor �̅�𝑘 from the set 𝑋𝑘 to the state 𝑥𝑖 in the sense of 

distance 𝜌. 
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3.  We add a new node 𝑥𝑘+1: 

 𝑥𝑘+1 = {
�̅�𝑘 + (𝑥𝑖 − �̅�𝑘)𝛿, 𝑖𝑓 𝜌(�̅�𝑘;  �̅�𝑘 + (𝑥𝑖 − �̅�𝑘)𝛿) ≤ 𝜌(�̅�𝑘; 𝑥𝑖)

�̅�𝑘 + 𝑥𝑖 , 𝑖𝑓 𝜌(�̅�𝑘;  �̅�𝑘 + (𝑥𝑖 − �̅�𝑘)𝛿) > 𝜌(�̅�𝑘; 𝑥𝑖)
(2) 

If the segment [�̅�𝑘; 𝑥𝑘+1] intersects the set of obstacles 𝑌, we assume that 𝑋𝑘+1  =
 𝑋𝑘, without adding new edges to 𝑇, and proceed to the (k+1)-th iteration. If the seg-

ment does not intersect the set of obstacles, then 𝑋𝑘+1  =  𝑋𝑘 ∪ {𝑥𝑘+1}. 
 

Let �̂�𝑘- the set of points of the 𝑋𝑘 that are in the r-neighborhood of the point 𝑥𝑘+1: 

�̂�𝑘 = 𝑋𝑘 ∩ 𝐵𝑟(𝑥𝑘+1) , 𝑟 > 𝜹(3) 

In the set  �̂�𝑘\𝑥𝑘+1, we look for a vertex �̂�𝑚𝑖𝑛; 𝑘 of the tree 𝑇, the edge from which 

to 𝑥𝑘+1 is minimal in the sense of the functional (1): 

J(y) =  
α

2
(∫ √1 + 𝑦′2(𝑥)

𝑥𝐵

xA

 dx )

2

+ ∫ β(x, y)
𝑥𝐵

xA

√1 + 𝑦′2(𝑥) dx  

 

Since the edges of the tree are segments, we can simplify the functional. Let node 

𝑥𝑘+1 have coordinates (𝑋1; 𝑌1), and �̂�𝑚𝑖𝑛; 𝑘 - (𝑋2; 𝑌2). Then the equation of the tree 

edge can be represented as: 

𝑦 =  
(𝑥 − 𝑋1)(𝑌2 − 𝑌1)

𝑋2 − 𝑋1
+ 𝑌1(4) 

Derivative 𝑦′(𝑥) is constant, so the functional J(y) can be rewritten as: 

J(y) =  
α

2
((X2 − X1)

2 + (𝑌2 − 𝑌1)
2)

+  ∫ β(x,
(𝑥 − 𝑋1)(𝑌2 − 𝑌1)

𝑋2 − 𝑋1
+ 𝑌1 )

X2

𝑋1

√1 + (
𝑌2 − 𝑌1
𝑋2 − 𝑋1

)
2

 dx(5) 

 

If there are several such vertices, we take any of them as �̂�𝑚𝑖𝑛; 𝑘. Obtained in this 

way, the edge is added to the tree.  

In the same set of vertices �̂�𝑘\𝑥𝑘+1, we check the paths from the starting point 𝑥0 

to �̂�𝑘, ∀�̂�𝑘 ∊ �̂�𝑘. Let us denote the path from 𝑥0 to �̂�𝑘 by 𝑃(𝑥0; �̂�𝑘). Such a path can 

be uniquely defined, since it is drawn along the edges of a tree in which each vertex 

has a single 'parent' vertex. If the path constructed earlier from the starting point is 

more expensive, in the sense of functional J(y), than the path[�̂�𝑘; 𝑥𝑘+1] ∪
[𝑥𝑘+1; �̂�𝑚𝑖𝑛; 𝑘] ∪ 𝑃(𝑥0; �̂�𝑚𝑖𝑛; 𝑘), then we remove the edge connecting vertex �̂�𝑘 and its 

'parent' from the tree, and add the edge [�̂�𝑘; 𝑥𝑘+1] to 𝑇. Such manipulations do not 

destroy the graph-tree structure and it optimizes the construction. 
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4. If  𝜌(𝑥𝑘+1, 𝑥∗) ≤ 𝜀, we stop further computations and consider that the path is 

constructed. If not, we proceed to the (k+1)-th iteration. 

This modification of the RRT* algorithm allows us to find a path that is optimal in 

the sense of the cost functional (1): 

J(y) =  
α

2
(∫ √1 + 𝑦′2(𝑥)

𝑥𝐵

xA

 dx )

2

+ ∫ β(x, y)
𝑥𝐵

xA

√1 + 𝑦′2(𝑥) dx  

 

 

 

Algorithm code description. 

Algorithm RRT∗: 

V ← {x_init}; E ← ∅; 
for i = 1, . . . , n do  

 x_rand ← Random_i; 

 x_nearest ← Nearest(G = (V, E), x_rand); 

  x_new ← Step(x_nearest, x_rand); 

 if ObtacleFree(x_nearest, x_new) then 

  X_near ← Neighborhood(G = (V, E), x_new,ε); 

  V ← V ∪ {x_new}; 
  X_min ← x_nearest;  

  c_min ← CostPath(x_nearest) + Functional(x_nearest, 

x_new); 

  foreach x_near ∈ X_near do 
   if ObstacleFree(x_near, x_new)then 

    if CostPath(x_near) + Functional(x_near, x_new) < 

c_min then 

     x_min ← x_near;  

     c_min ← CostPath(x_near) + Functional(x_near, 

x_new) 

  E ← E ∪ {(x_min, x_new)}; 

  foreach x_near ∈ X_near do 
   if ObstacleFree(x_new, x_near) then 

    if CostPath(x_new) + Functional(x_new, x_near) < 

CostPath(x_near) then  

     x_parent ← Parent(x_near); 

   E ← (E \ {(x_parent, x_near)}) ∪ {(x_new, x_near)} 
return G = (V, E); 

Example of path construction. Consider a problem with parameters: 
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α =  0.1
𝑥0  =  𝑦0  =  0
𝑥∗   =  𝑦∗  =  1

𝛽(𝑥, 𝑦)  =  1 +  𝑠𝑖𝑛 5𝑥 −  𝑠𝑖𝑛 𝑦

(6) 

 

 For convenience of interpretation, we can consider that the function β(x, y) de-

fines the equation of the terrain surface, i.e. the cost of construction works is greater 

the higher the point lies above the 𝑂𝑥𝑦 plane.  

The following are graphical representations of the operation of the algorithm. 
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Fig. 1. Example of path construction using a modification of RRT* for 500 nodes; 2-

dimentional representation 

 

Fig. 2. Example of path construction using a modification of RRT* for 500 nodes; 3-

dimentional representation 

 

Fig. 3. Example of path construction using a modification of RRT* for 600 nodes; 2-

dimentional representation 
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Fig. 4. Example of path construction using a modification of RRT* for 600 nodes; 3-

dimentional representation 

 

Fig. 5. Example of path construction using a modification of RRT* for 900 nodes; 2-

dimentional representation 

 

Fig. 6. Example of path construction using a modification of RRT* for 600 nodes; 3-

dimentional representation 
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2.2 RRT-connect 

The algorithm works on the basis of randomly constructed two graph-trees from 

the start and end points simultaneously until the trees are connected. Once trees are 

connected, it is claimed that the path has been built. The proposed algorithm differs 

from the original one in [4] or its modification [6] in the way graphs are connected. 

We propose the modification where the process of connection is organized in a way 

which provides optimality of the entire trajectory in the sense of functional (1). Using 

this approach, we obtain piecewise linear approximation of the solution. 

General conditions for graph construction. Let 𝜌 be a given distance in the state 

space 𝑈, where 𝑈 is bounded, and trees 𝑇1, 𝑇2 ⊂ 𝑈 (a tree is the union of a set of ver-

tices and a set of edges). We denote by  𝑥0 the initial state, the node from which the 

first tree will grow; 𝑥0 ∊ 𝑈, 𝑥0 ∊ 𝑇1, and by 𝑥∗ the final state from which the second 

tree will grow; 𝑥∗ ∊ 𝑈, 𝑥∗ ∊ 𝑇2. Let 𝑌 represent the set of obstacles to be bypassed. 

The only thing we can say about the obstacles is whether the chosen state lies in the 

obstacle region or not. Let 𝑈\𝑌 be the free region in which the path will lie. The value 

δ = 𝑐𝑜𝑛𝑠𝑡 is the step, and 𝜀 ≥ 0 is the radius of the neighborhood of each node. 

 

Algorithm at the k-th step. Let us denote by 𝑋𝑘;1 and 𝑋𝑘;2 the sets of tree nodes 

𝑇1, 𝑇2 at step k respectively, 𝑋𝑘;1 ⊂ 𝑇1, 𝑋𝑘;2 ⊂ 𝑇2. 

1. We choose a random state 𝑥𝑖 from a free region; 𝑥𝑖 ∊ 𝑈\𝑌. 

 

2. We find the nearest neighbor �̅�𝑘;1 from the set  𝑋𝑘;1 and �̅�𝑘;2 from the set 𝑋𝑘;2 to 

state 𝑥𝑖  in the sense of distance 𝜌. 

Consider the construction of a new node for the tree 𝑇1; for 𝑇2, all the construction 

proceeds in the same way, the optimization will be for paths from the endpoint  𝑥∗. 
 

3. We add a new node 𝑥𝑘+1;1 to the 𝑇1: 

𝑥𝑘+1;1 = {
�̅�𝑘;1 + (𝑥𝑖 − �̅�𝑘;1)𝛿, 𝑖𝑓 𝜌(�̅�𝑘;1;  �̅�𝑘;1 + (𝑥𝑖 − �̅�𝑘;1)𝛿) ≤ 𝜌(�̅�𝑘;1; 𝑥𝑖)

�̅�𝑘;1 + 𝑥𝑖 , 𝑖𝑓 𝜌(�̅�𝑘;1;  �̅�𝑘;1 + (𝑥𝑖 − �̅�𝑘;1)𝛿) > 𝜌(�̅�𝑘;1; 𝑥𝑖)
(7) 

 

If the segment [�̅�𝑘;1; 𝑥𝑘+1;1] intersects the set of obstacles 𝑌, we assume that 

𝑋𝑘+1;1 = 𝑋𝑘;1, without adding new edges to 𝑇1, we proceed to the (k+1)-th iteration. 

If the segment does not intersect the set of obstacles, then 𝑋𝑘+1;1  =  𝑋𝑘;1 ∪ {𝑥𝑘+1;1}. 
 

Let �̂�𝑘;1 be the set of points of the 𝑋𝑘;1 that are located in the r-neighborhood of 

the point 𝑥𝑘+1;1: 
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�̂�𝑘;1 = 𝑋𝑘;1 ∩ 𝐵𝑟(𝑥𝑘+1;1) , 𝑟 > 𝜹(8) 

In the set �̂�𝑘;1\𝑥𝑘+1;1, we look for a vertex �̂�𝑚𝑖𝑛; 𝑘;1 of the tree 𝑇1 whose edge from 

which to 𝑥𝑘+1;1 is minimal in the sense of the functional (1): 

J(y) =  
α

2
(∫ √1 + 𝑦′2(𝑥)

𝑥𝐵

xA

 dx )

2

+ ∫ β(x, y)
𝑥𝐵

xA

√1 + 𝑦′2(𝑥) dx  

Since the edges of the tree are segments, we can simplify the functional. Let node 

𝑥𝑘+1;1 have coordinates (𝑋1; 𝑌1), and �̂�𝑚𝑖𝑛; 𝑘;1  - (𝑋2; 𝑌2). Then the equation of the 

tree edge can be represented as: 

𝑦 =  
(𝑥 − 𝑋1)(𝑌2 − 𝑌1)

𝑋2 − 𝑋1
+ 𝑌1(9) 

Derivative 𝑦′(𝑥) is constant, so the functional J(y) can be rewritten as: 

J(y) =  
α

2
((X2 − X1)

2 + (𝑌2 − 𝑌1)
2)

+  ∫ β(x,
(𝑥 − 𝑋1)(𝑌2 − 𝑌1)

𝑋2 − 𝑋1
+ 𝑌1 )

X2

X1

√1 + (
𝑌2 − 𝑌1
𝑋2 − 𝑋1

)
2

 dx(10) 

 

 If there are several such vertices, we take any of them as �̂�𝑚𝑖𝑛; 𝑘;1. Obtained in this 

way, we add the edge to the tree.  

 

In the same set of vertices  �̂�𝑘;1\𝑥𝑘+1;1 , we check the paths from the starting point 

𝑥0 to �̂�𝑘;1, ∀�̂�𝑘;1 ∊ �̂�𝑘;1. Let us denote the path from 𝑥0 to �̂�𝑘;1 by 𝑃(𝑥0; �̂�𝑘;1). Such a 

path can be unambiguously defined, since it traverses the edges of a tree in which 

each vertex has a single 'parent' vertex. If the path constructed earlier from the starting 

point is more expensive, in the sense of functional J(y), than the path [�̂�𝑘;1; 𝑥𝑘+1;1] ∪

[𝑥𝑘+1;1; �̂�𝑚𝑖𝑛; 𝑘;1] ∪ 𝑃(𝑥0; �̂�𝑚𝑖𝑛; 𝑘;1), then we remove the edge connecting vertex �̂�𝑘;1 

and its 'parent' from the tree 𝑇1, and add the edge[�̂�𝑘;1; 𝑥𝑘+1;1] to it. Such manipula-

tions do not destroy the graph-tree structure and it optimizes the construction. 

Simultaneous with the procedures for the tree from the initial node, we do all the 

same steps for the tree from the final state respectively. Thus, we add a new node 

𝑥𝑘+1;2 to the 𝑇2: 

𝑥𝑘+1;2

= {
�̅�𝑘;2 + (𝑥𝑖 − �̅�𝑘;2)𝛿, 𝑖𝑓 �̅�𝑘;2 + 𝜌(�̅�𝑘;2;  (𝑥𝑖 − �̅�𝑘;2)𝛿) ≤ 𝜌(�̅�𝑘;2; 𝑥𝑖)

�̅�𝑘;2 + 𝑥𝑖 , 𝑖𝑓 �̅�𝑘;2 + 𝜌(�̅�𝑘;2;  (𝑥𝑖 − �̅�𝑘;2)𝛿) > 𝜌(�̅�𝑘;2; 𝑥𝑖)
(11) 
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If the segment [�̅�𝑘;2; 𝑥𝑘+1;2] intersects the set of obstacles 𝑌, we assume that 

𝑋𝑘+1;2 = 𝑋𝑘;2, without adding new edges to 𝑇2, we proceed to the (k+1)-th iteration. 

If the segment does not intersect the set of obstacles, then 𝑋𝑘+1;2  =  𝑋𝑘;2 ∪ {𝑥𝑘+1;2}. 
 

Let �̂�𝑘;2 be the set of point of the 𝑋𝑘;2 that are located in the r-neighborhood of the 

point 𝑥𝑘+1;2: 

 

�̂�𝑘;2 = 𝑋𝑘;2 ∩ 𝐵𝑟(𝑥𝑘+1;2) , 𝑟 > 𝜹(12) 

In the set �̂�𝑘;2\𝑥𝑘+1;2, we look for a vertex �̂�𝑚𝑖𝑛; 𝑘;2 of the tree 𝑇2 whose edge 

from which to 𝑥𝑘+1;2 is minimal in the sense of the functional (1): 

J(y) =  
α

2
(∫ √1 + 𝑦′2(𝑥)

𝑥𝐵

xA

 dx )

2

+ ∫ β(x, y)
𝑥𝐵

xA

√1 + 𝑦′2(𝑥) dx  

 

Since the edges of the tree are segments, we can simplify the functional. Let node 

𝑥𝑘+1;2 have coordinates (𝑋1; 𝑌1), and �̂�𝑚𝑖𝑛; 𝑘;2  - (𝑋2; 𝑌2). Then the equation of the 

tree edge can be represented as: 

𝑦 =  
(𝑥 − 𝑋1)(𝑌2 − 𝑌1)

𝑋2 − 𝑋1
+ 𝑌1(13) 

Derivative 𝑦′(𝑥) is constant, so the functional J(y) can be rewritten as: 

J(y) =  
α

2
((X2 − X1)

2 + (𝑌2 − 𝑌1)
2)

+  ∫ β(x,
(𝑥 − 𝑋1)(𝑌2 − 𝑌1)

𝑋2 − 𝑋1
+ 𝑌1 )

X2

X1

√1 + (
𝑌2 − 𝑌1
𝑋2 − 𝑋1

)
2

 dx(14) 

 

 If there are several such vertices, we take any of them as �̂�𝑚𝑖𝑛; 𝑘;2. Obtained in 

this way, we add the edge to the tree.  

 

In the same set of vertices  �̂�𝑘;2\𝑥𝑘+1;2, we check the paths from the starting point 

𝑥0 to �̂�𝑘;2, ∀�̂�𝑘;2 ∊ �̂�𝑘;2. Let us denote the path from 𝑥0 to �̂�𝑘;2 by 𝑃(𝑥0; �̂�𝑘;2). Such a 

path can be unambiguously defined, since it traverses the edges of a tree in which 

each vertex has a single 'parent' vertex. If the path constructed earlier from the starting 

point is more expensive, in the sense of functional J(y), than the path [�̂�𝑘;2; 𝑥𝑘+1;2] ∪

[𝑥𝑘+1;2; �̂�𝑚𝑖𝑛; 𝑘;2] ∪ 𝑃(𝑥0; �̂�𝑚𝑖𝑛; 𝑘;2), then we remove the edge connecting vertex �̂�𝑘;1 

and its 'parent' from the tree 𝑇2, and add the edge [�̂�𝑘;2; 𝑥𝑘+1;2] to it. Such manipula-

tions do not destroy the graph-tree structure and it optimizes the construction. 

 

4. If 𝜌(𝑥𝑇1 , 𝑥𝑇2) ≤ 𝜀, i.e. ε-neighborhoods of nodes from trees 𝑇1, 𝑇2 intersect, we 

connect the nodes by an edge [𝑥𝑇1; 𝑥𝑇2], consider that the optimal path is constructed 
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and stop further computations. If there are several such intersections, then the con-

struction of an edge connecting two trees will be done, as described below. 

Let there be m intersections of the neighborhoods of the nodes of two trees: 

{
 
 

 
 

𝜌(𝑥1;𝑇1 , 𝑥1;𝑇2) ≤ 𝜀

𝜌(𝑥2;𝑇1 , 𝑥2;𝑇2) ≤ 𝜀
…

𝜌(𝑥𝑚−1;𝑇1 , 𝑥𝑚−1;𝑇2) ≤ 𝜀

𝜌(𝑥𝑚;𝑇1 , 𝑥𝑚;𝑇2) ≤ 𝜀

(9) 

 

The paths 𝑃(𝑥0; 𝑥1;𝑇1),…, 𝑃(𝑥0; 𝑥𝑚;𝑇1) and 𝑃(𝑥∗; 𝑥1;𝑇2),…, 𝑃(𝑥∗; 𝑥𝑚;𝑇2) are 

uniquely defined due to the graph-tree structure. The edge that will connect trees 𝑇1 

and 𝑇2 is the edge that provides the minimum path, in the sense of a functional J(y), of 

the following possible paths: 

𝑃(𝑥0; 𝑥1;𝑇1) ∪ [𝑥1;𝑇1; 𝑥1;𝑇2] ∪ 𝑃(𝑥∗; 𝑥1;𝑇2)…
𝑃(𝑥0; 𝑥1;𝑇1) ∪ [𝑥1;𝑇1; 𝑥𝑚;𝑇2] ∪ 𝑃(𝑥∗; 𝑥𝑚;𝑇2)

𝑃(𝑥0; 𝑥2;𝑇1) ∪ [𝑥2;𝑇1; 𝑥1;𝑇2] ∪ 𝑃(𝑥∗; 𝑥1;𝑇2)
…

𝑃(𝑥0; 𝑥2;𝑇1) ∪ [𝑥2;𝑇1; 𝑥𝑚;𝑇2] ∪ 𝑃(𝑥∗; 𝑥𝑚;𝑇2)
…

𝑃(𝑥0; 𝑥𝑚;𝑇1) ∪ [𝑥𝑚;𝑇1; 𝑥1;𝑇2] ∪ 𝑃(𝑥∗; 𝑥1;𝑇2)
…

𝑃(𝑥0; 𝑥𝑚;𝑇1) ∪ [𝑥𝑚;𝑇1; 𝑥𝑚;𝑇2] ∪ 𝑃(𝑥∗; 𝑥𝑚;𝑇2)

(15) 

 

If there are no nodes in trees 𝑇1, 𝑇2 whose ε-neighborhoods intersect, then we pro-

ceed to the (k+1)-th iteration. 

Algorithm code description. 

Algorithm RRT-connect: 

V_0 ← {x_0}; E_0 ← ∅; 

V_* ← {x_*}; E_* ← ∅; 
for i = 1, . . . , n do  

 x_rand ← Random_i; 

 x_nearest_0 ← Nearest(G = (V_0, E_0), x_rand); 

 x_nearest_* ← Nearest(G = (V_*, E_*), x_rand); 

  x_new_0 ← Step(x_nearest_0, x_rand); 

  x_new_* ← Step(x_nearest_*, x_rand); 

 

 if ObtacleFree(x_nearest_0, x_new_0) && Obta-

cleFree(x_nearest_*, x_new_*) then 
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  X_near_0 ← Neighborhood(G = (V_0, E_0), x_new_0,ε); 

  X_near_* ← Neighborhood(G = (V_*, E_*), x_new_*,ε); 

  V_0 ← V_0 ∪ {x_new_0}; 

  V_* ← V_* ∪ {x_new_*}; 
  X_min_0 ← x_nearest_0;  

  X_min_* ← x_nearest_*; 

  c_min_0 ← CostPath(x_nearest_0) + Function-

al(x_nearest_0, x_new_0); 

  c_min_* ← CostPath(x_nearest_*) + Function-

al(x_nearest_*, x_new_*); 

 

  foreach x_near_0 ∈ X_near_0 do 
   if ObstacleFree(x_near_0, x_new_0)then 

    if CostPath(x_near_0) + Functional(x_near_0, 

x_new_0) < c_min_0 then 

     x_min_0 ← x_near_0;  

     c_min_0 ← CostPath(x_near_0) + Function-

al(x_near_0, x_new_0) 

  E_0 ← E_0 ∪ {(x_min_0, x_new_0)}; 

  foreach x_near_* ∈ X_near_* do 
   if ObstacleFree(x_near_*, x_new_*)then 

    if CostPath(x_near_*) + Functional(x_near_*, 

x_new_*) < c_min_* then 

     x_min_* ← x_near_*;  

     c_min_* ← CostPath(x_near_*) + Function-

al(x_near_*, x_new_*) 

  E_* ← E_* ∪ {(x_min_*, x_new_*)}; 
 

  foreach x_near_0 ∈ X_near_0 do 
   if ObstacleFree(x_new_0, x_near_0) then 

    if CostPath(x_new_0) + Functional(x_new_0, 

x_near_0) < CostPath(x_near_0) then  

     x_parent_0 ← Parent(x_near_0); 

   E_0 ← (E_0 \ {(x_parent_0, x_near_0)}) ∪ {(x_new_0, 
x_near_0)} 

  foreach x_near_* ∈ X_near_* do 
   if ObstacleFree(x_new_*, x_near_*) then 

    if CostPath(x_new_*) + Functional(x_new_*, 

x_near_*) < CostPath(x_near_*) then  

     x_parent_* ← Parent(x_near_*); 

   E_* ← (E_* \ {(x_parent_*, x_near_*)}) ∪ {(x_new_*, 
x_near_*)} 

 

  if Neighborhood(G = (V_0, E_0), x_new_*,ε) not ∅ then 
   X_last ← Nearest(G = (V_0, E_0), x_new_*) 
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   V_0 ← V_0 ∪ {x_new_*}; 
   x_min_last ← x_last; 

   c_min_last ← CostPath(x_last) + Functional(x_last, 

x_new_*) + CostPath(x_new_*); 

   foreach x_last ∈ Neighborhood(G = (V_0, E_0), 
x_new_*,ε)do 

    if ObstacleFree(x_last, x_new_*)then 

     if CostPath(x_last) + Functional(x_last, 

x_new_*) + CostPath(x_new_*) < c_min_last then 

      x_min_last ← x_last;  

      c_min_last ← CostPath(x_last) + Function-

al(x_last, x_new_0) + CostPath(x_new_*) 

   E_0 ← E_0 ∪ {(x_min_last, x_new_*)} ∪  Path(x_new_*, 
x_*); 

   G ← (V_0, E_0) 

   break 

  if Neighborhood(G = (V_*, E_*), x_new_0,ε) not ∅ then 
   x_last ← Nearest(G = (V_*, E_*), x_new_0) 

   V_* ← V_* ∪ {x_new_0}; 
   x_min_last ← x_last; 

   c_min_last ← CostPath(x_last) + Functional(x_last, 

x_new_0) + CostPath(x_new_0); 

   foreach x_last ∈ Neighborhood(G = (V_*, E_*), 
x_new_0,ε)do 

    if ObstacleFree(x_last, x_new_0)then 

     if CostPath(x_last) + Functional(x_last, 

x_new_0) + CostPath(x_new_0) < c_min_last then 

      x_min_last ← x_last;  

      c_min_last ← CostPath(x_last) + Function-

al(x_last, x_new_0) + CostPath(x_new_0) 

   E_* ← E_* ∪ {(x_min_last, x_new_0)} ∪  Path(x_new_0, 
x_0); 

   G ← (V_*, E_*) 

   break 

 

return G; 

3 Conclusion 

This paper describes the RRT* and RRT-connect used for seeking the most efficient 

road trajectory in terms of construction costs while considering the constraints posed 

by the terrain. These algorithms offer a systematic approach to optimizing the road 

layout given the various constraints imposed by the topography and other environ-

mental factors. Via the RRT* and RRT-connect algorithms, engineers and planners 
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can achieve a more streamlined process for developing road networks that minimize 

construction costs and adhere to the unique challenges presented by diverse terrains. 

This paper serves as a guide to understanding and implementing these algorithms in 

infrastructure development, in civil engineering and related fields. 
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