Strategic Post-exam Preference Submission in the School Choice Game

Vladimir Mazalov ¹ Artem Sedakov ² Jaimie W. Lien ³ Jie Zheng ³

1 Institute of Applied Mathematical Research KarRC RAS ²Saint Petersburg State University ³Shandong University

The 7th World Congress of the Game Theory Society August 19–22, 2024 Beijing, China

Previous studies

- ∙ Matching models generally: for survey, Roth (1982)
- ∙ Matching with incomplete information: Liu, Mailath, Postlewaite, Samuleson (2014), Chen and Hu (2023), Liu (2024)
- ∙ Job matching settings: Kojima, Sun, and Yu (2020)

Outline

[The model](#page-3-0)

[Two jobs](#page-12-0)

[Multiple jobs](#page-17-0)

[An experiment \(in process\)](#page-24-0)

[The model](#page-3-0)

- $N = \{1, \ldots, n\}$: a set of homogeneous candidates choosing a job.
- $J = \{J_1, \ldots, J_m\}$: a set of jobs from different employers.

- $N = \{1, \ldots, n\}$: a set of homogeneous candidates choosing a job.
- $J = \{J_1, \ldots, J_m\}$: a set of jobs from different employers.
- $r_j > 0$: the payoff of job J_j .

- $N = \{1, \ldots, n\}$: a set of homogeneous candidates choosing a job.
- $J = \{J_1, \ldots, J_m\}$: a set of jobs from different employers.
- $r_j > 0$: the payoff of job J_j .
- ∙ Candidates share the same preferences over all jobs which is common knowledge: $J_1\prec_i \ldots \prec_i J_m$, that is, $r_1< \ldots < r_m$ for any candidate $i \in N$.

- $N = \{1, \ldots, n\}$: a set of homogeneous candidates choosing a job.
- $J = \{J_1, \ldots, J_m\}$: a set of jobs from different employers.
- $r_j > 0$: the payoff of job J_j .
- ∙ Candidates share the same preferences over all jobs which is common knowledge: $J_1\prec_i \ldots \prec_i J_m$, that is, $r_1< \ldots < r_m$ for any candidate $i \in N$.
- $x_i \in [a, b]$: candidate *i*'s score (private information).

- $N = \{1, \ldots, n\}$: a set of homogeneous candidates choosing a job.
- $J = \{J_1, \ldots, J_m\}$: a set of jobs from different employers.
- $r_j > 0$: the payoff of job J_j .
- ∙ Candidates share the same preferences over all jobs which is common knowledge: $J_1\prec_i \ldots \prec_i J_m$, that is, $r_1< \ldots < r_m$ for any candidate $i \in N$.
- $x_i \in [a, b]$: candidate *i*'s score (private information).
- x_1, \ldots, x_n are i.i.d. are random variables with a continuous CDF F.

- $N = \{1, \ldots, n\}$: a set of homogeneous candidates choosing a job.
- $J = \{J_1, \ldots, J_m\}$: a set of jobs from different employers.
- $r_j > 0$: the payoff of job J_j .
- ∙ Candidates share the same preferences over all jobs which is common knowledge: $J_1\prec_i \ldots \prec_i J_m$, that is, $r_1< \ldots < r_m$ for any candidate $i \in N$.
- $x_i \in [a, b]$: candidate *i*'s score (private information).
- x_1, \ldots, x_n are i.i.d. are random variables with a continuous CDF F.
- ∙ Candidates choose jobs simultaneously (each chooses only one job), but observe only their own scores.

- $N = \{1, \ldots, n\}$: a set of homogeneous candidates choosing a job.
- $J = \{J_1, \ldots, J_m\}$: a set of jobs from different employers.
- $r_j > 0$: the payoff of job J_j .
- ∙ Candidates share the same preferences over all jobs which is common knowledge: $J_1\prec_i \ldots \prec_i J_m$, that is, $r_1< \ldots < r_m$ for any candidate $i \in N$.
- $x_i \in [a, b]$: candidate *i*'s score (private information).
- x_1, \ldots, x_n are i.i.d. are random variables with a continuous CDF F.
- ∙ Candidates choose jobs simultaneously (each chooses only one job), but observe only their own scores.
- If several candidates choose J_j , only the candidate with higher score will get it.

- $N = \{1, \ldots, n\}$: a set of homogeneous candidates choosing a job.
- $J = \{J_1, \ldots, J_m\}$: a set of jobs from different employers.
- $r_j > 0$: the payoff of job J_j .
- ∙ Candidates share the same preferences over all jobs which is common knowledge: $J_1\prec_i \ldots \prec_i J_m$, that is, $r_1< \ldots < r_m$ for any candidate $i \in N$.
- $x_i \in [a, b]$: candidate *i*'s score (private information).
- x_1, \ldots, x_n are i.i.d. are random variables with a continuous CDF F.
- ∙ Candidates choose jobs simultaneously (each chooses only one job), but observe only their own scores.
- If several candidates choose J_j , only the candidate with higher score will get it.
- If a candidate gets J_j , his payoff is r_j , otherwise he receives zero payoff.

[Two jobs](#page-12-0)

Strategies and Nash equilibrium J_1 \prec _i J_2 , $r_1 < r_2$

 $s_i(x_i)$: candidate *i*'s strategy—a probability distribution on *J*.

A threshold strategy $s_i(x_i)$ of a candidate i with:

$$
s_i(x_i) = \begin{cases} (p, 1-p), & x_i \in [a, a_1], \\ (0, 1), & x_i \in (a_1, b]. \end{cases}
$$

Strategies and Nash equilibrium $J_1 \prec_i J_2$, $r_1 < r_2$

 $s_i(x_i)$: candidate *i*'s strategy—a probability distribution on *J*.

A threshold strategy $s_i(x_i)$ of a candidate i with:

$$
s_i(x_i) = \begin{cases} (p, 1-p), & x_i \in [a, a_1], \\ (0, 1), & x_i \in (a_1, b]. \end{cases}
$$

Proposition. In the case of two jobs, Nash equilibrium behavior prescribes for a candidate $i \in N$ to adopt his threshold strategy

$$
s_i^*(x_i) = \begin{cases} (p^*, 1 - p^*) = \left(\frac{1}{1 + F(a_1^*)}, \frac{F(a_1^*)}{1 + F(a_1^*)}\right), & x_i \in [a, a_1^*], \\ (0, 1), & x_i \in (a_1^*, b], \end{cases}
$$

where a_1^* solves

$$
F(a_1^*) = \left(\frac{r_1}{r_2}\right)^{\frac{1}{n-1}} = R.
$$

Comparative statics analysis: Threshold and strategies

$$
F(a_1^*) = \left(\frac{r_1}{r_2}\right)^{\frac{1}{n-1}} = R.
$$

•
$$
a_1^*
$$
 is increasing in *n* and a_1^* $\xrightarrow[n \to \infty]{} b$.

•
$$
a_1^*
$$
 is convex in *n* when $2 + \left(\frac{R}{F'(F^{-1}(R))}\right)'$ ln $R < 0$.

•
$$
p^*
$$
 is decreasing in *n* and $p^* \xrightarrow[n \to \infty]{} \frac{1}{2}$.

•
$$
p^*
$$
 is convex in *n* when $2\left(1 - \frac{R \ln R}{1+R}\right) < -\ln R$.

An example

- $m = 2$ jobs.
- $n = 2$ candidates.
- $r_1 = 0.65$, $r_2 = 1.15$.

Symmetric Nash equilibrium:

$$
s_i(x_i) = \begin{cases} (0.639, 0.361), & x_i \in [0, 0.565], \\ (0, 1), & x_i \in (0.565, 1]. \end{cases}
$$

• $x_i \sim \mathbb{U}[0,1].$

[Multiple jobs](#page-17-0)

Strategies $J_1 \prec_i \ldots \prec_i J_m, r_1 \prec \ldots \prec r_m$

A threshold strategy $s_i(x_i) = (s_{i1}(x_i), \ldots, s_{im}(x_i))$ of a candidate *i*:

$$
s_i(x_i) = \begin{cases} (s_i(1,1),\ldots,s_i(1,m)), & x_i \in [a,a_1], \\ (0,s_i(2,2),\ldots,s_i(2,m), & x_i \in (a_1,a_2], \\ \ldots \\ (0,\ldots,0,s_i(\ell,\ell),\ldots,s_i(\ell,m), & x_i \in (a_{\ell-1},a_{\ell}], \\ \ldots \\ (0,\ldots,0,1), & x_i \in (a_{m-1},b], \end{cases}
$$

Symmetric Nash equilibrium

Proposition. In the case of m jobs, Nash equilibrium behavior prescribes for a candidate $i \in N$ to adopt his threshold strategy

$$
s^*(\ell, k) = \begin{cases} 0, & \ell \leq m, \ k < \ell - 1, \\ \frac{1}{1 + R_{\ell} + \ldots + R_{\ell} \cdots R_{m-1}}, & \ell < m, \ k = \ell, \\ \frac{R_{\ell} \cdots R_{k-1}}{1 + R_{\ell} + \ldots + R_{\ell} \cdots R_{m-1}}, & \ell < m, \ \ell < k < m, \\ 1, & \ell = k = m, \end{cases}
$$

where $R_\ell = (\frac{r_\ell}{r_{\ell+1}})^{\frac{1}{n-1}}$ and a_ℓ^* solves

$$
F(a_{\ell}^*) = -(m-\ell-1)+R_{\ell}+\ldots+R_{\ell}\cdots R_{m-1}, \quad \ell < m.
$$

Symmetric Nash equilibrium – 2 A remark

It may be true that for some value of ℓ

$$
-(m - \ell - 1) + R_{\ell} + \ldots + R_{\ell} \cdots R_{m-1} \geq 0, -(m - \ell) + R_{\ell-1} + \ldots + R_{\ell-1} \cdots R_{m-1} < 0.
$$

In this case the candidates need to apply only to the jobs $J_\ell,\ldots,J_m.$

Comparative statics analysis: Thresholds

•
$$
a_{\ell}^*
$$
, $\ell < m$, is increasing in *n* and $a_{\ell}^* \xrightarrow[n \to \infty]{} b$.

• a_{ℓ}^* is convex in *n* when

$$
2 - (R_{\ell} \ln R_{\ell} + \ldots + R_{\ell} \ldots R_{m-1} \ln(R_{\ell} \cdots R_{m-1})) \cdot \frac{F''(a_{\ell}^{*})}{(F'(a_{\ell}^{*}))^{2}} \\ < - \frac{R_{\ell}(\ln R_{\ell})^{2} + \ldots + R_{\ell} \cdots R_{m-1}(\ln(R_{\ell} \cdots R_{m-1}))^{2}}{R_{\ell} \ln R_{\ell} + \ldots + R_{\ell} \cdots R_{m-1} \ln(R_{\ell} \cdots R_{m-1})}.
$$

Comparative statics analysis: Strategies

- $s^*(\ell, \ell)$ is decreasing in *n*.
- $s^*(\ell, \ell)$ is convex in *n* when

$$
2\left(1 - \frac{R_{\ell}\ln R_{\ell} + \ldots + R_{\ell}\cdots R_{m-1}\ln(R_{\ell}\cdots R_{m-1})}{1 + R_{\ell} + \ldots + R_{\ell}\cdots R_{m-1}}\right) < -\frac{R_{\ell}(\ln R_{\ell})^2 + \ldots + R_{\ell}\cdots R_{m-1}(\ln(R_{\ell}\cdots R_{m-1}))^2}{R_{\ell}\ln R_{\ell} + \ldots + R_{\ell}\cdots R_{m-1}\ln(R_{\ell}\cdots R_{m-1})}.
$$

• $s^*(\ell, k)$, $\ell < k < m$, is decreasing in *n* when

$$
\frac{R_{\ell}\ln R_{\ell}+\ldots+R_{\ell}\cdots R_{m-1}\ln(R_{\ell}\cdots R_{m-1})}{1+R_{\ell}+\ldots+R_{\ell}\cdots R_{m-1}}>\ln(R_{\ell}\cdots R_{k-1}).
$$

• $s^*(\ell, k)$, $\ell < k < m$, is convex in *n* when [condition].

An example

- $m = 3$ jobs. • $n = 8$ candidates. • $r_1 = 0.65$. $r_2 = 1.15$, $r_3 = 50$. • $x_i \sim \mathbb{U}[0,1]$. Symmetric Nash equilibrium: $s_i^*(x_i) =$ $\sqrt{ }$ \int $\overline{\mathcal{N}}$ $(0.406, 0.375, 0.219), \quad x_i \in [0, 0.459],$ $(0, 0.632, 0.368),$ $x_i \in (0.459, 0.583],$ $(0, 0, 1),$ $x_i \in (0.583, 1].$ 0.6 0.8 1 0.4 0.6 0.8 1
- 2 4 6 8 10 $0\frac{6}{2}$ 0.2 0.4 Number of candidates, n a_1^* \longrightarrow a_2^*

[An experiment \(in process\)](#page-24-0)

An experiment (in process)

- $m = 2$ jobs.
- $n = 2$ candidates.
- $r_1 = 0.65$, $r_2 = 1.15$.

Symmetric Nash equilibrium:

$$
s_i^*(x_i) = \begin{cases} (0.639, 0.361), & x_i \in [0, 0.565], \\ (0, 1), & x_i \in (0.565, 1]. \end{cases}
$$

 \bullet $x_i \sim \mathbb{U}[0,1].$

Thank you.