
Application of the RRT* and RRT-connect algorithms

for finding the optimal trajectory in the sense of

construction cost

Kira Dmitrieva1 and Majid Abbasov2[0000-0003-1484-4733]

1 St. Petersburg State University, SPbSU, 7/9

Universitetskaya nab., St. Petersburg, 199034 Russia

2 St. Petersburg State University, SPbSU, 7/9

Universitetskaya nab., St. Petersburg, 199034 Russia
m.abbasov@spbu.ru

Abstract. The essence of the research work is to consider the practical solution

of the variational problem using iterative approach methods such as RRT* and

RRT-connect. Originally, these algorithms were proposed to find the shortest

trajectory connecting two given points on the terrain. In contrast with that the

modifications presented in the present work allow us to search the trajectory,

which is optimal in the sense of construction cost. This cost is defined as inte-

gral functional. The algorithms work based on randomly constructed graph-

trees to construct a piecewise linear approximation of the solution. Though a

specific problem is considered, the resulting solution approach opens access to

solving a large class of problems. By applying these algorithms in infrastructure

development, civil engineering, and related fields, engineers and planners will

be able to achieve a more streamlined process for creating road networks that

minimize construction costs and address the unique challenges posed by differ-

ent terrains.

Keywords: optimal path, graph tree, fast growing graph trees.

1 Introduction

The problem of finding the optimal in terms of construction costs path of a road con-

necting two given points, which naturally arises before various private organizations,

government agencies and military structures, is a subject of study for many research-

ers. One of the most popular approaches to solving this problem is the Cost Path

Analysis; it is based on the construction and analysis of a cost lattice. This paper con-

siders the variational problem of obtaining a road trajectory that is optimal in terms of

construction cost, using other computational tools. To get the solution, a modified

methods of rapidly-exploring random trees RRT* and RRT-connect are applied. In

contrast to the original algorithms used for finding the shortest path ([3], [4], [5]), and

mailto:m.abbasov@spbu.ru
mailto:m.abbasov@spbu.ru

2

other modifications ([6], [7]), this paper proposes their adaptation for obtaining the

trajectory on which the minimum of the construction cost functional is achieved.

Let the points A and B be given on the terrain, acting as the start and end points,

respectively. It is required to connect them by a road in such a way that the cost of its

construction is minimized. Let us denote by α the cost of delivery of materials re-

quired to lay a unit length of roadbed per the unit length of the roadbed. We assume

that the same amount of materials is required to build a unit of road, regardless of the

terrain. Let us denote the cost of construction works per unit length of the roadbed as

β: 𝑅2 → 𝑅, which is a continuous function that has continuous partial derivatives. As

it was shown in [1], [2], the functional can be written in the form:

J(y) =
α

2
(∫ √1 + 𝑦′2(𝑥)

𝑥𝐵

xA

 dx)

2

+ ∫ β(x, y)
𝑥𝐵

xA

√1 + 𝑦′2(𝑥) dx (1)

2 Main Part

2.1 RRT*

The algorithm works on the basis of randomly constructed graph-trees from the

starting point until one node reaches the target point. We demonstrate how the RRT*

algorithm can be used for solving our problem of calculus of variations. Using this

approach, we obtain piecewise linear approximation of the solution. As it was men-

tioned in [5], the algorithm has time complexity 𝑂(𝑛𝑙𝑜𝑔(𝑛)) for processing, and

𝑂(𝑛) for query.

General conditions for graph construction. Let ρ be a given distance in the state

space 𝑈, where 𝑈 is bounded, and a tree 𝑇 ⊂ 𝑈 (a tree is the union of a set of vertices

and a set of edges). Let 𝑥0 denote the initial state, the first node of our model; 𝑥0 ∊ 𝑈,

𝑥0 ∊ 𝑇, and 𝑥∗ denote the final state to be reached; 𝑥∗ ∊ 𝑈, 𝑥∗ ∊ 𝑇. Let Y represent the

set of obstacles to be circumvented. The only thing we can say about the obstacles is

whether the chosen state lies in the obstacle region or not. In this manner, 𝑈\𝑌 is the

free region in which the path will lie; 𝑇 ⊂ 𝑈\𝑌. The value δ = 𝑐𝑜𝑛𝑠𝑡 is the step, and

𝜀 ≥ 0 is the radius of the neighborhood of the endpoint, once in which the algorithm

stops further work.

Algorithm at the k-th step. We denote by 𝑋𝑘the set of vertices of the tree 𝑇 at step k,

𝑋𝑘 ⊂ 𝑇.

1. We choose a random state 𝑥𝑖 from a free region; 𝑥𝑖 ∊ 𝑈\𝑌.

2. We find the nearest neighbor �̅�𝑘 from the set 𝑋𝑘 to the state 𝑥𝑖 in the sense of

distance 𝜌.

3

3. We add a new node 𝑥𝑘+1:

 𝑥𝑘+1 = {
�̅�𝑘 + (𝑥𝑖 − �̅�𝑘)𝛿, 𝑖𝑓 𝜌(�̅�𝑘; �̅�𝑘 + (𝑥𝑖 − �̅�𝑘)𝛿) ≤ 𝜌(�̅�𝑘; 𝑥𝑖)

�̅�𝑘 + 𝑥𝑖 , 𝑖𝑓 𝜌(�̅�𝑘; �̅�𝑘 + (𝑥𝑖 − �̅�𝑘)𝛿) > 𝜌(�̅�𝑘; 𝑥𝑖)
(2)

If the segment [�̅�𝑘; 𝑥𝑘+1] intersects the set of obstacles 𝑌, we assume that 𝑋𝑘+1 =
 𝑋𝑘, without adding new edges to 𝑇, and proceed to the (k+1)-th iteration. If the seg-

ment does not intersect the set of obstacles, then 𝑋𝑘+1 = 𝑋𝑘 ∪ {𝑥𝑘+1}.

Let �̂�𝑘- the set of points of the 𝑋𝑘 that are in the r-neighborhood of the point 𝑥𝑘+1:

�̂�𝑘 = 𝑋𝑘 ∩ 𝐵𝑟(𝑥𝑘+1) , 𝑟 > 𝜹(3)

In the set �̂�𝑘\𝑥𝑘+1, we look for a vertex �̂�𝑚𝑖𝑛; 𝑘 of the tree 𝑇, the edge from which

to 𝑥𝑘+1 is minimal in the sense of the functional (1):

J(y) =
α

2
(∫ √1 + 𝑦′2(𝑥)

𝑥𝐵

xA

 dx)

2

+ ∫ β(x, y)
𝑥𝐵

xA

√1 + 𝑦′2(𝑥) dx

Since the edges of the tree are segments, we can simplify the functional. Let node

𝑥𝑘+1 have coordinates (𝑋1; 𝑌1), and �̂�𝑚𝑖𝑛; 𝑘 - (𝑋2; 𝑌2). Then the equation of the tree

edge can be represented as:

𝑦 =
(𝑥 − 𝑋1)(𝑌2 − 𝑌1)

𝑋2 − 𝑋1
+ 𝑌1(4)

Derivative 𝑦′(𝑥) is constant, so the functional J(y) can be rewritten as:

J(y) =
α

2
((X2 − X1)

2 + (𝑌2 − 𝑌1)
2)

+ ∫ β(x,
(𝑥 − 𝑋1)(𝑌2 − 𝑌1)

𝑋2 − 𝑋1
+ 𝑌1)

X2

𝑋1

√1 + (
𝑌2 − 𝑌1
𝑋2 − 𝑋1

)
2

 dx(5)

If there are several such vertices, we take any of them as �̂�𝑚𝑖𝑛; 𝑘. Obtained in this

way, the edge is added to the tree.

In the same set of vertices �̂�𝑘\𝑥𝑘+1, we check the paths from the starting point 𝑥0

to �̂�𝑘, ∀�̂�𝑘 ∊ �̂�𝑘. Let us denote the path from 𝑥0 to �̂�𝑘 by 𝑃(𝑥0; �̂�𝑘). Such a path can

be uniquely defined, since it is drawn along the edges of a tree in which each vertex

has a single 'parent' vertex. If the path constructed earlier from the starting point is

more expensive, in the sense of functional J(y), than the path[�̂�𝑘; 𝑥𝑘+1] ∪
[𝑥𝑘+1; �̂�𝑚𝑖𝑛; 𝑘] ∪ 𝑃(𝑥0; �̂�𝑚𝑖𝑛; 𝑘), then we remove the edge connecting vertex �̂�𝑘 and its

'parent' from the tree, and add the edge [�̂�𝑘; 𝑥𝑘+1] to 𝑇. Such manipulations do not

destroy the graph-tree structure and it optimizes the construction.

4

4. If 𝜌(𝑥𝑘+1, 𝑥∗) ≤ 𝜀, we stop further computations and consider that the path is

constructed. If not, we proceed to the (k+1)-th iteration.

This modification of the RRT* algorithm allows us to find a path that is optimal in

the sense of the cost functional (1):

J(y) =
α

2
(∫ √1 + 𝑦′2(𝑥)

𝑥𝐵

xA

 dx)

2

+ ∫ β(x, y)
𝑥𝐵

xA

√1 + 𝑦′2(𝑥) dx

Algorithm code description.

Algorithm RRT∗:

V ← {x_init}; E ← ∅;
for i = 1, . . . , n do

 x_rand ← Random_i;

 x_nearest ← Nearest(G = (V, E), x_rand);

 x_new ← Step(x_nearest, x_rand);

 if ObtacleFree(x_nearest, x_new) then

 X_near ← Neighborhood(G = (V, E), x_new,ε);

 V ← V ∪ {x_new};
 X_min ← x_nearest;

 c_min ← CostPath(x_nearest) + Functional(x_nearest,

x_new);

 foreach x_near ∈ X_near do
 if ObstacleFree(x_near, x_new)then

 if CostPath(x_near) + Functional(x_near, x_new) <

c_min then

 x_min ← x_near;

 c_min ← CostPath(x_near) + Functional(x_near,

x_new)

 E ← E ∪ {(x_min, x_new)};

 foreach x_near ∈ X_near do
 if ObstacleFree(x_new, x_near) then

 if CostPath(x_new) + Functional(x_new, x_near) <

CostPath(x_near) then

 x_parent ← Parent(x_near);

 E ← (E \ {(x_parent, x_near)}) ∪ {(x_new, x_near)}
return G = (V, E);

Example of path construction. Consider a problem with parameters:

5

α = 0.1
𝑥0 = 𝑦0 = 0
𝑥∗ = 𝑦∗ = 1

𝛽(𝑥, 𝑦) = 1 + 𝑠𝑖𝑛 5𝑥 − 𝑠𝑖𝑛 𝑦

(6)

 For convenience of interpretation, we can consider that the function β(x, y) de-

fines the equation of the terrain surface, i.e. the cost of construction works is greater

the higher the point lies above the 𝑂𝑥𝑦 plane.

The following are graphical representations of the operation of the algorithm.

6

Fig. 1. Example of path construction using a modification of RRT* for 500 nodes; 2-

dimentional representation

Fig. 2. Example of path construction using a modification of RRT* for 500 nodes; 3-

dimentional representation

Fig. 3. Example of path construction using a modification of RRT* for 600 nodes; 2-

dimentional representation

7

Fig. 4. Example of path construction using a modification of RRT* for 600 nodes; 3-

dimentional representation

Fig. 5. Example of path construction using a modification of RRT* for 900 nodes; 2-

dimentional representation

Fig. 6. Example of path construction using a modification of RRT* for 600 nodes; 3-

dimentional representation

8

2.2 RRT-connect

The algorithm works on the basis of randomly constructed two graph-trees from

the start and end points simultaneously until the trees are connected. Once trees are

connected, it is claimed that the path has been built. The proposed algorithm differs

from the original one in [4] or its modification [6] in the way graphs are connected.

We propose the modification where the process of connection is organized in a way

which provides optimality of the entire trajectory in the sense of functional (1). Using

this approach, we obtain piecewise linear approximation of the solution.

General conditions for graph construction. Let 𝜌 be a given distance in the state

space 𝑈, where 𝑈 is bounded, and trees 𝑇1, 𝑇2 ⊂ 𝑈 (a tree is the union of a set of ver-

tices and a set of edges). We denote by 𝑥0 the initial state, the node from which the

first tree will grow; 𝑥0 ∊ 𝑈, 𝑥0 ∊ 𝑇1, and by 𝑥∗ the final state from which the second

tree will grow; 𝑥∗ ∊ 𝑈, 𝑥∗ ∊ 𝑇2. Let 𝑌 represent the set of obstacles to be bypassed.

The only thing we can say about the obstacles is whether the chosen state lies in the

obstacle region or not. Let 𝑈\𝑌 be the free region in which the path will lie. The value

δ = 𝑐𝑜𝑛𝑠𝑡 is the step, and 𝜀 ≥ 0 is the radius of the neighborhood of each node.

Algorithm at the k-th step. Let us denote by 𝑋𝑘;1 and 𝑋𝑘;2 the sets of tree nodes

𝑇1, 𝑇2 at step k respectively, 𝑋𝑘;1 ⊂ 𝑇1, 𝑋𝑘;2 ⊂ 𝑇2.

1. We choose a random state 𝑥𝑖 from a free region; 𝑥𝑖 ∊ 𝑈\𝑌.

2. We find the nearest neighbor �̅�𝑘;1 from the set 𝑋𝑘;1 and �̅�𝑘;2 from the set 𝑋𝑘;2 to

state 𝑥𝑖 in the sense of distance 𝜌.

Consider the construction of a new node for the tree 𝑇1; for 𝑇2, all the construction

proceeds in the same way, the optimization will be for paths from the endpoint 𝑥∗.

3. We add a new node 𝑥𝑘+1;1 to the 𝑇1:

𝑥𝑘+1;1 = {
�̅�𝑘;1 + (𝑥𝑖 − �̅�𝑘;1)𝛿, 𝑖𝑓 𝜌(�̅�𝑘;1; �̅�𝑘;1 + (𝑥𝑖 − �̅�𝑘;1)𝛿) ≤ 𝜌(�̅�𝑘;1; 𝑥𝑖)

�̅�𝑘;1 + 𝑥𝑖 , 𝑖𝑓 𝜌(�̅�𝑘;1; �̅�𝑘;1 + (𝑥𝑖 − �̅�𝑘;1)𝛿) > 𝜌(�̅�𝑘;1; 𝑥𝑖)
(7)

If the segment [�̅�𝑘;1; 𝑥𝑘+1;1] intersects the set of obstacles 𝑌, we assume that

𝑋𝑘+1;1 = 𝑋𝑘;1, without adding new edges to 𝑇1, we proceed to the (k+1)-th iteration.

If the segment does not intersect the set of obstacles, then 𝑋𝑘+1;1 = 𝑋𝑘;1 ∪ {𝑥𝑘+1;1}.

Let �̂�𝑘;1 be the set of points of the 𝑋𝑘;1 that are located in the r-neighborhood of

the point 𝑥𝑘+1;1:

9

�̂�𝑘;1 = 𝑋𝑘;1 ∩ 𝐵𝑟(𝑥𝑘+1;1) , 𝑟 > 𝜹(8)

In the set �̂�𝑘;1\𝑥𝑘+1;1, we look for a vertex �̂�𝑚𝑖𝑛; 𝑘;1 of the tree 𝑇1 whose edge from

which to 𝑥𝑘+1;1 is minimal in the sense of the functional (1):

J(y) =
α

2
(∫ √1 + 𝑦′2(𝑥)

𝑥𝐵

xA

 dx)

2

+ ∫ β(x, y)
𝑥𝐵

xA

√1 + 𝑦′2(𝑥) dx

Since the edges of the tree are segments, we can simplify the functional. Let node

𝑥𝑘+1;1 have coordinates (𝑋1; 𝑌1), and �̂�𝑚𝑖𝑛; 𝑘;1 - (𝑋2; 𝑌2). Then the equation of the

tree edge can be represented as:

𝑦 =
(𝑥 − 𝑋1)(𝑌2 − 𝑌1)

𝑋2 − 𝑋1
+ 𝑌1(9)

Derivative 𝑦′(𝑥) is constant, so the functional J(y) can be rewritten as:

J(y) =
α

2
((X2 − X1)

2 + (𝑌2 − 𝑌1)
2)

+ ∫ β(x,
(𝑥 − 𝑋1)(𝑌2 − 𝑌1)

𝑋2 − 𝑋1
+ 𝑌1)

X2

X1

√1 + (
𝑌2 − 𝑌1
𝑋2 − 𝑋1

)
2

 dx(10)

 If there are several such vertices, we take any of them as �̂�𝑚𝑖𝑛; 𝑘;1. Obtained in this

way, we add the edge to the tree.

In the same set of vertices �̂�𝑘;1\𝑥𝑘+1;1 , we check the paths from the starting point

𝑥0 to �̂�𝑘;1, ∀�̂�𝑘;1 ∊ �̂�𝑘;1. Let us denote the path from 𝑥0 to �̂�𝑘;1 by 𝑃(𝑥0; �̂�𝑘;1). Such a

path can be unambiguously defined, since it traverses the edges of a tree in which

each vertex has a single 'parent' vertex. If the path constructed earlier from the starting

point is more expensive, in the sense of functional J(y), than the path [�̂�𝑘;1; 𝑥𝑘+1;1] ∪

[𝑥𝑘+1;1; �̂�𝑚𝑖𝑛; 𝑘;1] ∪ 𝑃(𝑥0; �̂�𝑚𝑖𝑛; 𝑘;1), then we remove the edge connecting vertex �̂�𝑘;1

and its 'parent' from the tree 𝑇1, and add the edge[�̂�𝑘;1; 𝑥𝑘+1;1] to it. Such manipula-

tions do not destroy the graph-tree structure and it optimizes the construction.

Simultaneous with the procedures for the tree from the initial node, we do all the

same steps for the tree from the final state respectively. Thus, we add a new node

𝑥𝑘+1;2 to the 𝑇2:

𝑥𝑘+1;2

= {
�̅�𝑘;2 + (𝑥𝑖 − �̅�𝑘;2)𝛿, 𝑖𝑓 �̅�𝑘;2 + 𝜌(�̅�𝑘;2; (𝑥𝑖 − �̅�𝑘;2)𝛿) ≤ 𝜌(�̅�𝑘;2; 𝑥𝑖)

�̅�𝑘;2 + 𝑥𝑖 , 𝑖𝑓 �̅�𝑘;2 + 𝜌(�̅�𝑘;2; (𝑥𝑖 − �̅�𝑘;2)𝛿) > 𝜌(�̅�𝑘;2; 𝑥𝑖)
(11)

10

If the segment [�̅�𝑘;2; 𝑥𝑘+1;2] intersects the set of obstacles 𝑌, we assume that

𝑋𝑘+1;2 = 𝑋𝑘;2, without adding new edges to 𝑇2, we proceed to the (k+1)-th iteration.

If the segment does not intersect the set of obstacles, then 𝑋𝑘+1;2 = 𝑋𝑘;2 ∪ {𝑥𝑘+1;2}.

Let �̂�𝑘;2 be the set of point of the 𝑋𝑘;2 that are located in the r-neighborhood of the

point 𝑥𝑘+1;2:

�̂�𝑘;2 = 𝑋𝑘;2 ∩ 𝐵𝑟(𝑥𝑘+1;2) , 𝑟 > 𝜹(12)

In the set �̂�𝑘;2\𝑥𝑘+1;2, we look for a vertex �̂�𝑚𝑖𝑛; 𝑘;2 of the tree 𝑇2 whose edge

from which to 𝑥𝑘+1;2 is minimal in the sense of the functional (1):

J(y) =
α

2
(∫ √1 + 𝑦′2(𝑥)

𝑥𝐵

xA

 dx)

2

+ ∫ β(x, y)
𝑥𝐵

xA

√1 + 𝑦′2(𝑥) dx

Since the edges of the tree are segments, we can simplify the functional. Let node

𝑥𝑘+1;2 have coordinates (𝑋1; 𝑌1), and �̂�𝑚𝑖𝑛; 𝑘;2 - (𝑋2; 𝑌2). Then the equation of the

tree edge can be represented as:

𝑦 =
(𝑥 − 𝑋1)(𝑌2 − 𝑌1)

𝑋2 − 𝑋1
+ 𝑌1(13)

Derivative 𝑦′(𝑥) is constant, so the functional J(y) can be rewritten as:

J(y) =
α

2
((X2 − X1)

2 + (𝑌2 − 𝑌1)
2)

+ ∫ β(x,
(𝑥 − 𝑋1)(𝑌2 − 𝑌1)

𝑋2 − 𝑋1
+ 𝑌1)

X2

X1

√1 + (
𝑌2 − 𝑌1
𝑋2 − 𝑋1

)
2

 dx(14)

 If there are several such vertices, we take any of them as �̂�𝑚𝑖𝑛; 𝑘;2. Obtained in

this way, we add the edge to the tree.

In the same set of vertices �̂�𝑘;2\𝑥𝑘+1;2, we check the paths from the starting point

𝑥0 to �̂�𝑘;2, ∀�̂�𝑘;2 ∊ �̂�𝑘;2. Let us denote the path from 𝑥0 to �̂�𝑘;2 by 𝑃(𝑥0; �̂�𝑘;2). Such a

path can be unambiguously defined, since it traverses the edges of a tree in which

each vertex has a single 'parent' vertex. If the path constructed earlier from the starting

point is more expensive, in the sense of functional J(y), than the path [�̂�𝑘;2; 𝑥𝑘+1;2] ∪

[𝑥𝑘+1;2; �̂�𝑚𝑖𝑛; 𝑘;2] ∪ 𝑃(𝑥0; �̂�𝑚𝑖𝑛; 𝑘;2), then we remove the edge connecting vertex �̂�𝑘;1

and its 'parent' from the tree 𝑇2, and add the edge [�̂�𝑘;2; 𝑥𝑘+1;2] to it. Such manipula-

tions do not destroy the graph-tree structure and it optimizes the construction.

4. If 𝜌(𝑥𝑇1 , 𝑥𝑇2) ≤ 𝜀, i.e. ε-neighborhoods of nodes from trees 𝑇1, 𝑇2 intersect, we

connect the nodes by an edge [𝑥𝑇1; 𝑥𝑇2], consider that the optimal path is constructed

11

and stop further computations. If there are several such intersections, then the con-

struction of an edge connecting two trees will be done, as described below.

Let there be m intersections of the neighborhoods of the nodes of two trees:

{

𝜌(𝑥1;𝑇1 , 𝑥1;𝑇2) ≤ 𝜀

𝜌(𝑥2;𝑇1 , 𝑥2;𝑇2) ≤ 𝜀
…

𝜌(𝑥𝑚−1;𝑇1 , 𝑥𝑚−1;𝑇2) ≤ 𝜀

𝜌(𝑥𝑚;𝑇1 , 𝑥𝑚;𝑇2) ≤ 𝜀

(9)

The paths 𝑃(𝑥0; 𝑥1;𝑇1),…, 𝑃(𝑥0; 𝑥𝑚;𝑇1) and 𝑃(𝑥∗; 𝑥1;𝑇2),…, 𝑃(𝑥∗; 𝑥𝑚;𝑇2) are

uniquely defined due to the graph-tree structure. The edge that will connect trees 𝑇1

and 𝑇2 is the edge that provides the minimum path, in the sense of a functional J(y), of

the following possible paths:

𝑃(𝑥0; 𝑥1;𝑇1) ∪ [𝑥1;𝑇1; 𝑥1;𝑇2] ∪ 𝑃(𝑥∗; 𝑥1;𝑇2)…
𝑃(𝑥0; 𝑥1;𝑇1) ∪ [𝑥1;𝑇1; 𝑥𝑚;𝑇2] ∪ 𝑃(𝑥∗; 𝑥𝑚;𝑇2)

𝑃(𝑥0; 𝑥2;𝑇1) ∪ [𝑥2;𝑇1; 𝑥1;𝑇2] ∪ 𝑃(𝑥∗; 𝑥1;𝑇2)
…

𝑃(𝑥0; 𝑥2;𝑇1) ∪ [𝑥2;𝑇1; 𝑥𝑚;𝑇2] ∪ 𝑃(𝑥∗; 𝑥𝑚;𝑇2)
…

𝑃(𝑥0; 𝑥𝑚;𝑇1) ∪ [𝑥𝑚;𝑇1; 𝑥1;𝑇2] ∪ 𝑃(𝑥∗; 𝑥1;𝑇2)
…

𝑃(𝑥0; 𝑥𝑚;𝑇1) ∪ [𝑥𝑚;𝑇1; 𝑥𝑚;𝑇2] ∪ 𝑃(𝑥∗; 𝑥𝑚;𝑇2)

(15)

If there are no nodes in trees 𝑇1, 𝑇2 whose ε-neighborhoods intersect, then we pro-

ceed to the (k+1)-th iteration.

Algorithm code description.

Algorithm RRT-connect:

V_0 ← {x_0}; E_0 ← ∅;

V_* ← {x_*}; E_* ← ∅;
for i = 1, . . . , n do

 x_rand ← Random_i;

 x_nearest_0 ← Nearest(G = (V_0, E_0), x_rand);

 x_nearest_* ← Nearest(G = (V_*, E_*), x_rand);

 x_new_0 ← Step(x_nearest_0, x_rand);

 x_new_* ← Step(x_nearest_*, x_rand);

 if ObtacleFree(x_nearest_0, x_new_0) && Obta-

cleFree(x_nearest_*, x_new_*) then

12

 X_near_0 ← Neighborhood(G = (V_0, E_0), x_new_0,ε);

 X_near_* ← Neighborhood(G = (V_*, E_*), x_new_*,ε);

 V_0 ← V_0 ∪ {x_new_0};

 V_* ← V_* ∪ {x_new_*};
 X_min_0 ← x_nearest_0;

 X_min_* ← x_nearest_*;

 c_min_0 ← CostPath(x_nearest_0) + Function-

al(x_nearest_0, x_new_0);

 c_min_* ← CostPath(x_nearest_*) + Function-

al(x_nearest_*, x_new_*);

 foreach x_near_0 ∈ X_near_0 do
 if ObstacleFree(x_near_0, x_new_0)then

 if CostPath(x_near_0) + Functional(x_near_0,

x_new_0) < c_min_0 then

 x_min_0 ← x_near_0;

 c_min_0 ← CostPath(x_near_0) + Function-

al(x_near_0, x_new_0)

 E_0 ← E_0 ∪ {(x_min_0, x_new_0)};

 foreach x_near_* ∈ X_near_* do
 if ObstacleFree(x_near_*, x_new_*)then

 if CostPath(x_near_*) + Functional(x_near_*,

x_new_*) < c_min_* then

 x_min_* ← x_near_*;

 c_min_* ← CostPath(x_near_*) + Function-

al(x_near_*, x_new_*)

 E_* ← E_* ∪ {(x_min_*, x_new_*)};

 foreach x_near_0 ∈ X_near_0 do
 if ObstacleFree(x_new_0, x_near_0) then

 if CostPath(x_new_0) + Functional(x_new_0,

x_near_0) < CostPath(x_near_0) then

 x_parent_0 ← Parent(x_near_0);

 E_0 ← (E_0 \ {(x_parent_0, x_near_0)}) ∪ {(x_new_0,
x_near_0)}

 foreach x_near_* ∈ X_near_* do
 if ObstacleFree(x_new_*, x_near_*) then

 if CostPath(x_new_*) + Functional(x_new_*,

x_near_*) < CostPath(x_near_*) then

 x_parent_* ← Parent(x_near_*);

 E_* ← (E_* \ {(x_parent_*, x_near_*)}) ∪ {(x_new_*,
x_near_*)}

 if Neighborhood(G = (V_0, E_0), x_new_*,ε) not ∅ then
 X_last ← Nearest(G = (V_0, E_0), x_new_*)

13

 V_0 ← V_0 ∪ {x_new_*};
 x_min_last ← x_last;

 c_min_last ← CostPath(x_last) + Functional(x_last,

x_new_*) + CostPath(x_new_*);

 foreach x_last ∈ Neighborhood(G = (V_0, E_0),
x_new_*,ε)do

 if ObstacleFree(x_last, x_new_*)then

 if CostPath(x_last) + Functional(x_last,

x_new_*) + CostPath(x_new_*) < c_min_last then

 x_min_last ← x_last;

 c_min_last ← CostPath(x_last) + Function-

al(x_last, x_new_0) + CostPath(x_new_*)

 E_0 ← E_0 ∪ {(x_min_last, x_new_*)} ∪ Path(x_new_*,
x_*);

 G ← (V_0, E_0)

 break

 if Neighborhood(G = (V_*, E_*), x_new_0,ε) not ∅ then
 x_last ← Nearest(G = (V_*, E_*), x_new_0)

 V_* ← V_* ∪ {x_new_0};
 x_min_last ← x_last;

 c_min_last ← CostPath(x_last) + Functional(x_last,

x_new_0) + CostPath(x_new_0);

 foreach x_last ∈ Neighborhood(G = (V_*, E_*),
x_new_0,ε)do

 if ObstacleFree(x_last, x_new_0)then

 if CostPath(x_last) + Functional(x_last,

x_new_0) + CostPath(x_new_0) < c_min_last then

 x_min_last ← x_last;

 c_min_last ← CostPath(x_last) + Function-

al(x_last, x_new_0) + CostPath(x_new_0)

 E_* ← E_* ∪ {(x_min_last, x_new_0)} ∪ Path(x_new_0,
x_0);

 G ← (V_*, E_*)

 break

return G;

3 Conclusion

This paper describes the RRT* and RRT-connect used for seeking the most efficient

road trajectory in terms of construction costs while considering the constraints posed

by the terrain. These algorithms offer a systematic approach to optimizing the road

layout given the various constraints imposed by the topography and other environ-

mental factors. Via the RRT* and RRT-connect algorithms, engineers and planners

14

can achieve a more streamlined process for developing road networks that minimize

construction costs and adhere to the unique challenges presented by diverse terrains.

This paper serves as a guide to understanding and implementing these algorithms in

infrastructure development, in civil engineering and related fields.

4 Acknowledgments

This research was supported by the Russian Science Foundation (RSF), project No

23-21-00027, https://rscf.ru/project/23-21-00027/.

References

1. Abbasov, M. E., & Sharlay, A. S. Searching for the cost-optimal road trajectory on the re-

lief of the terrain. Vestnik of Saint Petersburg University. Applied Mathematics. Computer

Science. Control Processes 17(1), 4–12. (2021).

2. M. E. Abbasov, A. S. Sharlay, “Variational approach to finding the cost-optimal trajecto-

ry”, Matem. Mod., 35:12 (2023), 89–100

3. S. M. LaValle. Rapidly-exploring random trees:A new tool for path planning.TR 98-

11,Computer Science Dept., Iowa State Universi-

ty.http://janowiec.cs.iastate.edu/papers/rrt.ps, Oct.1998.

4. J. J. Kuffner and S. M. LaValle, "RRT-connect: An efficient approach to single-query path

planning," Proceedings 2000 ICRA. Millennium Conference. IEEE International Confer-

ence on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), San

Francisco, CA, USA, 2000, pp. 995-1001 vol.2, doi: 10.1109/ROBOT.2000.844730.

5. S. Karaman and E. Frazzoli. Sampling-based Algorithms for Optimal Motion Planning. In-

ternational Journal of Robotics Research, 30(7):846-894, June 2011.

6. Klemm, Sebastian & Oberländer, Jan & Hermann, Andreas & Roennau, Arne & Schamm,

Thomas & Zöllner, J. & Dillmann, Rüdiger. (2015). RRT*-Connect: Faster, Asymptotical-

ly Optimal Motion Planning. 10.1109/ROBIO.2015.7419012.

7. Kang, J.-G.; Lim, D.-W.; Choi, Y.-S.; Jang, W.-J.; Jung, J.-W. Improved RRT-Connect

Algorithm Based on Triangular Inequality for Robot Path Planning. Sensors 2021, 21, 333.

http://janowiec.cs.iastate.edu/papers/rrt.ps

