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Abstract. The well known ideal presentations of countably based domains were recently extended to (effective) quasi-Polish

spaces. Continuing these investigations, we explore some classes of effective quasi-Polish spaces. In particular, we prove an

effective version of the domain-characterization of quasi-Polish spaces, describe effective extensions of quasi-Polish topologies,

discover natural numberings of classes of effective quasi-Polish spaces, estimate the complexity of the (effective) homeomor-

phism relation and of some classes of spaces with respect to these numberings, and investigate degree spectra of continuous

domains.
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1. Introduction

The investigation of computability in topological structures, which is currently a hot topic in computability

theory, is less straightforward than the investigation of computability in countable algebraic structures [2,10]. A

reason is that it is not clear how to capture the computability issues for a topological space by a single countable

algebraic structure, even when the space is Polish. Nevertheless, people often look for analogues of well-developed

notions and methods of the computable structure theory in the topological context. For instance, analogues of com-

putable categoricity turned out fruitful also in the study of computable metric spaces and Banach spaces [22,23],

and analogues of degree spectra turned out interesting also for topological spaces [16,17,27].

In this paper, which is an extended version of the conference paper [6],1 we explore several classes of effective

quasi-Polish (EQP-) spaces. Quasi-Polish (QP-) spaces [4] are a class of well-behaved countably based spaces that

has many interesting characterizations and includes many spaces of interest in analysis and theoretical computer

science, such as Polish spaces, ω-continuous domains, and countably based spectral spaces. The study of effective

versions of QP-spaces was initiated in [21,26] and recently continued in [5,7,18]. In particular, it was shown that

some equivalent characterizations of QP-spaces become non-equivalent in the effective setting, and it is not obvious

which of the resulted notions are the “right” ones.

Theorem 11 in [7] characterizes the EQP-spaces (called there precomputable QP-spaces) as the spaces of ideals

of c.e. transitive relations on ω; see also Theorem 3 in [5] for a more direct proof. This characterization is very

much in the spirit of domain theory where similar characterizations of computable domains are important. It is a

basic technical tool of our paper because it enables, in particular, to discover natural numberings of classes of EQP-

spaces and to estimate the complexity of the (effective) homeomorphism relation and of some classes of spaces

w.r.t. these numberings. Our investigation of numberings of classes of EQP-spaces is analogous to the investigation

of numberings of classes of algebraic structures popular in computable structure theory; see e.g. [11–13,15,25] and

references therein.

1Sections 3, 4, 5.1, 6.2, 9 are entirely new, Section 8 is extended by new facts, other sections remain essentially the same as in [6].
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Along with the mentioned results on numberings of classes of EQP-spaces, we obtain several other results. In
particular, we prove an effective version of the domain-characterization of quasi-Polish spaces [4, Theorem 53],
describe effective extensions of quasi-Polish topologies which is a partial effectivisation of some results in [4,
Section 14], and investigate degree spectra of continuous domains which is a continuation of the investigation of
degree spectra of algebraic domains in [27] and of Polish spaces in [16,17].

After recalling some preliminaries in the next section, we discuss in Section 3 some variations of the ideal
characterization of EQP-spaces. In Section 4 we apply this to the problem of extending EQP topologies.

In Section 5.1 we study ideal characterizations for classes of effective domains partly identified in [27]. This
study turns out closely related to the study of computable and c.e. partial orders and some other binary relations of
interest to computability theory (see e.g. [3] and references therein). In particular, our discussion leads to an effective
version of a domain-characterization of quasi-Polish spaces ([4], Theorem 53) and to identifying and separating
new natural classes of effective domains in Theorem 3: There is a strongly c.e. algebraic domain which is not
homeomorphic to any computable algebraic domain; there is a c.e. algebraic domain which is not homeomorphic to
any strongly c.e. algebraic domain; there is a c.e. domain which is not homeomorphic to any computable domain. In
Section 5.2 we describe representations of computable functions between some classes of effective domains which
are again based on the ideal characterizations.

In Section 6.1 we discuss natural numberings of some classes of c.e. binary relations on ω and of the corre-
sponding classes of EQP-spaces; some of these were considered in [27]. In Section 6.2 we construct a computable
numbering of all c.e. continuous domains (Theorem 6). This computable numbering gives, in a sense, a partial an-
swer to the question of the enumerability of c.e. interpolable relations posed in the conference paper [6], and the
existence of such a numbering is much less straightforward than of those in Section 6.1.

In Section 7 we characterize the complexity of (effective) homeomorphism in the introduced numberings in
parallel to the similar question for algebraic structures. Theorem 7 provides precise complexity estimates for several
natural classes of algebraic domains, with a heavy use of the ideal characterizations and non-trivial estimates for
linear and partial orderings known in computability theory [11,12,15]). Not surprisingly, the effective homeomor-
phism relation (which is often arithmetical) is simpler than the homeomorphism relation (typically, complete in a
level of the analytical hierarchy).

In Section 8 we establish precise estimates of index sets of some popular classes of topological spaces related to
separation axioms. In particular, the results of this section imply that the properties of being a T1-, T2-, regular, and
metrisable space are all 51

1-complete with respect to the natural numbering of EQP-spaces.
We conclude in Section 9 by presenting several non-trivial facts about degree spectra of continuous domains

which complement some results in [16,17,27] and some earlier facts for the discrete algebraic structures. In par-
ticular, the results of this section imply that: the class of high degrees is the degree spectrum of an irreflexive
interpolable relation (Corollary 6); there exists a c.e. irreflexive interpolable relation which is not isomorphic to any
X-computable relation whenever X is not high (Corollary 7); there exists a low3-c.e. irreflexive interpolable relation
which is not isomorphic to any c.e. relation (Corollary 8). Similar results can be obtained for the degree spectra of
ω-continuous domains instead of interpolable relations.

2. Preliminaries

Here we introduce some notation, notions and facts used throughout the paper. More special information is
recalled in the corresponding sections below.

We use the standard set-theoretical notation, in particular, YX is the set of functions from X to Y , and P(X)

is the class of subsets of a set X. All (topological) spaces in this paper are countably based T0 (cb0-spaces, for
short). We denote the homeomorphism relation by ≃. An effective space is a pair (X, β) where X is a cb0-space,
and β : ω → P(X) is a numbering of a base in X such that there is a uniformly c.e. sequence {Aij } of c.e. sets with
β(i) ∩ β(j) = ∪β(Aij ) where β(Aij ) is the image of Aij under β. We simplify (X, β) to X if β is clear from the
context. Any subspace Y of an effective space (X, β) is effective with the induced numbering βY (n) = β(n) ∩ Y of
the base sets.

The effective space (X, β) is c.e. (or overt) if the set {n|β(n) 6= ∅} is c.e. A subspace of a c.e. space is not
necessarily c.e. Among the effective spaces are: the discrete space N of natural numbers, the Euclidean spaces Rn,
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the Scott domain Pω (the powerset of the natural numbers with the Scott-topology; see [1] for information about

domains), the Baire space N = NN, the Hilbert cube [0, 1]ω; all these spaces come with natural numberings of

bases.

A function f : (X, β) → (Y, γ ) is computable if it is effectively continuous; that is, given a γ -index of basic

open set, one can effectively find a β-c.e. index of its preimage under f . Computability of a partial function can also

be introduced via relative topology {β(n) ∩ D : n ∈ ω} on a subspace D ⊆ X.

A computable function may be understood as an enumeration operator via the canonical embedding: With any

effective space (X, β) we associate the canonical embedding e : X → Pω defined by e(x) = {n|x ∈ β(n)}. The

canonical embedding is an effective homeomorphism between X and the subspace e(X) of Pω.

Here, effective spaces (X, β) and (Y, γ ) are effectively homeomorphic if there is a computable (i.e., effectively

continuous) bijection f : X → Y such that f −1 is also computable. The relation of effective homeomorphism of

effective spaces will be denoted by ≃e. Note that if (X, β) ≃e (Y, γ ) then X ≃ Y . All classes of effective spaces

considered below will be closed under ≃e.

In any effective space X, one can define effective versions of classical hierarchies (see e.g. [26]), in particular the

effective Borel hierarchy {60
1+n(X)}n<ω and the effective Luzin hierarchy {61

n(X)}n<ω. For X = ω, these coincide

with the arithmetical and analytical hierarchies, respectively.

An effective space is effective Polish (resp. effective quasi-Polish, abbreviated as EQP) if it is effectively home-

omorphic to a 50
2-subspace of the Hilbert cube (resp. the Scott domain). Note that EQP-spaces are called in [7]

precomputable QP-spaces, while c.e. EQP-spaces are called computable QP-spaces. All the aforementioned ex-

amples of spaces are c.e. EQP-spaces. Moreover, all computable Polish spaces and all computable ω-continuous

domains (see e.g. [26]) are c.e. EQP-spaces. However, an effective Polish space is not necessarily computable Pol-

ish (nor even 11
1-computable Polish; for example, consider a 50

1 subspace P of NN with no 11
1 elements. If P were

11
1-overt, P would have a 11

1 element).

We use the standard terminology about binary relations and about domains (see e.g. [1,27]). Given a transitive

relation ρ on a set S, a subset D ⊆ S is lower (with respect to ρ) if xρy ∈ D implies x ∈ D. A set D ⊆ S is

directed if it is nonempty and satisfies ∀x, y ∈ D∃z ∈ D(xρz ∧ yρz). An ideal of (S; ρ) is a directed lower subset

of S. By interpolable relations we mean transitive relations ≺ on S such that any initial segment {x|x ≺ y}, y ∈ S,

is directed.

We briefly recall some terminology of domain theory (see e.g. [1,9,14] for details). Let X be a T0-space. The

specialization order 6X on X is defined by: x 6X y, if x ∈ U implies y ∈ U , for each open set U ⊆ X. Any

continuous function f : X → Y is monotone w.r.t. 6X, 6Y . Let K(X) be the set of compact elements of X, i.e.

elements x such that ↑ x = {y|x 6X y} is open. The approximation relation ≪X on X is defined by: x ≪X y, if y

is in the interior of ↑ x. Clearly, ≪X ⊆ 6X. One can see that if x ∈ X is a compact element, then x ≪X y if and

only if x 6X y. Note also that x ∈ X is a compact element if and only if x ≪X x.

The space X is a continuous domain, if (X;6X) is directed complete and there is a set B ⊆ X (called a domain

basis of X) such that the sets {x|b ≪X x}, b ∈ B, form a base of the topology in X, and every x ∈ X is the directed

supremum of {b ∈ B|b ≪X x}. An ω-continuous domain is a continuous domain which possesses a countable

domain base. The space X is an algebraic domain, if (X;6X) is directed complete and the sets ↑ c, c ∈ K(X),

form a base of the topology in X. Every algebraic domain is also a continuous domain because K(X) is a domain

basis. An ω-algebraic domain is an algebraic domain with countably many compact elements.

The study of some classes of EQP-spaces is closely related to the mentioned types of binary relations on ω with

some effectivity conditions. Correspondingly, we assume the reader to be familiar with the basics of computability

theory (see e.g. [24]), including the notions of computable, c.e., and co-c.e. binary relations. There are many inter-

esting results about computable relations (as well as about computable and c.e. structures in general). Below we will

use the following nice fact (Theorem 2.1 in [3]) about effective partial orders: There is a co-c.e. partial order on ω

which is not isomorphic to any c.e. partial order, and similarly with c.e. and co-c.e. interchanged.

We conclude this section with recalling the basic fact established in Theorem 11 [7] (see also Theorem 3 in [5]

for additional details).
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Definition 1. Let ≺ be a transitive relation on ω. A subset I ⊆ ω is an ideal (with respect to ≺) if and only if:

(1) I 6= ∅, (I is non-empty)

(2) (∀a ∈ I )(∀b ∈ ω) (b ≺ a ⇒ b ∈ I ), (I is a lower set)

(3) (∀a, b ∈ I )(∃c ∈ I ) (a ≺ c & b ≺ c). (I is directed)

The collection I(≺) of all ideals has the topology generated by basic open sets of the form [n]≺ = {I ∈ I(≺)|n ∈ I }

for n ∈ ω. �

As shown in [7, Theorem 11], such spaces of ideals are closely related to QP-spaces, namely: a space X is

quasi-Polish iff it is homeomorphic to I(≺) for some transitive relation ≺ on ω. Moreover, an effective space (X, ξ)

is EQP iff it is computably homeomorphic to I(≺) for some transitive c.e. relation ≺ on ω.

3. On ideal presentations of EQP-spaces

In this section we prove some variations of Theorem 11 in [7]. A natural related question is: which class of EQP

spaces is obtained if we restrict c.e. transitive relations above to, say, computable strict partial orders. It turns out

that nothing new appears (although, as we show in Section 5.1, similar variations for effective domains lead to new

interesting notions).

Proposition 1. For every c.e. transitive relation ≺ on ω, there is a computable strict partial order ⊏ on ω such that

I(≺) and I(⊏) are computably homeomorphic.

Proof. Let ≺(k) be a computable relation such that x ≺(k) y holds if and only if x ≺ y is accepted by some fixed

Turing machine within k steps. Let Pfinω be the set of finite subsets of ω, and for F,G ∈ Pfinω and m, n ∈ ω define

〈F,m〉 ⊏ 〈G,n〉 if and only if the following all hold:

(1) F ⊆ G,

(2) m < n,

(3) (∀y ∈ F)(∀x 6 n) [x ≺(n) y ⇒ x ∈ G],

(4) (∃y ∈ G)(∀x ∈ F) x ≺(n) y.

It is easy to verify that ⊏ is computable, irreflexive, and transitive, hence it is a computable strict partial order. Define

f : I(≺) → I(⊏) as

f (I) =
{

〈F,m〉|F ⊆ I is finite & m ∈ ω
}

,

and define g : I(⊏) → I(≺) as

g(I) =
⋃

〈F,m〉∈I

F.

It is straightforward to show that f is well-defined and computable. We verify that g is well-defined, and then

computability will be obvious. Fix any I ∈ I(⊏). It is clear that g(I) 6= ∅. To show g(I) is a lower set, assume x ≺

y ∈ g(I). Choose k large enough that x 6 k and x ≺(k) y, and fix 〈F,m〉 ∈ I with y ∈ F . Using the directedness

of I and (2), there is 〈G,n〉 ∈ I with 〈F,m〉 ⊏ 〈G,n〉 and k 6 n. It follows from (3) that x ∈ G, hence x ∈ g(I).

To prove that g(I) is directed, note that for any 〈F,m〉, 〈G,n〉 ∈ I , there is 〈H,p〉 ∈ I with 〈F,m〉 ⊏ 〈H,p〉 and

〈G,n〉 ⊏ 〈H,p〉, so by (4) there are x, y ∈ H satisfying (∀w ∈ F)w ≺ x and (∀w ∈ G)w ≺ y. Then again using

directedness of I , there is 〈H ′, p′〉 ∈ I with 〈H,p〉 ⊏ 〈H ′, p′〉, hence (4) and the transitivity of ≺ implies every

pair of elements in F ∪ G has a ≺-upper bound in H ′ which is contained in g(I).

It only remains to show that f and g are inverses of each other. It is clear that g(f (I )) = I for each I ∈ I(≺).

It is also clear that I ⊆ f (g(I )) for each I ∈ I(⊏). To see that f (g(I )) ⊆ I , fix 〈F,m〉 ∈ f (g(I )). For each
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x ∈ F there is 〈Fx,mx〉 ∈ I with x ∈ Fx . Let 〈G,n〉 be a ⊏-upper bound of {〈Fx,mx〉|x ∈ F } in I , and let

〈H,p〉 ∈ I be a ⊏-upper bound of 〈G,n〉. Then there exists y ∈ H such that x ≺(p) y for each x ∈ F . Furthermore,

from the directedness of I and (2), we can assume without loss of generality that m < p. It then follows that

〈F,m〉 ⊏ 〈H,p〉 ∈ I , hence 〈F,m〉 ∈ I because I is a lower set. This completes the proof that I(≺) and I(⊏) are

computably homeomorphic. �

Now we relate the spaces of ideals I(≺) where ≺ is transitive, to the spaces I(⊑) where ⊑ is a partial order on

ω. Recall that an ideal of ⊑ is principal if it has a largest element w.r.t. ⊑.

Proposition 2. For any c.e. transitive relation ≺ on ω there exists a computable partial order ⊑ on ω such that I(≺)

is computably homeomorphic to the subspace of non-principal ideals in I(⊑).

Proof. From Proposition 1 there is a computable strict partial order ⊏ on ω such that I(≺) and I(⊏) are computably

homeomorphic. Define ⊑ to be the reflexive closure of ⊏. It suffices to show that any I ⊆ ω is an ideal of ⊏ if and

only if I is a non-principal ideal of ⊑.

Assume I ∈ I(⊏). Clearly I 6= ∅. If a ⊑ b ∈ I then since I is ⊏-directed there is c ∈ I with b ⊏ c, hence a ⊏ c

which implies a ∈ I because I is a ⊏-lower set. Therefore, I is a ⊑-lower set. Since I is ⊏-directed it is clear that

I is ⊑-directed and also non-principal with respect to ⊑.

Conversely, assume I ∈ I(⊑) is non-principal. It is immediate that I is non-empty and a ⊏-lower set. Every

a, b ∈ I has a ⊑-upper bound c ∈ I , and since I is non-principal there is c′ ∈ I with c ⊏ c′. Therefore, c′ is a

⊏-upper bound of a and b, which proves I is ⊏-directed. �

4. Extending EQP topologies

It is known that if countably many 1
0
2-sets are added to the topology of a quasi-Polish space then the resulting

space is again quasi-Polish [4]. The following result is an effective version of this observation, but restricted to

closed sets.

Theorem 1. Given a c.e. transitive relation ≺ on ω and a c.e. set U ⊆ ω, one can effectively obtain a c.e. transitive

relation ⊏ on ω such that I(⊏) is computably homeomorphic to the space obtained by adding A = {I ∈ I(≺)|(∀x ∈

U) x /∈ I } as a c.e. open set to the topology of I(≺).

Proof. From Proposition 1, we can assume without loss of generality that ≺ is computable. We write U (n) for the

subset of U enumerated within n steps by some fixed Turing machine. Let ω∗ = ω ∪ {∗}, where {∗} is a symbol not

in ω. Define a c.e. transitive relation ⊏ on (Pfinω∗) × n as 〈F,m〉 ⊏ 〈G,n〉 if and only if the following all hold:

(1) m < n,

(2) ∗ ∈ F ⇒ ∗ ∈ G,

(3) (∃y ∈ G \ {∗})(∀x ∈ F \ {∗}) x ≺ y,

(4) ∗ ∈ G or (∃x ∈ U) x ∈ G,

(5) [∗ ∈ F & y ∈ F \ {∗}] ⇒ (∀x 6 n) [x ∈ U (n) ⇒ x ⊀ y].

It is clear that ⊏ is c.e. The only non-trivial part of proving that ⊏ is transitive is verifying that (5) holds, so we will

show that here. Assume 〈F,m〉 ⊏ 〈G,n〉 ⊏ 〈H,p〉. Assume ∗ ∈ F and y ∈ F \ {∗} and that x 6 p is in U (p).

Then (2) implies ∗ ∈ G, and by (3) there is z ∈ G \ {∗} with y ≺ z, and by (5) we have x ⊀ z. So if x ≺ y then

transitivity would yield x ≺ z, a contradiction. Therefore, (5) holds, and we obtain 〈F,m〉 ⊏ 〈H,p〉.

Define g : I(⊏) → I(≺) as

g(I) =
⋃

〈F,m〉∈I

F \ {∗}.
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We first show that g(I) is well-defined. g(I) is non-empty because (3) implies there is 〈G,n〉 ∈ I with some

y ∈ G \ {∗}. To show g(I) is a lower set, assume x ≺ y ∈ g(I), and let 〈F,m〉 ∈ I be such that y ∈ F \ {∗}. Since

I is directed, there is 〈G,n〉 ∈ I with 〈F,m〉 ⊏ 〈G,n〉. By (3), there is z ∈ G \ {∗} with y ≺ z, hence x ≺ z by

transitivity of ≺. It follows that 〈{x},m〉 ⊏ 〈G,n〉, which implies 〈{x},m〉 ∈ I and therefore x ∈ g(I). The proof

that g(I) is directed is identical to the proof that g(I) is directed in Proposition 1.

It is clear that g is computable. To see that g is injective, assume g(I) = g(J ) and fix any 〈F,m〉 ∈ I . This

implies F \ {∗} ⊆ g(I) = g(J ), hence there is a ≺-upper bound y of F \ {∗} in g(J ). Then there is 〈G,n〉 ∈ J with

y ∈ G, and by directedness we can assume m < n and that G satisfies (4). We show 〈F,m〉 ⊏ 〈G,n〉. The criteria

(1), (3), and (4) are satisfied by the choice of G. To see that (2) is satisfied, assume for a contradiction that ∗ ∈ F

and ∗ /∈ G. Since G satisfies (4), there must be x ∈ U with x ∈ G, and by the directedness of J there is 〈H,p〉 ∈ J

with 〈G,n〉 ⊏ 〈H,p〉 and x 6 p and x ∈ U (p). Then (3) implies there is z ∈ H with x ≺ z, but then (5) implies

〈H,p〉 can have no ⊏-upper bound in J , which contradicts the directedness of J . Therefore, ∗ ∈ F ⇒ ∗ ∈ G,

hence (2) is satisfied. Finally, if ∗ ∈ F and F \ {∗} 6= ∅, then by directedness of I we can find some 〈H,p〉 ∈ I with

〈F,m〉 ⊏ 〈H,p〉 and n < p, and it easily follows that (5) holds. Therefore, 〈F,m〉 ⊏ 〈G,n〉, hence 〈F,m〉 ∈ J

because J is a lower set. The proof that J ⊆ I is identical, hence g is injective.

To prove that g is bijective, we construct its inverse h : I(≺) → I(⊏) as

h(J ) =
{

〈F,m〉|F ⊆ J ∪ {∗} is finite & m ∈ ω
}

if J ∈ A, and

h(J ) =
{

〈F,m〉|F ⊆ J is finite & m ∈ ω
}

if J /∈ A. To show that h(J ) is well-defined, first consider the case J ∈ A. Then h(J ) is clearly non-empty, and it is

a lower set because if 〈F,m〉 ⊏ 〈G,n〉 ∈ h(J ), then (3) implies G contains a ≺-upper bound of F , hence F ⊆ J

because J is a lower set. To see that h(J ) is directed, assume 〈F,m〉, 〈G,n〉 ∈ h(J ), and let y ∈ J be a ≺-upper

bound of (F ∪ G) \ {∗}. Set H = {y, ∗} and p = m + n + 1. Then 〈H,p〉 ∈ h(J ) is a ⊏-upper bound of 〈F,m〉 and

〈G,n〉, which proves h(J ) ∈ I(⊏). The case when J /∈ A is similar, except when proving that h(J ) is directed, we

use the fact that there exists x ∈ U ∩ J when constructing a ⊏-upper bound of a pair of elements of h(J ) so that it

satisfies (4). In either case, we clearly have g(h(J )) = J , hence g is a computable bijection and h is its inverse.

Finally, it is clear that g−1(A) is a c.e. open subset of I(⊏), and although h is not computable on its whole

domain I(≺) in general, the additional information needed to compute h is precisely whether or not the input J is

in A. More precisely, h can be viewed as a computable homeomorphism from the disjoint union of A and I(≺) \ A

to I(⊏). Therefore, I(⊏) is computably homeomorphic to the space obtained by adding A as a c.e. open set to the

topology of I(≺). �

Using the construction of countable products and equalizers described in [4], we can easily generalize the above

theorem to handle c.e. sequences of co-c.e. closed sets.

Corollary 1. Given a c.e. transitive relation ≺ on ω and a c.e. sequence (Ai)i∈ω of co-c.e. closed subsets of I(≺),

one can compute a c.e. transitive relation ⊏ on ω such that I(⊏) is computably homeomorphic to the space obtained

by adding each Ai (i ∈ ω) as a c.e. open set to the topology of I(≺).

Proof. Let ⊏i be the c.e. transitive relation obtained from the previous theorem for the space with Ai joined to

the topology of I(≺), let ⊏′ be a c.e. encoding for the product of these spaces, and let ⊏ be a c.e. encoding for

the diagonal of I(⊏′), obtained as the equalizer of the computable functions (xi)i∈ω 7→ (gi(xi))i∈ω and (xi)i∈ω 7→

(g0(x0))
ω, where gi is the bijection from I(⊏i) to I(≺) used in the proof of the above theorem. Then ⊏ satisfies the

corollary. �
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5. Representing effective domains and computable functions

5.1. Ideal presentations of effective domains

Here we establish ideal characterizations of some effective versions of domains. Let us first recall definitions of two

classes of effective domains (one of which is known while the other recently introduced in [27]). We warn the reader

that the adjectives “computable” and “c.e.” are sometimes used in the literature inconsistently.

Definition 2. By a computable domain we mean a pair (X, b) where X is an ω-continuous domain and b : ω → X is

a numbering of a domain base in X such that the relation bi ≪X bj is computable, where ≪X is the approximation

relation on X. The notion of c.e. domain is obtained by using “c.e.” instead of “computable”.

For algebraic domains, we have at least three natural versions of effectiveness.

Definition 3.

(1) By a computable algebraic domain we mean a pair (X, c) where X is an ω-algebraic domain and c : ω → X

is a numbering of the compact elements in X such that the relation ci 6X cj is computable, where 6X is

the specialization order on X.

(2) By a strongly c.e. algebraic domain we mean either a finite domain or a pair (X, c) where X is an ω-

algebraic domain and c : ω → X is a bijective numbering of the compact elements in X such that the

relation ci 6X cj is c.e.

(3) By a c.e. algebraic domain we mean a pair (X, c) where X is an ω-algebraic domain and c : ω → X is a

numbering of the compact elements in X such that the relation ci 6X cj is c.e.

Notions (1) and (2) were introduced in [27] while notion (3) is sometimes met in the literature under the name

“computable ω-algebraic domain”. It is easy to see that any computable algebraic domain is strongly c.e. and any

strongly c.e. algebraic domain is c.e. The next result is a reformulation of some well known facts of domain theory

[1]. It was announced without a proof in [27] as Proposition 2; here we provide a proof, for the sake of completeness.

Proposition 3.

(1) A topological space is an ω-continuous domain iff it is homeomorphic to I(≺) for some transitive interpo-

lable relation ≺ on ω.

(2) A topological space is an ω-algebraic domain iff it is homeomorphic to I(⊑) for some preorder ⊑ on ω.

(3) An infinite topological space is an ω-algebraic domain iff it is homeomorphic to I(⊑) for some partial order

⊑ on ω.

Proof. (1) Let ≺ be a transitive interpolable relation on ω. It is well known (see e.g. Proposition 2.2.22 in [1]) that

I(≺) is an ω-continuous domain. Conversely, let X be an ω-continuous domain and b : ω → X be a numbering of

a domain basis. Define the relation ≺ on ω by: i ≺ j , if bi ≪X bj . Then ≺ is a transitive interpolable relation on ω,

and X is homeomorphic to I(≺) via f (x) = {i|bi ≪X x}.

(2) Let ⊑ be a preorder on ω. It is well known that I(⊑) is an ω-algebraic domain the compact elements of which

are the principal ideals (note also that I(⊑) is homeomorphic to I(ω∗; ⊑∗), where (ω∗; ⊑∗) is the quotient-order of

(ω,⊑)). Conversely, let X be an ω-algebraic domain and c : ω → X be a numbering of the compact elements.

Define the preorder ⊑ on ω by: i ⊑ j , if ci 6X cj . Then X is homeomorphic to I(⊑) via f (x) = {i|ci 6X x}.

(3) Similarly to (2). �

We proceed with effective versions of the above proposition for algebraic domains (for continuous domains such

a direct effectivization is probably not known); see also Section 4. The next fact was stated in [27] without proof.
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Proposition 4.

(1) An effective space is a computable (resp. c.e.) algebraic domain iff it is effectively homeomorphic to I(⊑)

for some computable (resp. c.e.) preorder ⊑ on ω.

(2) An infinite effective space is a computable (resp. strongly c.e.) algebraic domain iff it is effectively homeo-

morphic to I(⊑) for some computable (resp. c.e.) partial order ⊑ on ω.

Proof. (1) Let ⊑ be a computable preorder on ω. Then (I(⊑); c), where ci =↓ i = {j |j ⊑ i}, is a computable

domain because ci ⊆ cj iff i ⊑ j . Conversely, let (X, c) be a computable algebraic domain. Define the computable

preorder ⊑ on ω by: i ⊑ j , if ci 6X cj . Then ⊑ has the desired properties. The same argument works for the c.e.

case.

(2) Let ⊑ be a computable partial order on ω. Then (I(⊑), c), where c is as in item (1), is an infinite com-

putable domain. Conversely, let (X, c′) be an infinite computable algebraic domain. Since K(X) is infinite, it is

straightforward to modify c′ and obtain an injective numbering c : ω → X of the compact elements, preserving

the computability of the relation ci 6X cj . Then proceed as above. A similar argument works for the strong c.e.

case. �

Although we assume the Scott topology on ω-algebraic domains in this paper, the Lawson topology also has

useful applications (see [14]). The Lawson topology on a domain X refines the Scott topology on X by adding

all sets of the form X\ ↑ x as open sets. For algebraic domains, it suffices to only add sets of the form X\ ↑ x

for x ∈ K(X) to obtain the Lawson topology (see the hint after Exercise III-1.14 in [14]). Using Corollary 1 and

Proposition 4, we obtain the following partial effectivization of the known fact that an ω-algebraic domain with the

Lawson topology is a (zero-dimensional) Polish space.

Corollary 2. If X is a computable (or c.e.) algebraic domain, then X with the Lawson topology is an effective

quasi-Polish space. �

Next we prove an effective version of the following domain-characterization of quasi-Polish spaces established

in [4]: a space is quasi-Polish iff it is homeomorphic to the space of non-compact elements of an ω-algebraic

(equivalently, of an ω-continuous) domain.

Theorem 2. For an effective space (X, ξ) the following are equivalent:

(1) (X, ξ) is an effective quasi-Polish space.

(2) (X, ξ) is computably homeomorphic to the space of non-compact elements of a computable algebraic do-

main.

(3) (X, ξ) is computably homeomorphic to the space of non-compact elements of a computable domain.

Proof. (1) → (2). By Proposition 1, X is computably homeomorphic to I(≺) for some computable strict partial

order ≺ on ω. By Proposition 2, X is computably homeomorphic to the subspace of non-principal ideals in I(⊑),

for some computable partial order ⊑ on ω. By Proposition 4(1), I(⊑) is a computable algebraic domain.

The implication (2) → (3) is obvious since every computable algebraic domain is a computable domain.

(3) → (1). Let (Y, b) be a computable domain and let X be computably homeomorphic to Y \ K(Y). Since Y is

EQP, it suffices to show that K(Y) ∈ 60
2(Y ) [7,18]. The set C = {i|bi ≪Y bi} is computable and K(Y) = {bi |i ∈

C}, hence it suffices to check that {bi} ∈ 60
2(Y ) uniformly on i ∈ C. We have

{bi} = {y|bi 6Y y} \ {y|y 66Y bi} = {y|bi 6Y y} \
⋃

bj⊀Y bi

{y|bj ≺Y y}.

This is because y 6Y bi iff, for any j , bj ≪Y y implies bj ≪Y bi . Since the relation bj 6≪Y bi is computable, the

desired estimate follows. �
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Next we show that the effective versions of algebraic domains introduced above are non-equivalent. For this we

use Theorem 2.1 in [3] cited in Section 2, and Theorem 1 in [27] equivalent to following fact about c.e. preorders

on ω.

Proposition 5. There is a c.e. preorder ⊑ on ω whose quotient-order (ω∗; ⊑∗) is infinite and not isomorphic to any

c.e. partial order on ω.

We use this proposition to obtain the following fact which was also announced in [27] without proof:

Theorem 3.

(1) There is a strongly c.e. algebraic domain which is not homeomorphic to any computable algebraic domain.

(2) There is a c.e. algebraic domain which is not homeomorphic to any strongly c.e. algebraic domain.

(3) There is a c.e. domain which is not homeomorphic to any computable domain.

Proof. (1) By Theorem 2.1 in [3], there is a c.e. partial order ⊑ on ω which is not isomorphic to any computable

partial order on ω. We claim that the space X = I(⊑) has the desired properties. Indeed, by Proposition 4(2) X (with

a natural numbering of the compact elements) is a strongly c.e. algebraic domain. Suppose, for a contradiction, that

X is homeomorphic to a computable algebraic domain (Y, c), and let f : X → Y be a homeomorphism. As

noticed in the proof of Theorem 2 in [27], the restriction of f to K(X) is an isomorphism between (K(X);6X) and

(K(Y );6Y ). By Proposition 4, (K(X);6X) and (K(Y );6Y ) are isomorphic respectively to (ω,⊑) and to (ω,⊑Y ),

for some computable partial order ⊑Y on ω. Thus, the latter two partial orders are isomorphic. A contradiction.

(2) Let ⊑ be the preorder on ω from Proposition 5. The same argument as in item (1) shows that the space

X = I(⊑) has the desired properties because (K(X);6X) is isomorphic to (ω∗; ⊑∗) by Proposition 4.

(3) Let (X, c) be the space from the proof of item (1), then (X, c) is an infinite c.e. domain. Suppose for a

contradiction that X is homeomorphic to Y for some computable domain (Y, b). Let C = {i|bi ≪Y bi}, then, as

a base must contain all compact elements, C = {i0 < i1 < · · · } is an infinite computable set and (Y, {bij }j ) is a

computable algebraic domain. This contradicts item (1). �

5.2. Representing computable functions

Here we describe useful representations of computable functions between EQP spaces and effective domains.

First we briefly recall some notions and facts from Section 2.2.6 of [1]. Let A = (A; ≺1) and B = (B; ≺2) be

interpolable relations on arbitrary sets A, B; we denote the elements of A as a, a′, . . ., and similarly for B. We say

that a set R ⊆ A × B is a morphism from A to B (in symbols, R : A → B) if it satisfies the following conditions:

if aRb and a ≺1 a′ then a′Rb; if aRb and b′ ≺2 b then aRb′; for any a there is b with aRb; for all a, b, b′ with

aRb, aRb′ there is b′′ with b ≺2 b′′, b′ ≺2 b′′, and aRb′′; if aRb then a′Rb for some a′ ≺1 a (cf. Definition 2.2.27

in [1]).

By Theorem 2.2.28 in [1], the category INT of the interpolable relations A and the just defined morphisms is

equivalent to the category CONT of continuous domains as objects and continuous functions as morphisms. The

equivalence is given by the functors I : INT → CONT and B : CONT → INT defined as follows. Let I (A) be

the space of ideals of A, and, for R : A → B, I (R) : I (A) → I (B) be the image map pRq(J ) = {b|∃a ∈ J (aRb)},

J ∈ I (A). For an object X of CONT let B(X) = (X; ≪X), and for a morphism f : X → Y of CONT let

B(f ) = {(x, y)|y ≪Y f (x)}.

By Theorem 2.2.29 in [1], the full subcategory PRE of INT formed by the arbitrary preorders A = (A; ⊑)

as objects, is equivalent to the full subcategory ALG of CONT formed by the algebraic domains as objects. The

equivalence is given by the functors IPRE : PRE → ALG and K : ALG → PRE where IPRE is the restriction of

I to PRE, K(X) is the restriction of 6X to the set of compact elements in X, and, for a morphism f : X → Y of

ALG, let K(f ) = {(x, y)|x ∈ K(X) ∧ y ∈ K(Y) ∧ y 6Y f (x)}.

Now we describe effective versions of the cited results for the classes of effective algebraic domains from

Proposition 4. The effectivization of Theorem 2.2.28 in [1] is currently not clear. The problem is that the functor
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I increases the algorithmic complexity (while the effective version of the functor B, Be(X, b) = (ω; ≺) where

m ≺ n ↔ b(m) ≪X b(n), preserves the algorithmic complexity).

Let ALGe (resp. ALGs , resp. ALGc) be the category of c.e. (resp. infinite strongly c.e., resp. computable)

algebraic domains as objects and the computable functions as morphisms. Let PREe (resp. PREs , resp. PREc) be

the category of c.e. preorders (resp. c.e. partial orders, resp. computable preorders) on ω; the morphisms in all three

categories are c.e. morphisms of PRE restricted to the objects of these categories. Let ≃ denote the equivalence of

categories.

Theorem 4. We have: PREe ≃ ALGe, PREs ≃ ALGs , PREc ≃ ALGc.

Proof. We only define the functors witnessing the equivalences, leaving the straightforward checking of their prop-

erties to the reader. Define Ie : PREe → ALGe as follows: Ie(ω; ⊑) = (I (⊑), b) where b(n) = {m|m ⊑ n}, and

for a morphism R : (ω; ⊑1) → (ω; ⊑2) let Ie(R) be the image map pRq restricted to I (⊑1). Define Be : ALGe →

PREe as follows: if (X, b) is a c.e. algebraic domain then let Be(X, b) = (ω; ⊑) where m ⊑ n ↔ b(m) 6X b(n),

and if f : (X, b) → (Y, c) is a computable function then let Be(f ) = {(m, n)|c(n) 6Y f (b(m))}. Then Ie, Be

are witnesses for INTe ≃ ALGe The witnesses for the remaining two equivalences are obvious restrictions of Ie,

Be. �

We conclude this section with remarks on representing functions between QP-spaces represented as spaces of

ideals I(≺1) and I(≺2). We define a code for a partial function to be any subset R ⊆ ω × ω. Each code R encodes

the partial function pRq :⊆ I(≺1) → I(≺2) defined as

pRq(I ) =
{

n ∈ ω|(∃m ∈ I ) 〈m, n〉 ∈ R
}

,

dom(pRq) =
{

I ∈ I(≺1)|pRq(I ) ∈ I(≺2)
}

.

The following fact is Theorem 2 from [5].2

Theorem 5. Let ≺1 and ≺2 be c.e. transitive relations on ω. A total function f : I(≺1) → I(≺2) is computable if

and only if there is a c.e. code R ⊆ ω × ω such that f = pRq. �

6. Enumerating classes of spaces

6.1. Some natural numberings

Here we introduce and study natural numberings of some classes of relations on ω and of EQP-spaces. Some of

these may be defined directly from the definitions of Section 2. For any effective space X, let πX be the standard

numbering of 50
2-subspaces of X. In the particular case X = Pω we obtain the numbering π = πX of all (up

to ≃e) EQP-spaces. In the particular case X = [0, 1]ω, πX is a numbering of all effective Polish spaces (because,

up to homeomorphism, Polish spaces are precisely the 5
0
2-subspaces of the Hilbert cube, see e.g. Theorem 4.14 in

[19]); setting µ(n) = e(πX(n)), where e is the canonical embedding of [0, 1]ω into Pω, we obtain a numbering µ

of effective Polish spaces realised as 50
2-subspaces of Pω.

Other natural numberings of spaces are defined using the ideal representations. We first define some numberings

of classes of relations on ω. Setting Vn = {(i, j)|〈i, j 〉 ∈ Wn}, we obtain a standard computable numbering {Vn} of

the class E of all c.e. binary relations on ω. Let T, I, P, O be the classes of all transitive c.e. relations, all interpolable

c.e. relations, all c.e. preorders, and all c.e. partial orders on ω, respectively.

2In the original paper, the statement of the theorem incorrectly omitted the requirement that ≺1 be a c.e. relation. We are grateful to Ivan

Georgiev for pointing out this mistake and providing a counter example.
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Proposition 6.

(1) There is a computable function t such that: Vt (n) ∈ T, Vn ∈ T implies Vn = Vt (n), and Vm = Vn implies

Vt (m) = Vt (n).

(2) There is a computable function p such that: Vp(n) ∈ P, Vn ∈ P implies Vn = Vp(n), and Vm = Vn implies

Vp(m) = Vp(n).

(3) There is a computable function o such that: Vo(n) ∈ O, and Vn ∈ O implies Vn = Vo(n).

Proof. (1) As t we can take arbitrary computable function such that Vt (n) is the transitive closure of Vn (such a

function obviously exists).

(2) As p we can take arbitrary computable function such that Vp(n) is the reflexive transitive closure of Vn (such

a function obviously exists).

(3) Given a computable step-wise enumeration of {Vp(n)}, it is straightforward to construct a computable se-

quence {An} of c.e. partial orders on ω such that: An ⊆ Vp(n); if Vp(n) is a partial order then An = Vp(n); if Vp(n) is

not a partial order then almost all elements of An are pairwise incomparable. As o we can take arbitrary computable

function such that Vo(n) = An. �

We thank an anonymous referee of the conference version of this paper for showing that there is no function o

as in item (3) with the additional property that Vm = Vn implies Vo(m) = Vo(n).

Corollary 3. The classes T, P, O have computable numberings, namely the numberings {Vt (n)}, {Vp(n)}, {Vo(n)},

respectively.

Compared to other classes, the method of enumerating the class I of interporable c.e. relations is not at all clear.

The complexity of interpolability is one of the reasons why it is difficult to enumerate I in a simple way.

Proposition 7. Deciding whether a given c.e. transitive relation is interpolable is 50
2-complete.

Proof. It is clear that this decision is 50
2. For completeness, consider the standard strict ordering <Q of the rational

numbers Q = {qi : i ∈ N}, which is clearly interpolable. For any 50
2 formula ϕ(n) ≡ ∀a∃bθ(n, a, b), consider the

restriction of <Q to Qn = {qi : ∀a < i∃bθ(n, a, b)}, which is c.e. If ϕ(n) is true, then Qn = Q; otherwise Qn is

finite. Note that the strict order <Q restricted to a finite set cannot be interpolable. �

We do not know whether the class I has a computable numbering but by Proposition 7 we can define a natural

non-computable one {Vi(n)} where i is the ∅′′-computable function which enumerates the 50
2-set {m|Vt (m) ∈ I}

in the increasing order. For the moment, let j , c be ∅′′-computable functions which enumerate the 60
3 -sets

{m|Vt (m) is computable} and {m|Vp(m) is computable}, respectively. We return to this issue again in Section 6.2

to show that a subclass of I large enough to represent all homeomorphism types of effective ω-continuous domains

has a computable numbering.

Theorem 11 in [7], Corollary 3, and Propositions 3,4 in [27] imply that {I(Vt (n))}, {I(Vp(n))}, {I(Vo(n))},

{I(Vc(n))} are numberings of all (up to ≃e) EQP-spaces, positive algebraic domains, c.e. algebraic domains, and

computable algebraic domains, respectively (see [27] for precise definitions and a discussion of these classes of

domains); we sometimes denote these numberings by ι, α, β, γ , respectively. Sequences {I(Vi(n))} and {I(Vj (n))}

are numberings of natural classes of ω-continuous domains, which we also denote by δ and ε, respectively. Below

is a summary of the introduced numberings.

• µ: Standard numbering of 50
2-subspaces of [0, 1]ω.

• π : Standard numbering of 50
2-subspaces of Pω.

• ι: Numbering of EQP-spaces derived from the computable numbering {Vt (n)} of c.e. transitive relations (T).

• α: Numbering of positive algebraic domains derived from the computable numbering {Vp(n)} of c.e. preorders

(P).
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• β: Numbering of c.e. algebraic domains derived from the computable numbering {Vo(n)} of c.e. partial orders

(O).

• γ : Numbering of computable algebraic domains derived from the ∅′′-computable numbering of computable

partial orders.

• δ: Numbering of ω-continuous domains derived from the ∅′′-computable numbering {I (Vi(n))} of interpolable

c.e. relations (I).

• ε: Numbering of ω-continuous domains derived from the ∅′′-computable numbering {I (Vj (n))} of interpolable

computable relations.

The next proposition compares the introduced numberings under the following preorder on the numberings of

effective spaces: ν 6e ν′, if ν(n) ≃e ν′(f (n)) for some computable function f ; let ≡e be the equivalence relation

induced by 6e. For an oracle h, let 6h
e and ≡h

e be the h-relativizations of 6e and ≡e, respectively. The presence

of oracles in some of the reductions below is explained by the fact that numberings γ , δ, ε are defined in a less

constructive way than the other numberings.

Proposition 8. We have: µ 6e π ≡e ι, β 6e α 6e ι, ε 6∅′′

e δ 6∅′′

e ι, and γ 6∅′′

e α. The binary operations of

product and coproduct are represented by computable functions in any of the numberings µ, π , ι, α, γ (again, up to

≡e).

Proof. The relation π ≡e ι follows from the effectivity of proofs of Theorem 11 in [7] and Theorem 3 in [5].

The relation µ 6e π follows from Theorem 1 in [18] because the Hilbert cube is a computable Polish space. The

remaining relations follow from the definition of the numbering and of functions i, j , c, and from Proposition 6. The

assertion about product and coproduct is checked in a straightforward way, similar to Sections 3.1 and 3.2 in [5]. �

May the non-computable numberings γ , δ, ǫ be improved to computable numberings of the corresponding

classes of EQP-spaces? In Section 6.2 we give a positive answer for the case of δ.

6.2. Enumerating continuous domains

As shown in Proposition 3, ω-continuous domains can be represented by interpolable transitive relations. How-

ever, as described in Section 6.1 (also in [6]), it is not at all clear how to provide a computable numbering for all

c.e. interpolable relations. In this section, we address this issue. Although it is still unknown whether there exists

a computable enumeration of all c.e. interpolable transitive relations on N, we will show in this section that there

exists a computable enumeration of the corresponding ω-continuous domains (up to computable homeomorphism).

This was unknown at the time of [6], and we present the result here for the first time.

Lemma 1. Let (X,≺X) and (Y,≺Y ) be sets equipped with (c.e.) transitive relations. Assume f : X → Y is a

(computable) function satisfying

• f is surjective, and

• x ≺X x′ ⇐⇒ f (x) ≺Y f (x′).

Let Gf = {〈x, f (x)〉|x ∈ X} be the graph of f . Then pGf q : I(≺X) → I(≺Y ) is a (computable) homeomorphism.

Proof. First we show that x ∈ I if and only if f (x) ∈ pGf q(I ). If x ∈ I then f (x) ∈ pGf q(I ) by definition of

pGf q. Conversely, if f (x) ∈ pGf q(I ), then there must be some x′ ∈ I with f (x′) = f (x). By directedness of I

there is x′′ ∈ I with x′ ≺X x′′. Then f (x) = f (x′) ≺Y f (x′′) hence our assumption on f implies x ≺X x′′, and it

follows from I being a lower set that x ∈ I .

Next we show that pGf q(I ) ∈ I(≺Y ) for each I ∈ I(≺X). We use the assumption that f is surjective in the

following.
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(1) (pGf q(I ) is non-empty): There is x ∈ I , hence there is f (x) ∈ pGf q(I ).

(2) (pGf q(I ) is a lower set): Assume f (x) ≺Y f (x′) ∈ pGf q(I ). Then x ≺X x′ ∈ I , hence x ∈ I . Therefore,

f (x) ∈ pGf q(I ).

(3) (pGf q(I ) is directed): Assume f (x0), f (x1) ∈ pGf q(I ). Then x0, x1 ∈ I so there is x ∈ I with x0 ≺X x

and x1 ≺X x. Therefore, f (x) ∈ pGf q(I ) and f (x0) ≺Y f (x) and f (x1) ≺Y f (x).

It follows from Theorem 5 that pGf q : I(≺X) → I(≺Y ) is a total computable function.

Next we show that pGf q is surjective. Given J ∈ I(≺Y ), set I = f −1(J ). Then

(1) I 6= ∅ because J 6= ∅ and f is surjective.

(2) I is a lower set, because if x ≺X x′ ∈ I then f (x) ≺Y f (x′) ∈ J , hence f (x) ∈ J , which implies x ∈ I .

(3) I is directed, because if x0, x1 ∈ I , then there is y ∈ J with f (x0) ≺Y y and f (x1) ≺Y y, so from the

surjectivity of f there is x ∈ I with f (x) = y and satisfying x0 ≺X x and x1 ≺X x.

Finally, since I ∈ [x]≺X
if and only if pGf q(I ) ∈ [f (x)]≺Y

, it follows that pGf q is a computable homeomor-

phism. �

Theorem 6. There exists a computable enumeration of all EQP ω-continuous domains.

Proof. Let (Y,≺Y ) be a set equipped with a c.e. transitive relation. We will define a c.e. subset X ⊆ N and c.e. in-

terpolable transitive relation ≺X on X and a computable function f : X → Y . We think of 2n ∈ N as corresponding

to n ∈ Y , and view 2n + 1 ∈ N as being a dummy symbol wn.

Let ≺
(s)
Y be a finite approximation of ≺Y at stage s. Let (Fn, yn)n∈N be an enumeration of Pfin(N)×N, such that

x ∈ Fn implies x < n. Define the partial function f (0) :⊆ N → Y as having only even numbers in its domain, and

set f (0)(2n) = n. Let ≺
(0)
X be the empty binary relation on N.

At each stage s, each dummy symbol wk is inactive at stage 0, but may become active at a later stage. An active

dummy symbol wk may later become replaced. A pair (Fn, yn) requires attention at stage s if each element of

Fn ∪ {yn} is active (and/or replaced) at stage s and furthermore x ≺
(s)
X yn holds for each x ∈ Fn. Then we say that z

solves such (Fn, yn) if x ≺
(s)
X z ≺

(s)
X yn holds for each x ∈ Fn.

Do each of the following substages for each stage s > 0.

• Substage 1: Let n < s be least unsolved pair (Fn, yn) requiring attention (if such a pair does not exist then go

to the next substage). Let wk be the least inactive dummy, and set x ≺
(s+1)
X wk ≺

(s+1)
X yn for each x ∈ Fn.

Declare wk active and (Fn, yn) solved.

• Substage 2: If wk is the least dummy symbol that is active but not replaced, and wk solves (Fn, yn), then we

can assume f (s) is already defined for all elements in Fn ∪ {yn}, so we search for z ∈ Y with f (x) ≺
(s+1)
Y

z ≺
(s+1)
Y f (yn) for each x ∈ Fn. If such z is found, then declare wk to be replaced and extend f (s) to f (s+1)

by adding 2k + 1 to its domain and defining f (s+1)(2k + 1) = z. If no such z is found then set f (s+1) = f (s).

• Substage 3: Further extend ≺
(s+1)
X so that x ≺

(s+1)
X x′ whenever f (x) and f (x′) are defined and f (x) ≺

(s+1)
Y

f (x′).

• Substage 4: Complete ≺
(s+1)
X by adding ≺

(s)
X and taking the transitive closure. Then go to stage s + 1.

Set

X = {2n|n ∈ N} ∪ {2n + 1|wn becomes active at some stage}.

Define ≺X=
⋃

s∈N ≺
(s)
X and f =

⋃

s∈N f (s). It is clear that X and ≺X are c.e. Furthermore, Substage 4 guarantees

that ≺X is transitive, and Substage 1 guarantees that it is interpolable.

Next, consider the case that ≺Y is interpolable. Then f : X → Y is a total function because each activated

dummy symbol is eventually replaced in Substage 2. It is also clear that f is computable, and that it is a surjection

because f (2n) = n. Furthermore, Substage 3 guarantees that f (x) ≺Y f (x′) implies x ≺X x′. We show that
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conversely, if x ≺X x′ then f (x) ≺Y f (x′). We consider the different cases that x ≺X x′ was added to the relation

≺X at some stage:

(1) If x ≺X x′ was added in Substage 1, then x (or x′) is a dummy symbol wk and x′ (or x) is from some pair

(Fn, yn). Then by assumption wk is replaced in some later stage in Substage 2, and the replacement is done

in such a way that f (x) ≺Y f (x′) holds.

(2) If x ≺X x′ was added in Substage 3 then trivially f (x) ≺Y f (x′).

(3) The last possibility is that x ≺X x′ was added in Substage 4 when completing under transitive closure. Then

there is some z such that x ≺X z and z ≺X x′ were already included in ≺X before x ≺X x′ was added.

By induction, we can assume that f (x) ≺Y f (z) and f (z) ≺Y f (x′). Therefore, f (x) ≺Y f (x′) by the

transitivity of ≺Y .

It follows from Lemma 1 that if ≺Y is interpolable then I(≺X) and I(≺Y ) are computably homeomorphic.

From the above construction, we can enumerate a sequence of c.e. interpolable transitive relations (≺Xi
)i∈N

in such a way that for every c.e. interpolable transitive relation ≺Y there is some i ∈ N with I(≺Xi
) computably

homeomorphic to I(≺Y ). �

7. Complexity of (effective) homeomorphism

Here we estimate the complexity of (effective) homeomorphism relations ≃e and ≃ in the introduced num-

berings and deduce some corollaries. Similar questions for algebraic structures were studied in detail (see e.g.

[11,12,15]). In the next theorem we collect some estimates which for the classes of domains resemble the corre-

sponding estimates for algebraic structures,3 while for Polish and quasi-Polish spaces are apparently higher.

To obtain the estimate for ι, we employ the representation of computable functions f : I(≺1) → I(≺2) between

spaces of ideals, where ≺1,≺2 ∈ T, established in [5], Theorem 2 (see the end of Section 5.2).

For the case ≺1,≺2 ∈ I of domains, the above representation may be simplified using the effective version

of results in Section 2.2.6 of [1] (see Theorem 4 above). Namely, the computable functions f : I(≺1) → I(≺2)

coincide with the functions pRq where R is a binary c.e. relation on ω satisfying the following conditions: if aRb

and a ≺1 a′ then a′Rb; if aRb and b′ ≺2 b then aRb′; for any a there is b with aRb; for all a, b, b′ with aRb,

aRb′ there is b′′ with b ≺2 b′′, b′ ≺2 b′′, and aRb′′; if aRb then a′Rb for some a′ ≺1 a. Conjunction of these

conditions is denoted as mor(R,≺1,≺2) (meaning “R is a morphism from ≺1 to ≺2”). We note that pRq = idI(≺1)

iff aRb ↔ b ≺1 a. Recall that α, β, γ , δ, ε, ι, µ are the numberings that were introduced in Section 6.1.

Theorem 7.

(1) Let ν ∈ {α, β, γ, δ, ε}. Then the relations ν(m) ≃e ν(n) and ν(m) ≃ ν(n) are 60
3 -complete and 61

1-

complete sets, respectively. Moreover, they are resp. 60
3 - and 61

1 -complete equivalence relations under the

computable reducibility of equivalence relations.

(2) Let ν ∈ {ι, µ}. The relations ν(m) ≃e ν(n) and ν(m) ≃ ν(n) are 51
1 and 61

2 , respectively.

Proof. 1. First we prove the upper bounds. For ν = α, it is easy to see (cf. proof of Theorem 2 in [27]) that

α(m) ≃e α(n) iff (ω; Vp(m)) ≃e (ω; Vp(n)) iff

∃k, l∀x, y
(

ϕk(x) ↓ ∧ϕl(x) ↓ ∧
(

xVp(m)y ↔ ϕk(x)Vp(n)ϕk(y)
)

∧
(

xVp(n)y

↔ ϕl(x)Vp(m)ϕl(y)
)

∧ xVp(m)ϕl

(

ϕk(x)
)

Vp(m)x ∧ yVp(n)ϕk

(

ϕl(y)Vp(n)y
))

,

hence the relation is 60
3 . For the relation ≃ we only have to add the functional quantifier ∃h in the beginning of the

above formula and relativize ϕ to the oracle h; this yields the desired estimate 61
1 .

3We thank Nikolay Bazhenov for the related bibliographical references.
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The above argument works for ν = β if we just replace p by o. For ν = γ , we also replace p by c; it is easy to

see that the ∅′′-computability of c does not damage the estimate 60
3 and (trivially) the estimate 61

1 .

For ν = δ, we use the representation of computable functions between ideal spaces described before the formu-

lation of the theorem: δ(m) ≃e δ(n) iff

∃k, l, x, y
(

x = i(m) ∧ y = i(n) ∧ mor(Vk, Vx, Vy) ∧ mor(Vl, Vy, Vx)

∧ ∀a, b
(

a(Vl ◦ Vk)b ↔ bVxa
)

∀a, b
(

a(Vk ◦ Vl)b ↔ bVya
)

.

Since i is ∅′′-computable, the first two conjuncts in the main parenthesis are 60
3 . Since Vx is c.e., the same holds for

the third and fourth conjuncts, while the fifth and sixth conjuncts are 50
2. This concludes the estimate for ≃e. For

the relation ≃ we only have to add the functional quantifier ∃h in the beginning of the above formula and replace

Vk , Vl by V h
k , V h

l ; this yields the desired estimate 61
1 . The above argument (with j in place of i) works for ν = ε.

Now we prove the lower bounds. By Theorem 4.7(a) in [15], for any 60
3 set A there are computable sequences

{Lk}, {Mk} of computable linear orders on ω such that k ∈ A iff Lk ≃e Mk . By the definition of ideal spaces,

Lk ≃e Mk iff I (Lk) ≃e I (Mk) iff A 6m {〈k, l〉|ν(k) ≃e ν(l)} for every ν ∈ {α, β, γ, δ, ε}, concluding the proof

for 60
3 .

By Theorem 4.4(d) in [15], for any 61
1 set A there are computable sequences {Lk}, {Mk} of computable linear

orders on ω such that k ∈ A iff Lk ≃ Mk . Repeating the argument of the previous paragraph, we obtain the proof

for 61
1 .

It remains to show that ≃e and ≃ are also complete as equivalence relations. As follows from Proposition 4 in

[11], for any 60
3 equivalence relation A on ω there is a computable sequence {Lk} of computable partial orders on ω

such that kAl iff Lk ≃e Ll which proves the 60
3 completeness for every ν ∈ {α, β, γ, δ, ε}. By Theorem 5 in [12],

for any 61
1 equivalence relation A on ω there is a computable sequence {Lk} of computable linear orders on ω such

that kAl iff Lk ≃ Ll . This proves the 61
1 completeness for every ν ∈ {α, β, γ, δ, ε}.

2. By Proposition 8, we can use ι instead of π . Denoting the relation Vt (n) in Proposition 6 by ≺n, we obtain:

ι(m) ≃e ι(n) iff I(≺m) ≃e I(≺n) iff

∃k, l
(

pVkq : I(≺m) → I(≺n) ∧ pVlq : I(≺n) → I(≺m)

∧ pVlq ◦ pVkq = idI(≺m) ∧ pVkq ◦ pVlq = idI(≺n)

)

,

hence it suffices to check that the relation pVlq ◦ pVkq = idI(≺m) is 51
1. Since it is equivalent to ∀I ∈

I(≺m)(pVjq(pViq(I )) = I ), this follows from the definition of pRq(I ).

The second assertion is a straightforward relativization of the first one. Indeed, ι(m) ≃ ι(n) iff I(≺m) ≃ I(≺n)

iff

∃R, S ⊆ N2
(

pRq : I(≺m) → I(≺n) ∧ pSq : I(≺n) → I(≺m)

∧ pSq ◦ pRq = idI(≺m) ∧ pRq ◦ pSq = idI(≺n)

)

,

hence the relation is 61
2 . �

We do not currently know whether the estimates in item 2 of the above theorem are precise. From the effective

Stone duality developed in [16,17] it follows that the homeomorphism relation between computable compact Polish

spaces is 61
1 -complete, as it was noticed in a recent communication of the third author with Alexander Melnikov

(see Corollary 4.28 in [8]). But for computable Polish spaces the question remains open.

As a corollary of Theorem 7 and Proposition 8, we obtain upper bounds for ι-index sets of some natural classes

of spaces.

Corollary 4. Let ν ∈ {µ, α, β, γ, δ, ε}. Then {n|∃m(ι(n) ≃e ν(m))} is 51
1 and {n|∃m(ι(n) ≃ ν(m))} is 61

2 .
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In particular, the problem of deciding whether a given effective quasi-Polish space is effectively homeomorphic

to a metrizable space (a c.e. domain, c.e. algebraic domain, etc.) is 51
1. For the homeomorphism problem, it is 61

2 .

In the next section we show that the estimate for metrizable spaces can be improved.

8. Complexity of separation axioms

Here we discuss some classes of spaces related to separation axioms. Let T1, T2, R, M be the classes of T1-,

T2-, regular, and metrisable spaces, respectively. Let {Dn} be the standard numbering of finite subsets of ω, then the

sets Ďn = {A ⊆ ω|Dn ⊆ A} form the standard basis of the Scott topology on Pω.

Proposition 9. The π-index set of any of the classes T1, T2, R, M is 51
1.

Proof. By the definition of a T1-space, π(m) ∈ T1 iff ∀x, y ∈ π(m)(x 6= y → ∃n(x ∈ Ďn 6∋ y)). Since π(m) ∈

50
2(Pω), we get π−1(T1) ∈ 51

1.

By the definition of a T2-space, π(m) ∈ T2 iff

∀x, y ∈ π(m)
(

x 6= y → ∃i, j
(

x ∈ Ďi ∧ y ∈ Ďj ∧ Ďi ∩ Ďj ∩ π(m) = ∅
))

.

Since Ďi ∩ Ďj ∩ π(m) = ∅ iff ∀z ∈ π(m)(z /∈ Ďi ∨ z /∈ Ďj ), we have π−1(T2) ∈ 51
1.

Recall that X is regular iff for every x ∈ X and every basic neighborhood U of x there is a basic neighborhood

V of x such that the closure Cl(V ) of V in X is contained in U . For X = π(m) this reads: π(m) ∈ R iff ∀x ∈

π(m)∀i(x ∈ Ďi → ∃j (x ∈ Ďj ∧ Cl(Ďj ∩ π(m)) ⊆ Ďi)). Thus, it suffices to check that the relation ∀y(y ∈

Cl(Ďj ∩ π(m)) → y ∈ Ďi) is 51
1, and for this it suffices to check that the relation y ∈ Cl(Ďj ∩ π(m)) is 61

1 . The

relation is equivalent to ∀k(y ∈ Ďk ∩ π(m) → ∃z ∈ Ďj ∩ π(m)(z ∈ Ďk)), hence it is indeed 61
1 .

By the Urysohn metrisation theorem we have M = T1 ∩ R, hence the estimate 51
1 for π−1(M) follows from

the previous ones. Note that the upper bound 61
2 of π−1(M) in Corollary 4 (without using the Urysohn theorem) is

much worse. �

Next we show that the upper bounds of Proposition 9 are optimal. Our proofs below demonstrate that the ideal

characterizations provide useful tools for such kind of results. Recall that the following implications hold for cb0-

spaces:

metrizable ⇐⇒ regular =⇒ Hausdorff =⇒ T1.

For the equivalence of metrizability and regularity, as mentioned in [28, Page 12], every regular T0 space is

Hausdorff: For two distinct points x, y, by T0-ness, there exists an open set U containing either x or y, but not the

other. Assuming that U contains x, the complement of U is closed, so from regularity they are separated, which

in particular separates x and y. Thus, it follows from the Urysohn metrization theorem that regular cb0 space is

metrizable.

We start with the following 51
1-completeness result with respect to the numbering ι (i.e., the numbering of all

effective quasi-Polish spaces induced from the standard numbering of c.e. transitive relations), where recall ι ≡e π

from Proposition 8.

Theorem 8. Let F ⊆ ω be a 51
1 set. Then, there exists a computable function which, given p ∈ ω, returns an

ι-index of a c.e. EQP-space X such that

{

X is metrizable if p ∈ F,

X is not T1 if p /∈ F.
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Proof. Recall that the set of indices of well-founded computable trees is 51
1 complete. Hence, instead of a 51

1 set, we

consider computable trees. Let T ⊆ ω<ω be a computable tree. Our space X will be {Ix : x ∈ ωω} ∪ {Jx : x ∈ [T ]}

equipped with the specialization order Jx 6 Ix , where [T ] is the set of all infinite paths through T . The discussion

from here on is to write down this space X as an ideal space.

For each σ ∈ ω<ω, we prepare for a new symbol σ . Let |σ | be the length of σ , and put |σ | = |σ |. If σ is

nonempty, i.e., |σ | > 0, we denote by σ− the immediate predecessor of σ . We define a computable binary relation

≺ on the set |≺| := {σ, σ : σ ∈ ω<ω} as follows: If σ ∈ ωω is nonempty, enumerate σ− ≺ σ , σ− ≺ σ , and σ ≺ σ .

If σ /∈ T then we also enumerate σ− ≺ σ . Then consider its transitive closure and define X = I (≺).

Note that if a ≺ b then either |a| < |b| or a = σ and b = σ for some σ ∈ ω<ω. If I is an ideal of ≺,

then for any a ∈ I one can use directedness of I twice to obtain b, c ∈ I such that a ≺ b ≺ c. Then, by the

property of ≺ mentioned above, we have |a| < |c|. Therefore, any ideal contains arbitrarily long strings. Moreover,

as no pair of incomparable strings has an upper bound, in order for a set to be directed, all of its members must be

comparable. This means that for any ideal I of ≺ there exists an infinite string x ∈ ωω such that I consists only of

the initial segments of x or those underlined in them. In other words, I is the ≺-downward closure of {σ : σ ⊂ x}

or {σ : σ ⊂ x}, where we mean by σ ⊂ x that σ is an initial segment of x.

If x is an infinite path through T , then the downward closure of {σ : σ ⊂ x} is Jx = {σ : σ ⊂ x}, and the

downward closure of {σ : σ ⊂ x} is Ix = {σ, σ : σ ⊂ x}. Both Ix and Jx are ideals, and since Jx ⊆ Ix , obviously

Jx ∈ [τ ]≺ implies Ix ∈ [τ ]≺, so Jx 6X Ix , where recall that [n]≺ = {I ∈ I(≺) : n ∈ I } is a basic open set, and

6X is the specialization order. Hence, if T is not well-founded, then X is not T1. If T is well-founded, then any

x ∈ ωω has an initial segment σ /∈ T , and for any such σ we have σ− ≺ σ− ≺ σ ≺ σ ≺ · · · . Hence, {σ : σ ⊂ x}

and {σ : σ ⊂ x} have the same downward closure Ix = {σ, σ : σ ⊂ x}. Therefore, any ideal is of the form Ix for

some x ∈ ωω. Thus, we have X = {Ix : x ∈ ωω}, which is homeomorphic to Baire space ωω. This is because, as

|≺| = {σ, σ : σ ∈ ω<ω} is the underlying set of the binary relation ≺, the set {[σ ]≺, [σ ]≺ : σ ∈ ω<ω} yields the

topology on X by definition, and the above argument shows X ∩ [σ ]≺ = X ∩ [σ ]≺ = {Ix : σ ⊂ x}. In particular, X

is metrizable.

For overtness, given σ ∈ ω<ω, if x extends σ then Ix = {σ, σ : σ ⊂ x} is an ideal of ≺ as seen above, and

contains both σ and σ ; hence Ix ∈ [σ ]≺ and Ix ∈ [σ ]≺. This means that X∩[τ ]≺ 6= ∅ for any τ ∈ |≺|. In particular,

X is overt. �

Theorem 8 shows that, for any i ∈ {1, 2, 3}, the ι-index set of all c.e. EQP Ti-spaces is 51
1-complete, where a

second countable T0 space is T3 if and only if it is metrizable. This result can be further extended as follows.

Theorem 9. Let M ⊆ H ⊆ F ⊆ ω be 51
1 sets. Then, there exists a computable function which, given p ∈ ω,

returns an ι-index of a c.e. EQP-space X such that



















X is metrizable if p ∈ M,

X is Hausdorff, but not metrizable if p ∈ H \ M,

X is T1, but not Hausdorff if p ∈ F \ H,

X is not T1 if p /∈ F.

This means that every tuple (M,H,F ) of 51
1-sets such that M ⊆ H ⊆ F uniformly m-reduces to

(ι−1(M), ι−1(T2), ι
−1(T1)). Let us decompose the proof of Theorem 9 into a few lemmas.

Lemma 2. Let H ⊆ ω be a 51
1 set. Then, there exists a computable function which, given p ∈ ω, returns an ι-index

of a c.e. EQP-space X such that

{

X is metrizable if p ∈ H,

X is T1, but not Hausdorff if p /∈ H.
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Proof. First, one specific example of a second countable T1 topology which is not Hausdorff is called a telophase

topology [28, II.73]. Here, our construction is closer to the one in [20], which adds an inseparable pair of points at

infinity to ω than the one in [28, II.73], which adds a new point 1⋆ to [0, 1] where (1, 1⋆) forms an inseparable pair.

In our construction, a tree T ⊆ ω<ω is first given. For x ∈ ωω, if x is an infinite path through T then we add an

inseparable pair (Ix, I
⋆
x ) of points at infinity to the discrete space ω<ω. If x is not an infinite path through T then we

add a single point Jx at infinity to ω<ω.

Formally, given a tree T ⊆ ω<ω, we consider the following specific presentation ≺ of a telophase topology: For

each σ ∈ ω<ω, we prepare for symbols σ , [σ,∞], and [σ,∞⋆]. We define a computable binary relation ≺ on the set

|≺| := {σ , [σ,∞], [σ,∞⋆] : σ ∈ ω<ω}. If σ is nonempty, we denote by σ− the immediate predecessor of σ , and

enumerate [σ−, o] ≺ [σ, o] ≺ σ ≺ σ for each o ∈ {∞,∞⋆}. If σ /∈ T , we also enumerate [σ−,∞⋆] ≺ [σ,∞] ≺

[σ,∞⋆]. Then consider its transitive closure and define X = I(≺).

First, since σ ≺ σ , the ≺-downward closure of {σ } forms an ideal. This is Iσ = {σ }∪{[τ,∞], [τ,∞⋆] : τ ⊆ σ },

where we mean by τ ⊆ σ that τ is an initial segment of σ . Note that the subspace Y = {Iσ : σ ∈ ω<ω} of X is

discrete since Y ∩ [σ ]≺ = {Iσ }. For any a /∈ Iσ , a and σ have no common upper bound, so Iσ is the unique ideal

containing σ . If an ideal I does not contain σ for any σ ∈ ω<ω, then as in the proof of Theorem 8, one can see that

I contains [σ,∞] or [σ,∞∗] for an arbitrarily long string σ . Moreover, as no pair of incomparable strings has an

upper bound, in order for a set to be directed, all of its members must be comparable. This means that for any such

ideal I of ≺ there exists an infinite string x ∈ ωω such that I consists only of [σ,∞] or [σ,∞⋆] for initial segments

σ of x. In other words, such an I is the ≺-downward closure of {[σ,∞] : σ ⊂ x} or {[σ,∞⋆] : σ ⊂ x}.

If x is an infinite path through T , then both Ix = {[σ,∞] : σ ⊂ x} and I ⋆
x = {[σ,∞⋆] : σ ⊂ x} are downward

closed. Hence, any ideal is of the form Iσ , Ix or I ⋆
x . We claim that the latter two ideals as points cannot be separated

by disjoint open sets. This is because any basic open sets containing Ix and I ⋆
x are of the form [[σ,∞]]≺ for some

σ ⊂ x and [[τ,∞⋆]]≺ for some τ ⊂ x respectively. However, [[σ,∞]]≺ and [[τ,∞⋆]]≺ always have an intersection

Iρ , where ρ is a common extension of σ and τ . Hence, X is not Hausdorff. If x is not an infinite path through T ,

then as in the proof of Theorem 9, one can see that both {[σ,∞] : σ ⊂ x} and {[σ,∞⋆] : σ ⊂ x} have the same

downward closure Jx = {[σ,∞], [σ,∞⋆] : σ ⊂ x}. In any case, no two ideals are comparable by ⊆, so X is T1.

Hence, if T is ill-founded, then X is T1, but not Hausdorff.

If T is well-founded, then as seen above, any ideal is of the form Iσ or Jx ; that is, X = {Iσ : σ ∈ ω<ω} ∪ {Jx :

x ∈ ωω}. We claim that X is homeomorphic to the Polish space ω6ω := ω<ω ∪ ωω whose topology is generated

from {σ : σ ∈ ω<ω} and [σ ] = {x ∈ ω6ω : x extends σ }. This is because, as |≺| = {σ , [σ,∞], [σ,∞⋆] : σ ∈ ω<ω}

is the underlying set of the binary relation ≺, the set {[σ ]≺, [[σ,∞]]≺, [[σ,∞⋆]]≺ : σ ∈ ω<ω} yields the topology

on X by definition, and the above argument shows X ∩[[σ,∞]]≺ = X ∩[[σ,∞⋆]]≺ = {Iτ : τ ⊆ σ }∪ {Jx : σ ⊂ x}.

Hence, the union of the map σ 7→ Iσ and the map x 7→ Jx gives a homeomorphism between ω6ω and X. In

particular, X is metrizable.

For overtness, given σ ∈ ω<ω, we have Iσ ∈ [σ ]≺, and if x extends σ then Ix, Jx ∈ [[σ,∞]]≺ and I ⋆
x , Jx ∈

[[σ,∞⋆]]≺. This means that X ∩ [τ ]≺ 6= ∅ for any τ ∈ |≺|. In particular, X is overt. �

Lemma 3. Let M ⊆ ω be a 51
1 set. Then, there exists a computable function which, given p ∈ ω, returns an ι-index

of a c.e. EQP-space X such that

{

X is metrizable if p ∈ M,

X is Hausdorff, but not metrizable if p /∈ M.

Proof. First, one specific example of a second countable Hausdorff topology which is not metrizable is called the

double origin topology [28, II.74]. It is like a Euclidean plane with two origins that cannot be separated by closed

neighborhoods (which causes non-metrizability). Here, our construction is closer to the one in [20], which yields a

quasi-Polish space, while the example in [28, II.74] is not quasi-Polish. In our construction, a tree T ⊆ ω<ω is first

given. The base plane of our space is the discrete space ω× (ω<ω ⊔ω<ω). For each x ∈ ωω, the points In,x = (n, x)

and (∞, x) may be added. Here, if x is an infinite path through T then two points J+
x and J−

x corresponding

to (∞, x) are added, and these cannot be separated by closed neighborhoods. Indeed, the intersection of any two
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closed neighborhoods containing J+
x and J−

x respectively contains In,x for an arbitrary large n. If x is not an infinite

path through T then the plane is folded in half with the abscissa {In,x : n ∈ ω} as the fold line, and then J+
x is

identified with J−
x .

Formally, given a tree T ⊆ ω<ω, we consider the following specific presentation ≺ of a telophase topology: For

each n ∈ ω and σ ∈ ω<ω, we prepare for symbols (n, σ ), (n, σ ), (n, σ±), [n, σ ] and [n, σ ]. We define a computable

binary relation ≺ on the set

|≺| :=
{

(n, σ ), (n, σ ),
(

n, σ±
)

, [n, σ ], [n, σ ] : n ∈ ω and σ ∈ ω<ω
}

.

For any m < n, put the following:

[m, σ ] ≺ [n, σ ] ≺ (n, σ ) ≺ (n, σ ),

[m, σ ] ≺ [n, σ ] ≺ (n, σ ) ≺ (n, σ ).

If τ is a proper initial segment of σ , put the following:

(

n, τ±
)

≺
(

n, σ±
)

,
(

n, σ±
)

≺ (n, σ ),
(

n, σ±
)

≺ (n, σ ).

If m < n and τ is a proper initial segment of σ , put the following:

[m, τ ] ≺ [n, σ ], [m, τ ] ≺ [n, σ ].

If σ /∈ T , m < n, and τ is a proper initial segment of σ , then we also put the following:

[m, τ ] ≺ [n, σ ] ≺ [n, σ ], (n, σ ) ≺ (n, σ ) ≺ (n, σ ).

Then consider its transitive closure and define X = I(≺). For a directed set D, let ↓D denote the ≺-downward

closure of D. As in the previous proofs, one can see that any ideal of ≺ is one of the following forms:

In,σ = ↓
{

(n, σ )
}

, In,σ = ↓
{

(n, σ )
}

, In,x = ↓
{(

n, σ±
)

: σ ⊂ x
}

,

J+
x = ↓

{

[n, σ ] : n ∈ ω and σ ⊂ x
}

, J−
x = ↓

{

[n, σ ] : n ∈ ω and σ ⊂ x
}

If x is not an infinite path through T , then it is easy to see that In,σ = In,σ and J+
x = J−

x . We claim that X is

Hausdorff. First, to see In,σ and Im,τ are separated for n 6= m or σ 6= τ where σ, τ ∈ ω<ω, note that (n, σ ) and

(m, τ) have no common upper bound, so [(n, σ )]≺ and [(m, τ)]≺ have no intersection. Thus, the points In,σ and Im,τ

are separated by [(n, σ )]≺ and [(m, τ)]≺. Similarly, one can see that In,σ and In,τ are separated. If σ ∈ T then In,σ

and In,σ are separated, and if σ /∈ T then In,σ = In,σ . If m > n then (n, σ±) and [m, σ ] have no common upper

bound, so [(n, σ±)]≺ and [(m, σ )]≺ have no intersection. Thus, In,x and J+
x are separated by them. In a similar

manner, one can easily separate pairs (In,x, J
−
y ), (In,σ , J+

x ), (In,σ , In,x), etc. If x is an infinite path through T , then

[n, σ ] and [n, σ ] have no common upper bound, so [[n, σ ]]≺ and [[n, σ ]]≺ have no intersection. Thus, J+
x and J−

x

are separated by them. If x is not an infinite path through T , then J+
x = J−

x . This concludes that X is Hausdorff.

If x is an infinite path through T , we claim that J+
x and J−

x cannot be separated by closed neighborhoods. Indeed,

we show that any closed neighborhood of J+
x or J−

x contains In,x for some n ∈ ω. To see this, consider an open

neighborhood [[n, σ ]]≺ of J+
x . Then, for any m > n, [(m, σ±)]≺ is an open neighborhood of Im,x . Since m > n,

(m, σ ) is a common upper bound of [n, σ ] and (m, σ±), so we have Im,σ ∈ [(m, σ )]≺ ⊆ [[n, σ ]]≺ ∩ [(m, σ±)]≺.

Hence, any open neighborhood of Im,x intersects with [[n, σ ]]≺, and this means that the closure of [[n, σ ]]≺ contains

Im,x for any m > n. Similarly, the closure of [[n, σ ]]≺ contains Im,x for any m > n. This verifies the claim. In

particular, if T is ill-founded, then such an x exists, so X is not metrizable.



20 M. de Brecht et al. / Ideal presentations and numberings of some classes of effective quasi-Polish spaces

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

If T is well-founded, then In,σ = In,σ and J+
x = J−

x . Hence,

X =
{

In,σ : n ∈ ω and σ ∈ ω<ω
}

∪
{

In,x : n ∈ ω and x ∈ ωω
}

∪
{

J+
x : x ∈ ωω

}

.

We claim that X is embedded into the Polish space Z = (ω + 1) × ω6ω, where ω + 1 is the one point

compactification of ω, and ω6ω endowed with the Polish topology as in the proof of Lemma 2. Indeed, the union of

the maps 〈n, σ 〉 7→ In,σ , 〈n, x〉 7→ In,x , and 〈ω, x〉 7→ J+
x gives a homeomorphism between (ω × ω6ω) ∪ ({ω} ×

ωω) ⊆ Z and X. This is because we have [(n, σ )]≺ = {In,σ }, and if T has no infinite path extending σ , then we

have [(n, σ±)]≺ = {In,τ : σ ⊆ τ } ∪ {In,x : σ ⊂ x}, and [[n, σ ]]≺ = {Im,τ : n 6 m, σ ⊆ τ } ∪ {In,x : n 6 m, σ ⊂

x} ∪ {J+
x : σ ⊂ x}. This means that the basic open set [(n, σ )]≺ in X corresponds to the basic open set {〈n, σ 〉} in

Z, the basic open set [(n, σ±)]≺ in X corresponds to the basic open set {n} × {x ∈ ω6ω : σ ⊂ x} in Z, and the

basic open set [[n, σ ]]≺ in X corresponds to the basic open set {m ∈ ω + 1 : m > n} × {x ∈ ω6ω : σ ⊂ x} in Z.

Hence, if T is well-founded, then X is metrizable. Overtness of X is obvious as before. �

Proof of Theorem 9. Let M ⊆ H ⊆ F ⊆ ω be 51
1 sets. Let XF , XH and XM be c.e. EQP-spaces obtained by

Theorem 8, Lemma 2 and Lemma 3. Then, consider the disjoint union of these spaces, i.e., X = ({0}×XF )∪ ({1}×

XH ) ∪ ({2} × XM). If p ∈ M then all of these spaces are metrizable, so X is metrizable. If p ∈ H \ M , then XF

and XH are metrizable, and XM is Hausdorff, but not metrizable. Therefore, X is Hausdorff, but not metrizable. If

p ∈ F \ H , then XF is metrizable, XH is T1, but not Hausdorff, and XM is Hausdorff. Therefore, X is T1, but not

Hausdorff. If p /∈ F , then XF is not T1. Thus, X is not T1. �

Remark. Our proof of Lemma 3 actually gives a metrizable space if p ∈ M , and a Hausdorff but not T2.5 space

if p /∈ M . On the other hand, an anonymous referee suggested an alternative proof of Lemma 3, which gives a

metrizable space if p ∈ M , and a T2.5 (indeed, submetrizable) but not metrizable space if p /∈ M: It is the product

space ωω × [0, 1]2 with C = [T ] × {(x, y) : x = 0 and y > 0} added to the topology as a closed set. Taken

together, Theorem 9 is more complete: Every tuple (M,U,H,F ) of 51
1-sets such that M ⊆ U ⊆ H ⊆ F uniformly

m-reduces to (ι−1(M), ι−1(T2.5), ι
−1(T2), ι

−1(T1)).

9. Degree spectra of continuous domains

An interpolable relation ≺ differs from a preorder in that it does not satisfy x ≺ x in general; interpreted in terms

of domain, an element x satisfying x ≺ x corresponds to a compact element. Since the degree-spectra of algebraic

domains have been studied to some extent [27], let us investigate the degree spectra of non-algebraic ω-continuous

domains. We say that a binary relation ≺ is irreflexive if x ≺ x fails for any x. We first show that, for any Turing

degree a, there exists an irreflexive interpolable relation whose degree spectrum is {x : a 6 x′}.

Theorem 10. For any A ⊆ N, there exists an irreflexive interpolable relation ≺A on N such that for any X ⊆ N:

A 6T X′ ⇐⇒ there exists an X-computable isomorphic copy of ≺A.

Proof. For ℓ ∈ ω + 1, let ≺ℓ be a binary relation on ℓ × Q defined as follows:

(m, p) ≺ℓ (n, q) ⇐⇒ m 6 n and p < q.

Clearly, ≺ℓ is irreflexive and transitive. We claim that ≺ℓ is interpolable. To see this, let F = {(mi, pi)}i<j be a

finite subset of ℓ × Q, and (n, q) be an ≺ℓ-upper bound of F . Then we have maxi<j mi 6 n and maxi<j pi < q.

By density of Q we have maxi<j pi < r < q, and so (n, r) < (n, q) is also an ≺ℓ-upper bound of F .

For any set A ⊆ N we will define a binary relation ≺A on ω2 × Q. In the following we fix a bijective coding

〈·, ·〉 : ω × 2 → ω, say 〈a, b〉 = 2a + b. Then we define a binary relation ≺A as the disjoint union of {≺〈n,A(n)〉:
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n ∈ N} and countably many copies of ≺ω. To be more precise, for each a ∈ ω, if a is even, say a = 2a′, put

ℓ(a) = 〈a′, A(a′)〉; if a is odd, put ℓ(a) = ω. Then ≺A is defined as follows:

(a,m, p) ≺A (b, n, q) ⇐⇒ a = b and (m, p) ≺ℓ(a) (n, q).

Assume that there exists an X-computable relation ≺ on N which is isomorphic to ≺A. We say that {x1, . . . , xn}

is compatible if {x1, . . . , xn} has a ≺-lower bound. We claim that for any a ∈ N, A(a) = b if and only if there

exists a maximal compatible antichain of size 〈a, b〉. To see this, note that if h is an isomorphism between ≺

and ≺A, then compatibility of {x1, . . . , xn} ensures that {h(xi) : i 6 n} belongs to a single component; that is,

{h(xi) : i 6 n} ⊆ {a} × ℓ(a) × Q for some a ∈ N. So one may assume that h(xi) is of the form (a,mi, pi). By

rearranging the indices, one may also assume that i 6 j implies mi 6 mj . If such {x1, . . . , xn} is an antichain,

then i 6= j implies mi 6= mj , so we get n 6 ℓ(a). If n < ℓ(a), we have k < ℓ(a) such that k 6= mi for any

nonzero i 6 n. Since {x1, . . . , xn} is an antichain, i < j implies qj 6 qi , so one can choose q ∈ Q such that

maxmj >k qj 6 q 6 minmi<k qi , and put x′ = h−1(a, k, q). One can see that {x1, . . . , xn, x
′} is still an antichain.

Hence, if {x1, . . . , xn} is a maximal compatible antichain then n = ℓ(a). Conversely, for a fixed p ∈ Q, since

{(a, i, p) : i < ℓ(a)} is a maximal compatible antichain, so is {h−1(a, i, p) : i < ℓ(a)}. This verifies the claim.

We next claim that there exists an X′-computable sequence of all finite maximal compatible antichains. One can

easily see that the condition of being a compatible antichain for a finite sequence is c.e. relative to X. Note that a

compatible antichain 〈x1, . . . , xn〉 is maximal if and only if any y in the same component as xi is comparable with

xj (i.e., y ≺ xj or xj ≺ y) for some j 6 n. This is because h(xi) is of the form (a,mi, pi), and h(y) is of the form

(a, k, q) for some k < ℓ(a). Note that y being in the same component as xi is equivalent to {xi, y} being compatible,

so this property is X-c.e. Thus, maximality of a compatible antichain is co-c.e. relative to X. This proves the claim.

Finally, for any a ∈ N, using X′ search for a maximal compatible antichain whose size is of the form 〈a, b〉.

Then, we calculate A(a) = b. Hence, A 6T X′.

Conversely, assume that A 6T X′. Let (As)s∈ω be an X-computable approximation of A. At stage s, we assume

that we have already enumerated (a finite fragment of) a copy of ≺〈a,As (a)〉, and infinitely many copies of ≺ω. At

stage s+1, if As(a) < As+1(a) for some a < s, the original copy of ≺〈a,As (a)〉 can be modified to a copy ≺〈a,As+1(a)〉

by enumerating the rationals at the top. If As+1(a) < As(a), the original copy of ≺〈a,As (a)〉 can be modified to a copy

of ≺ω by enumerating infinitely many copies of Q at the top. Then, start making a new copy of ≺〈a,As+1(a)〉 using

fresh elements. In any case, we also start making a copy of ≺〈s,As+1(s)〉. One can easily see that this construction

gives an X-computable copy of ≺A. �

Let us mention a few conclusions of Theorem 10. Recall that X is high if ∅′′ 6T X′, and that X is lown if

X(n) 6T ∅(n). The degree spectrum of a relation ≺ is the collection of all Turing degrees of isomorphic copies of ≺

on ω

Corollary 5. The class of high degrees is the degree spectrum of an irreflexive interpolable relation.

Proof. Let A in Theorem 10 be ∅′′. �

Corollary 6. There exists a low2 irreflexive interpolable relation which is not isomorphic to any computable rela-

tion.

Proof. If A 66T ∅′ then ≺A has no computable isomorphic copy by Theorem 10. Thus, if X is not low, then ≺X′ has

no computable isomorphic copy, while it has an X-computable copy, again by Theorem 10. Now, consider a low2

set X 6T ∅′ which is not low. �

However, let us recall that effective quasi-Polish spaces directly correspond to c.e. transitive relations. Therefore,

when focusing on the topological aspect, it seems more natural to consider a c.e. relation rather than a computable

relation.
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Theorem 11. For any A ⊆ N, there exists an irreflexive interpolable relation ≺∗
A on N such that for any X ⊆ N:

A 6T X′ ⇐⇒ there exists an X-computable isomorphic copy of ≺∗
A.

A 6T X′′ ⇐⇒ there exists an X-c.e. isomorphic copy of ≺∗
A.

Proof. In the following we fix a bijective coding 〈·, ·, ·〉 : ω × 2 × 2 → ω, say 〈a, b, c〉 = 4a + 2b + c. Let ≺∗
A be

the disjoint sum of infinitely many copies of ≺〈a,i,1〉 for each i < 2, and ≺〈a,A(a),0〉. Clearly, ≺∗
A is irreflexive and

interpolable.

The first statement can be shown in a similar way to Theorem 10. To see this, use ≺〈a,i,1〉 as a junk component

instead of ≺ω. A copy of ≺〈a,As (a),0〉 can always be changed to a junk, i.e., a copy of ≺〈a,As (a),1〉.

For the second statement, assume that there exists an X-c.e. relation ≺ on N which is isomorphic to ≺∗
A. In

this case, for a finite sequence, compatibility is c.e., being an antichain is co-c.e., and maximality is 50
2, relative to

X. Hence there exists an X′′-computable sequence of all finite maximal compatible antichains. As in the proof of

Theorem 10, one can see that for any a ∈ N, A(a) = b if and only if there exists a maximal compatible antichain of

size 〈a, b, 0〉. Thus, one can show that A 6T X′′ as before.

Conversely, if A 6T X′′ then, using their 60
3(X)-definitions, A and its complement can be presented as follows:

a ∈ A ⇐⇒ (∃b ∈ N) lim inf
t→∞

Ab
t (a) = 0,

a /∈ A ⇐⇒ (∃b ∈ N) lim inf
t→∞

Āb
t (a) = 0,

where (a, b, t) 7→ Ab
t (a) and (a, b, t) 7→ Āb

t (a) are two-valued X-computable functions.

In the following, when we refer to a layer in an isomorphic copy of ≺ℓ, we mean the isomorphic image of {m}×Q

for some m < ℓ. Before starting the construction, let us prepare infinitely many regions separated from each other.

At each stage s, we construct (finite approximations of) infinitely many copies of ≺〈a,1,Ab
s (a)〉 at the 〈a, b, 1〉-th

region, and infinitely many copies of ≺〈a,0,Āb
s (a)〉 at the 〈a, b, 0〉-th region. We also make junk components, which

are infinitely many copies of ≺〈a,i,1〉. At stage s + 1, if Ab
s (a) < Ab

s+1(a) then each copy of ≺〈a,1,Ab
s (a)〉 can be

modified to a copy ≺〈a,1,Ab
s+1(a)〉 by enumerating fresh rationals at the top. Even if Ab

s (a) > Ab
s+1(a), the height

of each copy of ≺〈a,1,Ab
s (a)〉 can be lowered by adding a relation that moves upper layers of rationals to the right of

lower layers of rationals (see the next paragraph for a more formal explanation), which is an X-c.e. process. In this

way, each copy of ≺〈a,1,Ab
s (a)〉 can be modified to a copy ≺〈a,1,Ab

s+1(a)〉. Do the same for Āb
s .

Let us give a more detailed explanation of the lowering construction in the case Ab
s (a) > Ab

s+1(a). Each element

x in the copy of ≺〈a,1,Ab
s (a)〉 in this region is assigned a role (a, 1, i, p) for some i 6 1 and p ∈ Q. This role changes

at most once in the construction. At stage s, at most s elements are enumerated in the copy. The relationship between

each pair of these elements follows directly the ≺〈a,1,Ab
s (a)〉-relation between the assigned roles. Only at the stage

where Ab
s (a) > Ab

s+1(a) happens, the role of each element x of the 〈a, 1, 1〉-th layer changes to play (a, 1, 0, p) for

sufficiently large p. If p is chosen to be larger than all the rationals mentioned so far, this role-change corresponds

to placing this element x above all the elements in the lower layers. Here, only a finite number of elements are

already there, and furthermore, an element of a lower layer never comes above an element of a higher layer, so the

role-change can be performed consistently. These are all the possibilities for a role-change to occur, only an element

in the 〈a, 1, 1〉-th layer can cause a role-change, and such an element drops to the 〈a, 1, 0〉-th layer after the role

change; hence the role change can occur only once at most. Finally, at each stage s, for each n < s and i 6 Ab
s (a),

if there is no element with role (a, 1, i, pn) where pn is the nth rational, we arrange a fresh element to give the role

of (a, 1, i, pn).

If Ab
s (a) = i for almost all s, then each component at the 〈a, b, 1〉-th region stabilizes to ≺〈a,1,i〉. Otherwise, we

have Ab
s (a) > Ab

s+1(a) for infinitely many s. Then, if an element u in a component at the 〈a, b, 1〉-th region belongs

to a higher layer at some stage s, then at a stage s′ > s such that Ab
s′(a) > Ab

s′+1(a), adding a relation moves u to

a lower layer, after which it never moves from that layer (since the role-change occurs only once at most). Hence,
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every element eventually belongs to a lower layer, which means that such a component is isomorphic to ≺〈a,1,0〉.

Hence a ∈ A if and only if there exists a copy of ≺〈a,1,0〉. Indeed, if this is the case, there are infinite such copies.

The same holds for Ā. Hence, we have infinitely many copies of ≺〈a,A(a),0〉, and no copies of ≺〈a,1−A(a),0〉. This

process may also make an extra copy of ≺〈a,i,1〉, but in any case, at the junk components, we also make infinitely

many copies of ≺〈a,i,1〉. Consequently, this construction gives an X-c.e. copy of ≺∗
A. �

By using this, one can see that there exists a c.e. irreflexive interpolable relation which is not isomorphic to any

computable relation. Indeed, one can prove a bit stronger.

Corollary 7. There exists a c.e. irreflexive interpolable relation which is not isomorphic to any X-computable

relation whenever X is not high.

Proof. For A ⊆ N, let ≺∗
A be an irreflexive interpolable relation as in Theorem 11. If A 6T ∅′′ then ≺∗

A has a

c.e. copy. Moreover, A 6T X′ if and only if there exists an X-computable isomorphic copy of ≺∗
A. Hence, for

A = ∅′′, if X is not high, i.e., ∅′′ 66T X′, then ≺∗
A has no X-computable copy. �

Corollary 8. There exists a low3-c.e. irreflexive interpolable relation which is not isomorphic to any c.e. relation.

Proof. If A 66T ∅′′ then ≺∗
A has no c.e. isomorphic copy by Theorem 11. Thus, if X is not low2, then ≺∗

X′′ has no

c.e. isomorphic copy, while it has an X-c.e. copy, again by Theorem 11. Now, consider a low3 set X 6T ∅′ which is

not low2. �

The same result can be obtained for the degree spectra of ω-continuous domains instead of interpolable relations.
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