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Abstract—By now, the thermodynamics of fluid systems is well developed, but many issues related to solids 
still require discussion. In this work, six characteristic functions of classical thermodynamics are investigated in  
application to solid-state systems: energy, free energy, Gibbs energy, enthalpy, grand thermodynamic potential, 
and a new characteristic function recently discovered by the author, called the J-potential. The need to introduce 
such a potential appears in the thermodynamics of solid-state or mixed systems subjected to complex mechanical 
impacts, and also in colloidal science. Definitions are given for all six functions, fundamental thermodynamic equa-
tions are derived, and the conditions under which this function assumes the status of a thermodynamic potential 
are established.
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INTRODUCTION

The idea of thermodynamics as an outdated science 
which lost its significance is regrettable. Thermodynamics 
is of lasting importance, because it formulates the most 
general laws of nature and forms the foundation on 
which any physicochemical theory is based. The face of 
thermodynamics changed in the 19th century owing to the 
works of Gibbs [1, 2], who introduced thermodynamic 
potentials, although he did not use this term himself (the 
term “thermodynamic potentials” belongs to Dugem 
[3] who proposed it in 1886, when all thermodynamic 
potentials were already available). Gibbs called them 
functions, and, using modern terminology, we can say that 
thermodynamic potentials are characteristic functions, 
by differentiating which all the basic thermodynamic 
parameters can be obtained. The initial expressions 
(differential and integral) for thermodynamic potentials 
have been called fundamental equations since the time 
of Gibbs. Thermodynamic potentials have an energy 
dimension and are associated with work under certain 
conditions. It follows from this that there should be many 

of them, or at least several. The more of them there are, 
the better thermodynamics is developed.

Gibbs introduced five thermodynamic potentials, 
but the chemical thermodynamics based on them was 
developed in detail (in hardware terms as well), mainly for 
fluid systems. Solid-state thermodynamics is much more 
complicated and involves more mathematics (primarily 
tensor calculus), and therefore has been developing (since 
about the middle of the 20th century) rather slowly. A 
particular difficulty for chemists is caused by the tensor 
nature of the chemical potential, the main thermodynamic 
quantity of chemistry. In such a situation, publishing in a 
chemical journal even a purely hardware thermodynamic 
work on solid-state topics, such as this article, is a useful 
thing. In the end, it will be noted that ten years ago, the 
author discovered one more thermodynamic potential, 
called the J-potential. This has already been written about 
in the anniversary review [4], but since the present work 
is devoted specifically to thermodynamic potentials, it is 
necessary to mention this again.

In nomenclature and symbols, the author mainly 
adheres to the recommendations of IUPAC and the 
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International Organization for Standardization (ISO). 
They are collected on the Internet [5–8], but not all 
are fulfilled. A typical example is free energy. The 
symbol A is recommended for it, but the majority of the 
thermodynamic community (including the author) writes 
F. It can also be noted that the author belongs to the St. 
Petersburg Thermodynamic School (in my opinion, the 
second in the world after the Van der Waals school in 
Holland) [9], thanks to which he firmly stands on the 
Gibbs principles of chemical thermodynamics (this is no 
longer relevant to symbols).

INTERNAL ENERGY— 
THE MAIN THERMODYNAMIC POTENTIAL

The internal energy of an open system finds 
replenishment from three sources: heat δQ coming from 
the outside, work δW done on the system by external 
bodies, and energy δUN of the substances themselves 
coming from the outside to form the system:

and integration is performed throughout the entire volume 
of the system. For a homogeneous body in the form of a 
rectangular parallelepiped with sides parallel to the basic 
directions xs (s = 1, 2, 3), equation (2) can be written as

In the framework of equilibrium thermodynamics, 
the first contribution is written as δQ = TδS, where T 
is the absolute temperature and S is the entropy. The 
second contribution is most often used in the form of 
the simplest mechanical work –pδV for the fluid, where 
p is the pressure inside the system and V is the volume 
of the system. As for the general case, including solids, 
mechanical work can be written as

where P is the external force (stress) per unit surface area 
of the system as a function of the position on the surface 
(A), u is the local displacement vector of the surface, and 
A is the surface area; integration is performed over the 
entire surface of the system. The second recording form 
includes local tensors of stress Ê   and strain ê that occur 
in the body as a result of external mechanical actions. The 
colon means the biscalar product of tensors:

(1)

(2)

(3)

where As is the area of the face normal to the s direction, 
Vs = Asus

 
is the volume displacement vector, and es = us/Ls 

is the dimensionless strain vector (Ls is the linear size of 
the body in the s direction). The vector tripods at the sites 
of the basic directions form a volumetric displacement 
tensor [4–6]

and the strain tensor ê inherent in mechanics.
The third term in equation (1) was revealed by Gibbs 

only for fluid systems in the form

where μi is the chemical potential of component i, which 
has become the most important quantity in chemistry, and 
Ni is the number of component i molecules. After Gibbs 
introduced the chemical potential and the associated law 
of mass action, the term “chemical thermodynamics” 
appeared. The chemical potential looks like a scalar 
in equation (6), and Gibbs himself did not interpret it 
differently, but it was he who first revealed the tensor 
nature of the chemical potential. Gibbs showed that a 
solid body can be in equilibrium simultaneously with 
three liquids at different pressures in different directions. 
This fact proves that the chemical potential is a tensor, if 
we consider the homogeneity of the chemical potential 
in direction as a sign of equilibrium.

The entire right side of equation (6) is work and 
therefore scalar, but if μi is a tensor (   ), then the second 
multiplier on the right side of equation (6) must be a 
tensor. For a quantity of substance Nj (we assume that j is 

(4)

(5)

(6)
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an immobile component of a solid forming a lattice), this 
is impossible, but for its change – yes. It is known that 
crystals grow unevenly in different directions. To reflect 
this, a mass displacement tensor ˆ

jN  is introduced [4–6]. 
Displacement vectors Nj are introduced first, and then 
tensor (7) by analogy with equations (4) and (5)

where    is the unit tensor, which makes it possible to treat 
the chemical potential tensor as a scalar.

Let us return to equation (1) and, using all the results 
obtained, write down (for simplicity, we consider the body 
homogeneous) the most general fundamental equation 
for energy

There is also an easier way to introduce a mass 
displacement tensor by multiplying the volume 
displacement tensor by the concentration cj:

Now we can write equation (6) in general form 
(considering the body homogeneous for simplicity), 
including the case of a solid body, as

The reason for the tensor nature of the chemical 
potential is the possible mechanical anisotropy of a solid, 
and therefore the symmetry of the stress tensor entails the 
symmetry of the chemical potential tensor. But then the 
chemical potential tensor can be reduced to a diagonal 
form by choosing a coordinate system

where μj(s) (s = 1, 2, 3) are the principle values of the 
tensor. For a fluid system, all the principle values are the 
same (μj), and equation (10) takes the form

(7)

(8)

(9)

(10)

(11)

1̂

or, taking into account (2)

where dW presents all other types of work, except 
mechanical. The components of the system are 
traditionally divided into immobile (forming a lattice 
of a solid body) and mobile, which freely move inside 
the entire volume of the system and behave like fluids. 
For simplicity, we assume that there is only one fixed 
component (let us denote it as j; this is not too serious a 
limitation, since any combination of fixed substances can 
often be considered a single component). The numbers 
of the mobile components are indicated by the symbol 
i. There may be as many of them as you like, or there 
may not be at all, and then we are dealing only with a 
solid body. If, on the contrary, component j is missing, 
we are dealing with a fluid system. For the general 
case when both types of components are present, equa- 
tion (13) takes the form

or

where cj ≡ Nj/V is the concentration of the immobile 
component, and the tensor  ˆ jdc   is introduced in the same 
way as the tensor ˆ

jdN . As already noted, both equations 
relate to homogeneous systems, but the second form of 
writing the fundamental equation for energy is more 

(12)

(13)

(14)

(15)
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convenient for unhomogeneous systems. In this case, 
equations (14) and (15) are understood as local relations, 
and to proceed to the equation for the entire system in the 
second and third terms of equation (15), it is necessary to 
take integrals over the entire volume of the system from 
the expressions ˆ ˆ:E de and                . However for chemists, 
the form of writing (14) is perceived easier, since it 
corresponds more to the usual chemical thermodynamics 
of fluids. From equation (14), we see that in the general 
case, energy is a thermodynamic potential with constant 
entropy, volume, mass displacement tensors (which 
means that the boundaries of the system and the number 
of non-moving components remain unchanged), and the 
number of mobile components.

Equation (14) can serve as the basis for the derivation 
of all thermodynamic relations. First, we bring it to an 
integral form. Let us take any of the basic directions r 
and mentally add substance along it with a fixed physical 
condition and absence of work:

which, in conjunction with equation (17), gives for a 
homogeneous solid-state system

,F U TS≡ −

(the other components of the tensors V̂  and ˆ
jN  are equal 

to zero). Integrating equation (16) gives

The expression for energy should not depend on the 
direction of integration, and therefore the combination 
ErrVrr + μj(rr)Nj is invariant with respect to direction. For 
a fluid system, equation (17) takes the form

wherе p = –Err
 
is pressure in the system.

OTHER CLASSICAL  
THERMODYNAMIC POTENTIALS

Let us now recall other standard thermodynamic 
potentials. The most popular free energy is F (Helmholtz 
free energy or Helmholtz energy) defined as

(16)

(17)

(18)

(19)

and for the fluid system

The corresponding differential fundamental equations 
have the form

or

and for the fluid system

which shows that the main advantage of free energy is the 
replacement of the variable “entropy” with the variable 
“temperature” (it is much easier for the experimenter 
to control temperature than entropy). Equation (22) 
shows that the free energy is a thermodynamic potential 
at constant temperature, system boundaries (for fluid 
systems, this condition is replaced by a less stringent 
condition of constant volume), and the mass of all 
components.

The third place is occupied by the Gibbs energy G 
(Gibbs free energy or Gibbs thermodynamic potential). 
For fluid systems, it is defined as

and is no less popular than free energy. It can be seen 
from the fundamental equation

(20)

(21)

(22)

(23)

(24)

(25)

(26)
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that here the pressure becomes a variable which can be 
controlled and, in particular, fixed. For a solid, which can 
be studied in a state of arbitrary stress, it is necessary to 
have a wide range of stresses as variables. In particular, 
directed Gibbs energy was proposed for uniaxial stress 
(in the r direction) [11]

By analogy with (30), the enthalpy of an arbitrarily 
loaded solid can be defined as [13]

r rrG F E V= −

(the directed Gibbs energy itself, of course, remains a 
scalar; by direction we mean only the direction in which 
the force is applied). The thermodynamics of uniaxial 
strtess is developed in [11]. In particular, it is shown 
that the normal component of the tensor of the chemical 
potential of a stationary component in the direction r is 
a partial molar (molecular) value from Gr:

(27)

and the directed Gibbs energy itself (like the usual Gibbs 
energy) is made up of chemical potentials:

A more general definition was proposed in [12]

It can be seen from the fundamental equation for a 
homogeneous system

that the Gibbs energy (29) is a thermodynamic potential 
provided that the temperature, the external stress, and the 
number of all components are fixed.

Let us move on to enthalpy. It is known as a thermal 
function with a definition for a fluid system

(28)

(29)

(30)

(31)

(32)

with the fundamental equation for a homogeneous system

It follows from equation (34) that the thermal 
function can still be a thermodynamic potential (i.e., give 
work). To do this, it is necessary to fix the entropy, the 
mechanical stress acting on the system, and the number 
of all components.

The fifth of the classical thermodynamic potentials is 
the grand potential Ω (grand thermodynamic potential or 
Landau potential). Its name echoes the grand canonical 
distribution of Gibbs statistical mechanics, but the 
main thing is its special status. If all four previous 
thermodynamic functions had the potential status only 
for closed systems, a grand thermodynamic potential is 
intended for open systems that freely exchange matter 
with the environment. In this case, chemical potentials 
become the control variables.

For a fluid system, the definition of a grand thermo- 
dynamic potential has a well-known form

The fundamental equation corresponds to definition 
(35)

from which it can be seen that chemical potentials take 
on the character of natural variables. In the transition to 
a solid, the formulation of such equations encounters 
difficulties related to the tensor properties of the chemical 
potentials of stationary components. The fact is that 
the formulas do not contain the chemical potentials 
themselves, but their components. Which of them to take 
and what to subtract—the situation is ambiguous. To date, 

(33)

(34)

(35)

(36)
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two solutions have been proposed. The first is based on 
the fact that in the relation of type (35), the chemical 
potentials of not all, but only the mobile components are 
subtracted. Then a hybrid thermodynamic potential is 
obtained (marked with a tilde at the top)

Taking into account (40), the definition of a large potential 
can be written in two equivalent forms:

(37)

which acts as a large potential in relation to mobile 
components and as a free energy in relation to an 
immobile component (hybridization of thermodynamic 
potentials was introduced into science quite a long time 
ago [16]).

Differentiating the identity in (36) and taking into 
account fundamental equations (12) and (14) for energy, 
we find the fundamental equations for the hybrid grand 
thermodynamic potential

From equations (37) and (38) it can be seen that  Ω  
acquires the properties of the thermodynamic potential in 
the case of fixed temperature, boundaries of the system, 
mass displacement tensor of the immobile component 
(which means the immutability of the amount of the 
stationary component j), and chemical potentials of the 
mobile components.

The second approach to determining the grand 
thermodynamic potential of a solid [17] still uses the 
chemical potential of an immobile component, but in 
general, as a scalar chemical potential of an immobile 
component dissolved in a neighboring fluid. Imagine 
that a macroscopic solid (phase α) is in contact with its 
flat surface with the fluid phase β, in which the immobile 
component j is to some extent soluble and in equilibrium 
with the solid. For a flat interphase boundary, the 
equilibrium condition was established by Gibbs and in 
modern interpretation is written as

where μα
j(m) is the normal component of the tensor of the 

chemical potential of an immobile component of a solid. 

The solubility and chemical potential of the immobile 
component in solution are determined by the state of stress 
of the solid. Therefore, although both definitions (37) are 
completely equivalent, the value μα

j(m) is still primary, and 
we will use the second form of the definition.

To obtain the fundamental equation of such a grand 
thermodynamic potential, it is necessary to differentiate 
equation (41) and substitute equation (22) or (23):

Note that the full differential includes a change in 
the mass of component j in all directions, including the 
normal direction. Therefore, the term –μα

j(nn)dNj(nn) is 
contained in the penultimate term of expressions (42) 
and (43). The same term, but with a plus sign, is present 
in the third term of the right-hand side of (42) and (43), 
so that these terms are mutually eliminated. If the solid 
is in real contact and equilibrium with its solution, so 
that the normal is the only direction in which the mass 
of the immobile component can change (as a result of 
dissolution), then the third and penultimate terms are 
mutually eliminated entirely. Then fundamental equa- 
tions (41)–(42) are simplified to the form

According to these equations, the characteristic 
function Ω becomes a thermodynamic potential when the 
temperature, the boundaries of the system, the chemical 

(38)

(39)

(40)

(44)

(43)

(42)

(41)

(45)
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potentials of the mobile components, and the normal 
component of the immobile component are fixed.

DISCOVERY OF THE SIXTH  
THERMODYNAMIC POTENTIAL

It took place 10 years ago [18] and, thus, the new 
thermodynamic potential, called the J-potential, is 
centuries younger than its counterparts. Such a huge break 
(as already mentioned, all five classical thermodynamic 
potentials were proposed by Gibbs) can be explained 
as follows. If we compare the formula for the energy of 
the fluid system (18) with the subsequent definitions of 
thermodynamic potentials (21), (24), (31), and (34), it 
is easy to see that with each creation of a new potential, 
some component part of the original formula is taken 
away. When we reach the grand thermodynamic potential 
Ω = –pV, it seems that the game ends there, and the 
illusion of a complete construction of the entire park 
of thermodynamic potentials is created. Indeed, in the 
expression for a grand thermodynamic potential, the only 
component of energy remains –pV, and if we take away 
this part, we get zero. This is true, but is it always true? 
This is true if the system is fluid and homogeneous, i.e. 
single-phase. If the system, even if fluid, is heterogeneous, 
i.e. if it is multiphase (with interphase surfaces and 
lines), then zero will not work, and by taking away  
–pV (here we will have to clarify for which phase), a new 
thermodynamic potential can be introduced.

Initially, it was assumed that the J-potential would 
serve solid-state topics with very complex cases of stress 
acting on the solid, which corresponds to the definition 
[19]

chemical potentials of mobile components, and the 
normal component of the tensor of the chemical potential 
of a immobile component.

The hybrid J-potential is defined similarly through the 
hybrid grand thermodynamic potential:

(46)

where the designations are the same as in formula (2). 
Taking into account (43), the differential fundamental 
equation for the J-potential can be written as

and the differential fundamental equation for J  is 
constructed in accordance with equation (38):

It follows from equation (49) that the hybrid 
J-potential becomes a thermodynamic potential at 
constant temperature, external stress, mass of the 
immobile component, and chemical potentials of the 
mobile components. With a certain reservation about 
the determination of thermodynamic potentials up to a 
constant, it can be said that a special case of definition 
(48) is the formula [20]

(47)

(48)

It can be seen from equation (47) that the J-potential 
is a thermodynamic potential under the condition of 
constant temperature, external stress acting on a solid, 

(49)

where p′ is some pressure, chosen for convenience 
reasons. This may be a real external pressure (the classic 
case), pressure in one of the phases of a heterogeneous 
system, or something else. The J-potential with definition 
(50) has found wide application in the thermodynamics 
of capillary systems and the theory of thin films [20], in 
colloidal science in general. Such basic relations as the 
Neumann, Gibbs, and Young equations are easily proved 
using the J-potential. As for the definition, it was used in 
the calculations of the tensile strength of brittle materials 
[18, 21]. Unfortunately, all these works belong to the 
author, and there are no other options in the literature 
yet. But if we recall how many years have passed since 
classical thermodynamic potentials became an everyday 
help for people engaged in thermodynamics, we can 
express a timid hope that the adaptation period will be 
shorter for the J-potential.

CONCLUDING REMARKS

We have described six characteristic functions at 
approximately the same level in order to establish 

(50)
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under what conditions they become thermodynamic 
potentials. For this purpose, non-mechanical work was 
used, which is usually neglected (except, of course, 
in those cases when it itself becomes the subject of 
consideration). At the same time, we have encountered a 
situation where some characteristic functions are already 
called thermodynamic potentials, regardless of external 
conditions. There are two examples: the thermodynamic 
Gibbs potential G (the old name for Gibbs energy) and 
the grand thermodynamic potential Ω. It is necessary 
to distinguish between “thermodynamic potential” as 
a proper name, and “thermodynamic potential” as a 
functional characteristic. We emphasize that, while not 
being thermodynamic potentials in a certain situation, G 
and Ω always remain useful thermodynamic functions.

And one more thing to note: from a thermodynamic 
point of view, all thermodynamic potentials (each in its 
own conditions) are equivalent. The same problem can 
be solved using different conditions and thermodynamic 
potentials and get the right result. The only question 
is which way is easier and more convenient. Gibbs 
once wrote: “One of the principal objects of theoretical 
research in any department of knowledge is to find the 
point of view from which the subject appears in its 
greatest simplicity” [22]. Thermodynamic potentials 
serve this purpose.
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