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Abstract. There are different approaches to define trajectory that is optimal from 

the point of view of construction costs. We study the problem of obtaining a 

parametric equation of the cost-optimal trajectory for the road connecting two 

points on an initially given terrain. By means of mathematical modelling 

approach we construct the integral cost functional, which arguments are 

parametric functions describing the trajectory. Therefore, we get the problem of 

the calculus of variations, the solution of which defines the most cost-effective 

way. We derive the optimality condition which has a form of a system of integro-

differential equations. We solve the equations from the resulting system using 

the Galerkin method. The optimal solution is presented as linear combination of 

the first n functions of a system of twice continuously differentiable compactly 

supported functions on a given interval. The paper also presents the results of 

numerical experiments for various surfaces on which the road is laid. 

Keywords: Calculus of variations, Mathematical modelling, Integro-

differential equation, Shooting method,  Linearization, Optimal trajectory. 

1 Introduction 

In this paper, we present a method to determine the most cost-effective path. Such tasks 

are very important, as they have many applications in various fields [1-3]. Researchers 

often use popular methods, which sometimes cannot provide the expected quality of 

the solution [4-21]. In contrast, our method is based on the variational principle and 

avoids these shortcomings. In this study, we apply the results obtained in our previous 

works [22, 23], in which the problem was formulated in variational form and optimality 

conditions were described. These conditions represent an integral-differential equation, 

the solution of which is a difficult task. Here we have solved this equation using the 

Galerkin method and given numerical examples. 

. 
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2 Problem statement 

Consider two points: O and A, which define the starting and ending point of the route 

that we need to find. The task is to connect these two expensive points, which will be 

the most optimal in terms of construction costs. We hold the following main meetings: 

 

• Construction materials are supplied from the starting point  

 Delivery of materials to the construction site can only be carried out along the al-

ready constructed part of the road.  

 The production technology is the same everywhere.  

 The total cost of roads includes the cost of shipping construction materials and the 

cost of most construction.  

 Change in elevation in the construction area. 

 

Let 𝛼 the cost of delivery per unit road length of the volume of materials required 

for the construction of its single section. Since construction conditions vary from point 

to point due to various factors, the cost 𝛽 of constructing a single section of road at each 

point on the route is different. Introduce a Cartesian coordinate system with the origin 

O. Here (𝑙, 𝑦𝑙) are the coordinates of the end point 𝐴, and 𝑦:ℝ → ℝ is any twice con-

tinuously differentiable function which satisfies boundary conditions 

 𝑦(0) = 0,    𝑦(𝑙) = 𝑦𝑙 .                                           (1) 

We assume that owning such a curve is acceptable. The cost of the road, a certain dis-

count y(x), can be expressed as follows: 

𝐽(𝑦) = ∫
𝑙

0
𝛼√1 + 𝑦′2(𝑥) ∫

𝑥

0
√1 + 𝑦′2(𝜉)  𝑑𝜉𝑑𝑥

+∫
𝑙

0
𝛽(𝑥, 𝑦)√1 + 𝑦′2(𝑥) 𝑑𝑥,

  (2) 

 where 𝛽:ℝ2 → ℝ is a given function with continuous second order partial deriva-

tives. 

 

Lemma 1. Let 𝑓(𝑥) be an arbitrary function from 𝐶[0, 𝑙]. Then the following equa-

tion holds  

∫
𝑙

0

𝑓(𝑥)∫
𝑥

0

𝑓(𝜉) 𝑑𝜉 𝑑𝑥 =
1

2
(∫

𝑙

0

𝑓(𝑥) 𝑑𝑥)

2

. 

    The proof is presented in [22]. 

 

By means of Lemma 1 we can rewrite functional (2) as 

𝐽(𝑦) =
𝛼

2
(∫

𝑙

0

√1 + 𝑦′2(𝑥)𝑑𝑥)

2

+∫
𝑙

0

𝛽(𝑥, 𝑦)√1 + 𝑦′2(𝑥) 𝑑𝑥. 
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     Theorem 1. For the admissible curve 𝑦∗(𝑥) ∈ 𝐶
2[0, 𝑙] to be a minimizer of the cost 

functional 𝐽 the following conditions must be satisfied: 

  

𝑦∗′′(𝑥)

1+𝑦∗′
2(𝑥)

(𝛼 ∫
𝑙

0
√1 + 𝑦∗′

2(𝑥)𝑑𝑥 +𝛽(𝑥, 𝑦∗(𝑥)))

+𝑦∗′(𝑥)
𝜕𝛽(𝑥,𝑦∗(𝑥))

𝜕𝑥
−

𝜕𝛽(𝑥,𝑦∗(𝑥))

𝜕𝑦
= 0.

         (3) 

 

The theorem is proved in [22, 23].  

 

To solve equation (3) on a uniform grid, you can calculate the values of 𝑦 at the 

nodes of the variables and use them to construct an interpolation polynomial (see [26]). 

A similar approach for this problem is used in [22, 23, 27]. Applying this idea, we 

obtain a nonlinear algebraic system based on the results of functions at network nodes. 

The method becomes extremely unstable at high levels of the interpolation polynomial. 

Galerkin method is free of these shortcomings.  

The main goal of the current research is to derive necessary condition for the 

minimum for a cost-optimal trajectory in a parametric form. Parametric form allows us 

to work with a wider set of trajectories than explicit one since parametrically repre-

sented curve can have more than one intersection point with a line parallel to axe Oy 

while this not true for explicitly given curve. We derive necessary condition for opti-

mality in parametric form and use Galerkin method in order to solve the obtained in-

tegro-differential equations. 

 

Consider a parametric definition of the curve 𝑟(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) such that 𝑥(0) =

𝑦(0) = 0  and 𝑥(1) = 𝑙, 𝑦(1) = 𝑦𝑙 . The cost of the curve is the value of the following 

functional 

               𝐽(𝑦) =
𝛼

2
(∫

1

0
√𝑥′2 + 𝑦′2𝑑𝑡)

2

+ ∫
1

0
𝛽(𝑥, 𝑦)√𝑥′2 + 𝑦′2 𝑑𝑡. 

 

Theorem 2. For the admissible curve 𝑟∗(𝑡) = (𝑥∗(𝑡), 𝑦∗(𝑡))  ∈ 𝐶
2[0, 𝑙] to be a min-

imizer of the cost functional 𝐽 it is necessary that 

 

{
 
 
 

 
 
 
𝑥∗
′′(𝑡)𝑦∗

′(𝑡)−𝑦∗
′′(𝑡)𝑥∗

′(𝑡)

𝑦∗
′2(𝑡)+𝑥∗

′2(𝑡)
(𝛼 ∫

1

0
√𝑥∗

′2(𝑡) + 𝑦∗
′2(𝑡)𝑑𝑡 + 𝛽(𝑥∗(𝑡), 𝑦∗(𝑡)))

+𝑥∗
′(𝑡)

𝜕𝛽(𝑥∗(𝑡),𝑦∗(𝑡))

𝜕𝑦
− 𝑦∗

′(𝑡)
𝜕𝛽(𝑥∗(𝑡),𝑦∗(𝑡))

𝜕𝑥
= 0

𝑦∗
′′(𝑡)𝑥∗

′(𝑡)−𝑥∗
′′(𝑡)𝑦∗

′(𝑡)

𝑦∗
′2(𝑡)+𝑥∗

′2(𝑡)
(𝛼 ∫

1

0
√𝑥∗

′2(𝑡) + 𝑦∗
′2(𝑡)𝑑𝑡 + 𝛽(𝑥∗(𝑡), 𝑦∗(𝑡)))

+𝑦∗
′(𝑡)

𝜕𝛽(𝑥∗(𝑡),𝑦∗(𝑡))

𝜕𝑥
− 𝑥∗

′(𝑡)
𝜕𝛽(𝑥∗(𝑡),𝑦∗(𝑡))

𝜕𝑦
= 0

   .            (4) 

 

    Proof. For the sake of convenience introduce the notion 
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                              𝐹(𝑥′, 𝑦′) = √𝑥′2 + 𝑦′2.                                                             (5) 

Then 

                       𝐽(𝑦) =
𝛼

2
(∫

1

0
𝐹(𝑦′(𝑥))𝑑𝑡)

2

+ ∫
1

0
𝛽(𝑥, 𝑦)𝐹(𝑦′(𝑥)) 𝑑𝑡. (6) 

 

Let 𝛿1(𝑡), 𝛿2(𝑡) be a continuously differentiable functions with compact support 

[0,1] and 𝜀1, 𝜀2  be a scalar. The variation of the functional is found as (see [24]) 

                           𝛿𝐽(𝑥∗, 𝑦∗) = (

𝑑

𝑑𝜀1
𝐽(𝑥∗ + 𝜀1𝛿1, 𝑦∗ + 𝜀2𝛿2)

𝑑

𝑑𝜀2
𝐽(𝑥∗ + 𝜀1𝛿1, 𝑦∗ + 𝜀2𝛿2)

) |𝜀1,𝜀2=0 = 0. (7) 

We have 

𝑑

𝑑𝜀1
[

𝛼

2
(∫

1

0

𝐹(𝑥′∗ + 𝜀1𝛿1
′ , 𝑦′

∗
+ 𝜀2𝛿2

′)𝑑𝑡)

2

+∫
1

0

𝛽(𝑥∗ + 𝜀1𝛿1, 𝑦∗ + 𝜀2𝛿2) ∗

∗ 𝐹(𝑥′∗ + 𝜀1𝛿1
′ , 𝑦′

∗
+ 𝜀2𝛿2

′)𝑑𝑡

] |𝜀1,𝜀2=0

       = 𝛼∫
𝑙

0

𝜕𝐹

𝜕𝑥′
𝛿1
′𝑑𝑡 ∫

1

0

𝐹(𝑥′∗, 𝑦
′
∗
) 𝑑𝑡 + ∫

1

0

𝜕𝛽

𝜕𝑥∗
𝐹(𝑥′∗, 𝑦′∗)𝛿1𝑑𝑡 + ∫

1

0

𝛽
𝜕𝐹

𝜕𝑥′∗
𝛿1
′𝑑𝑡.

 

Using the formula for integration by parts, we consider separately the expressions in 

the summands which are in the right side of this equality. 

∫
1

0

𝜕𝐹

𝜕𝑥′
𝛿1
′𝑑𝑡 =

𝜕𝐹

𝜕𝑥′
𝛿1|0

1 −∫
1

0

𝑑

𝑑𝑡
(
𝜕𝐹

𝜕𝑥′
) 𝛿1𝑑𝑡 = −∫

1

0

𝑑

𝑑𝑡
(
𝜕𝐹

𝜕𝑥′
) 𝛿1𝑑𝑡, 

∫
1

0

𝛽
𝜕𝐹

𝜕𝑥′
𝛿1
′𝑑𝑡 = 𝛽

𝜕𝐹

𝜕𝑥′
𝛿1|0

1 −∫
1

0

𝑑

𝑑𝑡
(𝛽
𝜕𝐹

𝜕𝑥′
) 𝛿1𝑑𝑡 = −∫

1

0

𝑑

𝑑𝑡
(𝛽
𝜕𝐹

𝜕𝑥′
) 𝛿1𝑑𝑡. 

Thus, we can write the first equation from necessary minimum condition in the form 

𝑑

𝑑𝜀1
𝐽(𝑥∗, 𝑦∗) = ∫

1

0

(−𝛼
𝑑

𝑑𝑡
(
𝜕𝐹

𝜕𝑥′
)∫

1

0

𝐹(𝑥′∗, 𝑦
′
∗
) 𝑑𝑡 +

𝜕𝛽

𝜕𝑥∗
𝐹(𝑥′∗, 𝑦′∗)

−
𝑑

𝑑𝑡
(𝛽
𝜕𝐹

𝜕𝑥′
)) 𝛿1𝑑𝑡 = 0. 

The function under the integral and being the multiplier of 𝛿1 belongs to 𝐶1[0,1]. 
Since 𝐶1[0,1] ⊂ ℒ2[0,1], and a set of continuously differentiable functions with com-

pact support [0,1] is dense ℒ2[0,1] (see [25]), we obtain                        

          −𝛼
𝑑

𝑑𝑡
(
𝜕𝐹

𝜕𝑥′
) ∫

1

0
𝐹(𝑥′∗, 𝑦

′
∗
)𝑑𝑡 +

𝜕𝛽

𝜕𝑥
𝐹(𝑥′∗, 𝑦

′
∗
) −

𝑑

𝑑𝑡
(𝛽

𝜕𝐹

𝜕𝑥′
) = 0.                        (8) 

Consider the individual terms of the left side of the equation 
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𝜕𝐹

𝜕𝑥′
=

𝑥′

√𝑥′2 + 𝑦′2
 , 

𝑑

𝑑𝑡
(
𝜕𝐹

𝜕𝑥′
) =

𝑥′′√𝑥′2 + 𝑦′2 −
𝑥′′(𝑥′)2 + 𝑦′′𝑥′𝑦′

√𝑥′2 + 𝑦′2

𝑥′2 + 𝑦′2
=
𝑥′′𝑦′2 − 𝑦′′𝑥′𝑦′

(𝑥′2 + 𝑦′2)
3
2

 

𝑑

𝑑𝑡
(𝛽
𝜕𝐹

𝜕𝑥′
) =

𝜕𝛽

𝜕𝑥
𝑥′
𝜕𝐹

𝜕𝑥′
+
𝜕𝛽

𝜕𝑦
𝑦′
𝜕𝐹

𝜕𝑥′
+ 𝛽

𝑑

𝑑𝑡
(
𝜕𝐹

𝜕𝑥′
) 

=
𝜕𝛽

𝜕𝑥
𝑥′

𝑥′

√𝑥′2 + 𝑦′2
+
𝜕𝛽

𝜕𝑦
𝑦′

𝑦′

√𝑥′2 + 𝑦′2
+ 𝛽

𝑥′′𝑦′2 − 𝑦′′𝑥′𝑦′

(𝑥′2 + 𝑦′2)
3
2

. 

Substituting this into the equation (8) 

−𝛼
𝑥′′𝑦′

2
− 𝑦′′𝑥′𝑦′

(𝑥′2 + 𝑦′2)
3
2

∫
1

0

𝐹(𝑥, 𝑦)𝑑𝑡 +
𝜕𝛽

𝜕𝑥
√𝑥′2 + 𝑦′2 −

𝜕𝛽

𝜕𝑥

𝑥′2

√𝑥′2 + 𝑦′2
 

−
𝜕𝛽

𝜕𝑦

𝑥′𝑦′

√𝑥′2 + 𝑦′2
− 𝛽

𝑥′′𝑦′
2
− 𝑦′′𝑥′𝑦′

(𝑥′2 + 𝑦′2)
3
2

= 0. 

Make transformations 

−𝛼
𝑥′′𝑦′

2
− 𝑦′′𝑥′𝑦′

(𝑥′2 + 𝑦′2)
3
2

∫
1

0

𝐹(𝑥, 𝑦)𝑑𝑡 −

𝜕𝛽
𝜕𝑥
𝑥′2 +

𝜕𝛽
𝜕𝑥
𝑦′ −

𝜕𝛽
𝜕𝑥
𝑥′2 −

𝜕𝛽
𝜕𝑦
𝑥′𝑦′

√𝑥′2 + 𝑦′2
 

−𝛽
𝑥′′𝑦′

2
− 𝑦′′𝑥′𝑦′

(𝑥′2 + 𝑦′2)
3
2

= 0, 

−
𝑦′

√𝑥′2 + 𝑦′2
[𝛼
𝑥′′𝑦′

2
− 𝑦′′𝑥′𝑦′

(𝑥′2 + 𝑦′2)
3
2

∫
1

0

𝐹(𝑥, 𝑦)𝑑𝑡 − 𝛽
𝑥′′𝑦′

2
− 𝑦′′𝑥′𝑦′

(𝑥′2 + 𝑦′2)
3
2

+
𝜕𝛽

𝜕𝑦
𝑥′ −

𝜕𝛽

𝜕𝑥
𝑦′] = 0. 

Finally get 

𝑥′′𝑦′
2
− 𝑦′′𝑥′𝑦′

(𝑥′2 + 𝑦′2)
3
2

[𝛼 ∫
1

0

𝐹(𝑥, 𝑦)𝑑𝑡 − 𝛽(𝑥, 𝑦)] +
𝜕𝛽

𝜕𝑦
𝑥′ −

𝜕𝛽

𝜕𝑥
𝑦′ = 0. 

When applying the same actions to the second for, we obtain the second equation of 

the system. 

Thus, we arrive at the minimum condition 
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{
 
 
 
 
 

 
 
 
 
 𝑥∗

′′(𝑡)𝑦∗
′(𝑡) − 𝑦∗

′′(𝑡)𝑥∗
′(𝑡)

𝑦∗
′2(𝑡) + 𝑥∗

′2(𝑡)
(𝛼∫

1

0

√𝑥∗
′2(𝑡) + 𝑦∗

′2(𝑡)𝑑𝑡 + 𝛽(𝑥∗(𝑡), 𝑦∗(𝑡)))

+𝑥∗
′(𝑡)

𝜕𝛽(𝑥∗(𝑡), 𝑦∗(𝑡))

𝜕𝑦
− 𝑦∗

′(𝑡)
𝜕𝛽(𝑥∗(𝑡), 𝑦∗(𝑡))

𝜕𝑥
= 0

𝑦∗
′′(𝑡)𝑥∗

′(𝑡) − 𝑥∗
′′(𝑡)𝑦∗

′(𝑡)

𝑦∗
′2(𝑡) + 𝑥∗

′2(𝑡)
(𝛼∫

1

0

√𝑥∗
′2(𝑡) + 𝑦∗

′2(𝑡)𝑑𝑡 + 𝛽(𝑥∗(𝑡), 𝑦∗(𝑡)))

+𝑦∗
′(𝑡)

𝜕𝛽(𝑥∗(𝑡), 𝑦∗(𝑡))

𝜕𝑥
− 𝑥∗

′(𝑡)
𝜕𝛽(𝑥∗(𝑡), 𝑦∗(𝑡))

𝜕𝑦
= 0.

 

In the present work we solve (3) and (4) via Galerkin method which belongs 

to the class of approximate methods. 

3 Galerkin metod 

Let us initially briefly describe the main idea of Galerkin method [28] for the problem 

(3). Consider the operator  

  

𝐿(𝑦) =
𝑦′′

1 + 𝑦′2
(𝛼∫

𝑙

0

√1 + 𝑦′2𝑑𝑥 + 𝛽(𝑥, 𝑦)) + 𝑦′
𝜕𝛽(𝑥,𝑦)
𝜕𝑥 −

𝜕𝛽(𝑥, 𝑦)

𝜕𝑦
. 

 

The necessary condition of the minimum (3) then can be rewritten as an equation  

 𝐿(𝑦) = 0. (9) 

 We find a solution of the equation in the form 

 𝑦 =
𝑦𝑙

𝑙
𝑥 + ∑∞𝑘=1 𝑎𝑘𝜙𝑘(𝑥),                                      (10) 

where {𝜙𝑘(𝑥)|𝑘 = 1,2, … } is a system of basis functions in the space 𝐶0
2[0, 𝑙] of twice 

continuously differentiable functions with compact support [0, 𝑙] (i.e. satisfying bound-

ary conditions 𝑦(0) = 𝑦(𝑙) = 0). It is clear that function (10) satisfies the boundary 

conditions (1). 

We can use for example system of functions  

 𝜙𝑘(𝑥) = sin
𝑘𝜋𝑥

𝑙
,    𝑘 = 1,2, ….                                     (11) 

 or  

 𝜙𝑘(𝑥) = (𝑙 − 𝑥)𝑥
𝑘 ,    𝑘 = 1,2,…                                  (12) 

This fact immediately follows from the Weierstrass approximation theorems. 
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Note that 𝐿(𝑦) is continuous for any admissible 𝑦. We can consider problem (9) in 

ℒ2[0, 𝑙]. Then it is obvious that the function 𝑦∗ fulfills equation (9) if and only if 𝐿(𝑦∗) 
is orthogonal to all functions of system {𝜙𝑘(𝑥)|𝑘 = 1,2, … }. However, if we work 

solely with the sum of the first 𝑛 terms of the series (10), we can satisfy only 𝑛 orthog-

onality conditions, i.e.   

∫
𝑙

0

𝐿(𝑦∗(𝑥))𝜙𝑘(𝑥)𝑑𝑥

= ∫
𝑙

0

𝐿 (
𝑦𝑙
𝑙
𝑥 +∑

𝑛

𝑘=1

𝑎𝑘𝜙𝑘(𝑥))𝜙𝑘(𝑥)𝑑𝑥 = 0,    𝑘 = 1,… , 𝑛.

 

We act similarly with system (4). 

 

M(x*(t),y*(t))=(
x*
''(t)y*

'(t)-y*
''(t)x*

'(t)

y*
'2(t)+x*

'2(t)
(α ∫

l

0
√x*

'2(t)+y*
'2(t)dt+β(x*(t),y*(t)))

+x*
'(t)

∂β(x*(t),y*(t))

∂y
-y*

'(t)
∂β(x*(t),y*(t))

∂x

N(x*(t),y*(t))=
y*
''(t)x*

'(t)-x*
''(t)y*

'(t)

y*
'2(t)+x*

'2(t)
(α ∫

l

0
√x*

'2(t)+y*
'2(t)dt+β(x*(t),y*(t)))

+y*
'(t)

∂β(x*(t),y*(t))

∂x
-x*

'(t)
∂β(x*(t),y*(t))

∂y

 

We find a solution of the equations (4) in the form  

 𝑥(𝑡) = 𝑙𝑡 + ∑∞𝑘=1 𝑎𝑘𝜙𝑘(𝑡),                                          

𝑦(𝑡) = 𝑦𝑙𝑡 +∑

∞

𝑘=1

𝑏𝑘𝜙𝑘(𝑡). 

Then 

∫
1

0
𝑀(𝑥∗(𝑡), 𝑦∗(𝑡))𝜙𝑘(𝑡)𝑑𝑡

= ∫
1

0
𝑀(𝑙𝑡 + ∑∞𝑘=1 𝑎𝑘𝜙𝑘(𝑡), 𝑦𝑙𝑡 + ∑

∞
𝑘=1 𝑏𝑘𝜙𝑘(𝑡))𝜙𝑘(𝑡)𝑑𝑡 = 0,

  k=1,…,n. 

 

∫
1

0
𝑁(𝑥∗(𝑡), 𝑦∗(𝑡))𝜙𝑘(𝑡)𝑑𝑡

= ∫
1

0
𝑁(𝑙𝑡 + ∑∞𝑘=1 𝑎𝑘𝜙𝑘(𝑡), 𝑦𝑙𝑡 + ∑

∞
𝑘=1 𝑏𝑘𝜙𝑘(𝑡))𝜙𝑘(𝑡)𝑑𝑡 = 0,    

 

                                                  k=1,…,m. 
 

More details regarding the method can be found in [28]. 
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4 The results of numerical experiments 

Let's look at some examples in which we prefer that the ground surface on which the 

road will be built is also described by a moderate β. This assumption allows us to obtain 

a visual graphical representation and interpretation of the results obtained. 

 

Example 1. Let 𝛼 = 0.1, 𝑙 = 1, 𝑦𝑙 = 1 and 𝛽:ℝ2 → ℝ  

𝛽(𝑥, 𝑦) = 1 + sin5𝑥 ⋅ sin𝑦. 

First, we will use system (11) and search the solution in the form  

 𝑦(𝑥) =
𝑦𝑙

𝑙
𝑥 + ∑5𝑘=1 𝑎𝑘sin

𝜋𝑘

𝑙
𝑥.                                      (13) 

 Via Galerkin method we obtain (black curve in Fig. 2)  

𝑎1 = −0.31489, 𝑎2 = 0.07442, 𝑎3 = −0.03199, 𝑎4 = 0.01256,
𝑎5 = −0.00424. 

If we substitute (10) to functional 𝐽 itself and minimize it with respect to 𝑎𝑘, 𝑘 =
1,… ,5 we come to Ritz method. It produces the following solution  

𝑎1 = −0.31397, 𝑎2 = 0.07367, 𝑎3 = −0.03138, 𝑎4 = 0.01212,
𝑎5 = −0.00396, 

for which the cost also equals 1.279. As we see in Fig. 1 these two solutions are 

practically identical. 

    

Fig. 1. Illustration of the obtained curve of the form (13) in Example 1. 



9 

 

Now let us find the solution of the same problem in parametric form via conditions of 

Theorem 2. 

 𝑥(𝑡) = 𝑡 + ∑3𝑘=1 𝑎𝑘sin(𝜋𝑘𝑡),  

 𝑦(𝑡) = 𝑡 + ∑3𝑘=1 𝑏𝑘sin (𝜋𝑘𝑡).  

 

Using the Galerkin method 

𝑎1 = 0.14642926, 𝑎2 = 0.00245703, 𝑎3 = 0.01382993, 

𝑏1 = −0.17766913, 𝑏2 = 0.0075474, 𝑏3 = 0.00617156. 

This solution is demonstrated in Fig. 2 and the cost of solution (i.e., the value of func-

tional 𝐽) on the solution produced is 1.28. 

 

  

Fig. 2. Illustration of the obtained curve in the parametric form in Example 1. 

Example 2. Let 𝛼 = 0.5, 𝑙 = 1, 𝑦𝑙 = 1 and 𝛽:ℝ2 → ℝ   

𝛽(𝑥, 𝑦) = 5 + 2cos2𝑥 ⋅ sin𝑦. 

Fig. 3 illustrates the approximate solution in the form  

                               𝑦(𝑥) =
𝑦𝑙

𝑙
𝑥 + ∑5𝑘=1 𝑎𝑘𝑥

𝑘(1 − 𝑥)                                               (14) 
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obtained via Galerkin method, where  

𝑎1 = −0.13852, 𝑎2 = 0.02332, 𝑎3 = −0.01159, 𝑎4 = 0.00629,
𝑎5 = −0.03046. 

The cost is 7.796.  

 

Fig. 3. Illustration of the obtained curve in form (14) in Example 1. 

Now let us find the solution of the same problem in parametric form via conditions of 

Theorem 2. 

 𝑥(𝑡) = 𝑡 + ∑3𝑘=1 𝑎𝑘sin(𝜋𝑘𝑡),  

 𝑦(𝑡) = 𝑡 + ∑3𝑘=1 𝑏𝑘sin(𝜋𝑘𝑡).  

Using the Galerkin method 

𝑎1 = 0.04190654, 𝑎2 = 0.01219011, 𝑎3 = −0.00278807, 

𝑏1 = −0.06898219, 𝑏2 = 0.01886075, 𝑏3 = −0.01038629. 

This solution is demonstrated in Fig. 4 and the cost of solution (i.e., the value of func-

tional 𝐽) on the solution produced is 7.797. 
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Fig. 4. Illustration of the obtained curve in the parametric form in Example 2. 

5 Conclusion 

We considered the problem of finding the cost optimal path in the parametric form. 

The proposed approach is based on calculus of variations. Unlike widely used heuris-

tics, our method guarantees the quality of the obtained result. We obtain the optimal 

solution via the developed approach and therefore can be sure that we do not waste 

resources while building roads and other transport networks such as waterways, pipe-

lines and so on. 
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