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Many studies note the importance of the plasticity of
glass for improving their mechanical properties [1–3].
The plasticity of glasses is the subject of research and
is included in the titles of articles on both oxide [4, 5]
and chalcogenide [6, 7] glasses. However, all these
works use the concept of plasticity, which does not
imply the possibility of numerical measurement of this
property. The methodology of numerical measure-
ment of plasticity was developed in the works of
Y.V. Milman (see, for example, [8]). This article ana-
lyzes the prospects for obtaining chalcogenide glasses
with a high degree of plasticity by introducing silver
chalcogenides in their composition. In this case,
numerical values of plasticity according to Milman
are used.

It has been shown previously that the introduction
of silver chalcogenides in the composition of chalco-
genide glasses leads, on the one hand, to a significant
increase in their plasticity ( ) [9], and on the other
hand, to a slower decrease in the softening tempera-
ture (Tg) compared to the introduction of chalco-
genides of other monovalent and even divalent metals
[10]. This is explained by the formation of Ag–Ag
metallophilic bonds, whose existence in silver chalco-
genides was confirmed by the quantum chemical cal-
culations [11]. Unlike the covalent bonds that form
chalcogenide glasses, metallophilic ones are nondi-
rectional. As for chalcogenide glasses containing sil-
ver, earlier works that studied the structure of glasses
by direct structural methods repeatedly pointed out
the high mutual coordination of silver atoms and the
small distance between them [12–14].

Taking into account the points mentioned above,
in this paper a comparison of correlation dependen-
cies –Tg is carried out for classical chalcogenide
glasses (Sb–Ge–Se)–A, glasses containing up to
40 mol % of monovalent metal chalcogenide (As2S3–
Tl2S)–B, and glasses containing up to 40 mol % silver
chalcogenide (0.73GeSe2 · 0.27Sb2Se3)–Ag2Se–C.

The magnitude of  for all glasses was calculated
using the Milman equation [8]:

where E is Young’s modulus, HV is the Vickers micro-
hardness, and ν is Poisson’s ratio. It should be noted
that although the concept of plasticity is often used
when discussing the mechanical properties of glasses,
its numerical values are not given in the literature.
Therefore, to illustrate the application of the Milman
equation, the plasticity values calculated using it and
using the experimental values E, HV, and ν are given
below [1]: 13Na2O–6MgO–10CaO–71SiO2 (window
glass)  = 0.23; 12Na2O–6MgO–18Al2O3–6B2O3–
58SiO2  = 0.18; and 25Cs2O–20Al2O3–55B2O3  =
0.32.

We now return to building dependencies –Tg for
chalcogenide glasses. The values required for this are
E, HV, and ν, as well as Tg, for glasses A and B taken
from [15], and for glasses C from [9]. The reduced
temperature (is used as the temperature axis) T*),
equal to the temperature at which the measurements
are taken (in this case, room temperature), expressed
in fractions Tg on the Kelvin scale. The obtained
dependencies are shown in Fig. 1.

As Tg approaches the temperature of the measure-
ments, the plasticity of the glass increases naturally,
tending to a value comparable to 1. The material
begins to exhibit real plasticity when  > 1. The intro-
duction of a monovalent metal compound in the glass
composition (Tl2S), which destroys the developed
three-dimensional network of bonds in the As2S3
glass, reinforces this trend. An even more pronounced
increase in this tendency is observed when introducing
Ag in the glass composition. On the one hand, silver
also destroys the three-dimensional developed net-
work of directed covalent bonds that effectively pre-
vent the mechanical deformation of glass. On the other
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hand, silver forms metallophilic bonds. These nondirec-
tional bonds do not create a significant obstacle to the
mechanical deformation of glass, but, by maintaining a
developed network of interatomic interactions, they
effectively slow down the decrease in Tg.

Extrapolation of dependence (T*) for glasses
with silver to high values of T * allows us to assume the
possibility of the existence of glasses that are subject to
plastic deformation under external inf luence at tem-
peratures below Tg. This possibility does not fit well
into the classical theory of the glassy state. The soften-
ing temperature implies that there is sufficient energy
from thermal f luctuations to initiate an atomic rear-
rangement. Plasticity implies the possibility of the
deformation of a solid body when a directed mechan-
ical stress is applied. For each silver atom in its chalco-
genides, there are 2–4 metallophilic bonds [16].
Apparently, they are sufficient to prevent the transi-
tion of the silver atom from one local minimum of
potential energy to another. However, due to their
nondirectionality, they are not able to prevent, for
example, shearing mechanical stress. An example of
such a material is glassy Ag2Se film., which does not
crystallize when heated to at least 420 K [17] and has,
according to the results of measurements using the
load-unload method, a ductility equal to 0.9 [9]. In the
work [18], glasses of the Ag–Ge–Se system contain-
ing glassy, liquation regions of the Ag2Se composition
were studied. The authors concluded that for these
glassy inclusions Tg = 560 K, and the average coordi-
nation number of the glassy network is 2.26.

The conducted analysis of the experimental data
convincingly demonstrates the specificity of the influ-
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ence of silver chalcogenide on the properties of chal-
cogenide glasses, which can be explained by the for-
mation of metallophilic bonds. It can be expected that
in the case of the synthesis of chalcogenide glasses
containing 50–60 mol % silver chalcogenide, they will
have a plasticity approaching 0.9, which is a value
characteristic of elemental metals.
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