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Abstract—Although extensive research has been conducted
on retrieving sea ice variables from synthetic aperture radar
(SAR) and multimodal remote sensing data, cross-scene retrieval
using regional training models remains a significant challenge.
Previous studies have employed multi-task learning but have not
sufficiently explored the interplay between network architectures
and multi-task performance. Moreover, self-supervised learning
(SSL) has shown promise in improving tasks with limited training
samples, though its potential in sea ice variable retrieval requires
further study. To address the challenge of cross-scene retrieval of
sea ice variables, we introduce a novel and effective method called
Multimodal Fusion Domain Adaptive (MFDA), which combines
three key strategies: 1) Employ SSL methods for multimodal
data to pre-train the model, improving its noise sensitivity and
promoting a hierarchical understanding of multimodality. 2)
Propose a unified convolutional and Transformer-based data
fusion architecture to enhance the integration of multimodal
data and improve semantic understanding. 3) Incorporate a
domain adaptation module between the multimodal encoder
and the multi-task decoding predictor to facilitate the model’s
understanding of the semantic gaps between different regional
environments. The performance of the proposed MFDA has been
extensively evaluated on the Ai4Arctic dataset. The experimental
results demonstrate that MFDA achieves superior performance
compared to other state-of-the-art sea ice classification ap-
proaches for the task of cross-scene sea ice retrieval. The code
will be made available at https://github.com/yuweikong/MFDA.

Index Terms—Synthetic Aperture Radar, arctic sea ice, multi-
task learning, self-supervised learning, masked image modeling,
domain adaptation.

I. INTRODUCTION

Sea ice, as a critical component of the cryosphere, exhibits
significant variations across diverse spatial and temporal scales
[1]. Accurately characterizing the spatial and temporal dynam-
ics of sea ice is of paramount importance for understanding the
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climate system [2], forecasting climate change [3], planning
polar navigation routes [4], and ensuring maritime safety [5].
Remote sensing has emerged as a pivotal approach for rapidly
obtaining large-scale, high-quality Earth observation data, thus
significantly advancing Earth observation capabilities [6, 7].
Remote sensing data can be leveraged to automatically extract
and generate sea ice maps, which serves as an effective means
of monitoring sea ice dynamics and provides crucial sup-
port for research and applications in related domains [8–10].
However, traditional expert system-centric methods have faced
limitations in meeting the evolving needs of Earth observation
data in the era of remote sensing big data, particularly when
dealing with complex scenes [11, 12]. Deep learning offers
a viable solution to intelligently extract valuable knowledge
from diverse Earth observation data, enabling enhanced un-
derstanding and monitoring of polar environments [13].

Remotely sensed data acquired from satellite platforms fre-
quently exhibit temporal discontinuities, variability in spatial
resolution, and diminished signal-to-noise ratios, particularly
within polar geographic regions [14, 15]. Concurrently, ref-
erence data available for these polar environments are often
limited and may originate from a single, localized area, posing
significant challenges for the training and deployment of
deep learning models in such contexts [16]. Moreover, polar
climate systems are highly complex and dynamic, influenced
by climate change, anthropogenic activities, and various other
factors [17, 18]. Consequently, deep learning models trained
solely on constrained datasets may struggle to fully capture the
multifaceted complexities inherent to these regions [19, 20].

Advanced deep learning models have been successfully
applied to a range of remote sensing and Earth science
applications. Recent advancements in the field of sea ice
parameter retrieval have garnered significant attention. For
example, Ren et al. [21] introduced a dual-attention U-Net for
the classification of sea ice and open water. Additionally, Song
et al. [22] et al. proposed a joint model that integrates spatial
and temporal features for sea ice classification within the
Canadian Ice Service ice charts area. Furthermore, De Gelis
et al. [23] highlighted the potential of fully convolutional
networks (FCNs) for the automatic estimation of sea ice
concentration (SIC) using synthetic aperture radar (SAR). In
a related study, Huang et al. [24] developed a dual-branch en-
coder U-Net (DBU-Net) for sea ice type classification in SAR
images from the Beaufort Sea, demonstrating the advantages
of end-to-end models in this application. These models often
perform exceptionally well in homogeneous regional scenes
where the underlying characteristics, spatial distributions, and
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typologies are relatively consistent [25]. Nevertheless, the
capacity of these sophisticated deep learning methodologies
to effectively tackle the challenges inherent in the analysis of
diverse spatiotemporal data distributions and the heterogeneity
of regional environments is still constrained [26, 27].

Deep learning architectures have demonstrated impressive
performance in polar environments characterized by rela-
tively homogeneous regional conditions [7, 28, 29]. However,
progress in developing deep learning approaches for broader
sea ice classification tasks across diverse polar scenes has been
relatively slow [30–32]. This can be primarily attributed to
two key challenges. Firstly, the paucity of large-scale, high-
quality, multimodal remote sensing datasets restricts a more
comprehensive understanding of cross-domain polar environ-
ments. Consequently, the availability of additional high-fidelity
datasets would be instrumental in facilitating a more holistic
study of sea ice conditions across varied geographical regions
[9, 33–36]. Secondly, current methodological approaches tend
to prioritize optimization for single, localized sea areas rather
than enhancing the generalization capabilities of the models,
particularly across different latitudinal and longitudinal do-
mains. To better adapt to the unique characteristics of diverse
polar regions, it is imperative to place greater emphasis on
developing models with robust generalization abilities that
can effectively handle a wide range of environmental scenes
[9, 33].

The recently released AI4SeaIce public dataset [37] ad-
dresses the challenge of limited high-quality multimodal re-
mote sensing data in polar regions, thereby opening new
avenues for research in this field. This dataset has facilitated a
range of studies, contributing to advancements in SIC [9, 33–
36], the floe size (FLOE) [9], and the stage of development
(SOD) [9, 38]. The concept of cross-scene classification using
multimodal data has been extensively studied and applied in
the field of computer vision [39–44], providing a promising
direction for adapting sea ice monitoring models across diverse
polar environments.

Using the AI4SeaIce public dataset, Chen et al. [9] intro-
duced a multi-task learning (MTL) framework and demon-
strated significant results, highlighting the potential of multi-
task architectures for comprehensive sea ice monitoring in
diverse polar environments. Compared to traditional single-
task models, MTL may offer enhanced solutions by imple-
menting implicit constraints and shared representations among
different but related tasks. While preliminary results have
been achieved in sea ice classification tasks, further optimiza-
tion of the architecture is warranted. Recently, Xiong et al.
[45] investigated the effects of multimodal data fusion on
model performance when integrating multiple tasks through
MTL methods. Additionally, the methods of parameter sharing
across multiple tasks merit further discussion [46, 47].

Although the aforementioned solution has yielded some
positive results, it remains challenging to apply in cross-scence
tasks where reference data is limited. The rise of Masked
Image Modeling (MIM) technology has led to a widespread
adoption of self-supervised learning (SSL) methods in the
remote sensing field [48–51]. These methods involve estab-
lishing auxiliary tasks and learning features from a substantial

amount of unlabeled data to create an initial feature extrac-
tion model. Subsequently, this initial model is fine-tuned for
specific downstream tasks. MIM has been extensively applied
in remote sensing tasks, demonstrating effective performance
even when reference samples are limited. For instance, Cao
et al. [52] et al. introduced a MIM approach that incorporates
contrast loss, utilizing pre-training methods to capture the
underlying representations of images, thereby showcasing the
robust feature extraction capabilities of the MIM pre-training
model. Additionally, Lin et al. [53] developed a spatial spectral
masked autoencoder (SS-MAE) tailored for multimodal data,
which employs a lightweight convolutional model during the
training phase to enhance local feature modeling. The SS-
MAE framework underscores the potential of MIM in mul-
timodal tasks and emphasizes the importance of integrating
both local and global features.

However, some limitations persist when directly applying
MIM [54] to multimodal remote sensing images for semantic
segmentation. First, predictions based on raw pixel values
contain substantial redundant spatial domain information and
typically exhibit low-order statistical features, which may
hinder the model’s ability to capture high-level semantic
information [55]. Second, the inherent differences between
observed data and natural RGB images make it challenging
for the original single-layer decoder architecture to perform
complex modeling of multimodal image features, thereby
impeding the convergence of the model [48]. Finally, directly
using a single decoder to model deep features may cause
dense and small objects to be lost in multimodal images,
resulting in incomplete semantic information and challenges in
image reconstruction. Recently, Chen and Yan [55] confirmed
that using the low-frequency information of remote sensing
images as the target for training MIM models can acceler-
ate convergence and reduce model noise. Moreover, Wang
et al. [56] revealed the effectiveness of MIM using multi-
level constraints, which can accelerate the convergence of
the model and promote its multi-scale semantic understanding
of the input data. These methods have been proven to be
straightforward and convenient for multimodal tasks.

In this paper, we investigate strategies to enhance model
performance for sea ice parameter retrieval tasks under cross-
scene conditions. First, we utilize the AI4SeaIce public dataset
to create a cross-scene task dataset for sea ice classifica-
tion, aiming to improve the applicability of Arctic sea ice
classification across different scenes. Second, we propose a
Multi-scale Low-pass Filter Mask Image Model (MLFMIM)
for pre-training multimodal data fusion, which compels the
encoder to extract robust features from multimodal data across
various scenes. Finally, we design a unified architecture termed
Multimodal Fusion Domain Adaptation (MFDA) to enhance
the effectiveness of MTL in sea ice parameter retrieval and
facilitate the domain adaptation process. This architecture
integrates convolutional and Transformer components to create
a multimodal encoder, utilizing the aforementioned MLFMIM
for weight initialization. In the decoder phase, we implement
domain adaptive conversion on the generated hierarchical
features to address discrepancies between the source and target
domain features.
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In summary, the main contributions of our work are as
follows:

1) We propose a novel MIM architecture, termed
MLFMIM, designed for self-supervised pre-training of
multimodal data. Unlike previous methods, MLFMIM
utilizes low-pass filtered signals as training targets to re-
duce the influence of redundant spatial information and
noise on model performance. Additionally, we introduce
a local multi-scale reconstruction method that provides
explicit guidance for multiple deep layers of the model,
thereby effectively capturing multi-scale features.

2) Based on the characteristics of multimodal data, we
propose the MFDA for sea ice parameter retrieval using
limited regionally labeled samples. This architecture
accounts for the correlation among data at different
resolutions and constructs a relatively independent dual-
branch model for feature fusion. It integrates convo-
lutional and Transformer components within distinct
branches, allowing the model to effectively focus on
both local and global features.

3) We incorporated a multi-task domain adaptation module
between the encoder and decoder of the MFDA to
address discrepancies between the source domain and
the target domain.

II. DATASETS

This study leverages the Ai4Arctic remote sensing dataset
[37] as the primary research material. The spatial distribution
of the dataset is shown in Fig. 1. The dataset encompasses
two key geospatial domains: the center of the Canadian Ice
Sheet, which serves as the source domain, and the center of
the Greenland Ice Sheet, which represents the target domain.
The source domain subset contains 197 complete data files,
while the target domain subset comprises 315 such files.

In the workflow for model development and evaluation,
we initially employ a SSL strategy, leveraging the complete
Ai4Arctic dataset, encompassing both source and target do-
main files, to pre-train the model in the absence of any labeled
data. Subsequently, during the supervised learning phase, we
train the model exclusively on the 197 files from the source
domain and evaluate its performance on the 315 files from the
target domain.

A. Multimodal Input Data

Each file encompasses a comprehensive set of remote
sensing and ancillary parameters, including: dual-polarization
Sentinel-1 Extra Wide (EW) imagery, The Advanced Mi-
crowave Scanning Radiometer 2 (AMSR2) passive mi-
crowave radiometer measurements, numerical weather predic-
tion (NWP) variables derived from the ECMWF Reanalysis v5
(ERA5) reanalysis dataset, as well as ice chart data conforming
to the World Meteorological Organization (WMO) sea ice clas-
sification schema, provided by either the Greenland Ice Service
or the Canadian Ice Service. The resolution of each data is
shown in Table I. It is important to note that, in selecting
input data, we opted to utilize a subset of the multimodal
data sources available in the Ai4Arctic dataset. Our primary

focus is on evaluating the domain adaptability of the model,
rather than investigating the intricate relationships between
the different input parameters. Accordingly, we have adopted
the optimal input data configuration as recommended in prior
literature [9, 57]. For the Sentinel-1 EW data, AMSR2 data,
ERA5 data, and temporal data, pixel values are normalized
within the range of [-1, 1]. Missing values (NaN) in the
SAR are replaced with -1. Additionally, the data for each
patch’s longitude and latitude information is normalized to the
range of [0, 1] to prevent any spatial information leakage. The
normalized longitude and latitude data are integrated into the
model, analogous to the relative position encoding described
in [58] within the Transformer architecture, thereby providing
potential advantages to the model.

The specific data is described as follows:
1) Sentinel-1 EW Data: The dataset comprises

dual-polarimetric Sentinel-1 (available at https:
//dataspace.copernicus.eu/) synthetic aperture radar (SAR)
backscatter observations, including measurements in both
the horizontal-horizontal (HH) and horizontal-vertical
(HV) polarizations. Accompanying this radar data is the
corresponding latitude and longitude grid information,
organized in a 21-by-21 matrix. Crucially, no geographic
projection or orthorectification has been applied to the data.
The resolution of HH and HV polarization images is 40
meters.

2) AMSR2 Data: The dataset consists of AMSR2 bright-
ness temperature data, which has been resampled to match
the geometry of Sentinel-1. The pixel spacing of the resampled
data is 2 km x 2 km. The AMSR2 data is obtained from JAXA
(available at https://earth.jaxa.jp/en/data/index.html). Specifi-
cally, it includes Dual-pol (dual-polarization) AMSR2 bright-
ness temperature data at 18.7 GHz and 36.5 GHz.

3) ERA5 Data: The dataset comprises ERA5 weather fore-
cast (NWP) parameters that have been resampled to align with
the geometry of Sentinel-1, (available at https://cds.climate.
copernicus.eu/). The resampling process employed Gaussian
weighted interpolation, resulting in a pixel resolution of 2 km
x 2 km. The included parameters are 10m-windspeed, 2m-air
temperature, total column water vapor, and total column cloud
liquid water.

4) Time Data: The temporal information associated with
each pixel corresponds to the acquisition month of the SAR
scene, denoted by a digital code such as ′1′ for January. The
image dimensions of the SAR data match those of the AMSR2
dataset.

B. Reference Data

The sea ice chart parameters include the SIC, SOD and
FLOE:

1) SIC: The SIC parameter represents the areal fraction of
a given spatial domain that is covered by sea ice, typically
expressed as a percentage ranging from 0% (open water) to
100% (complete ice cover) in discrete 10% increments.

2) SOD: The SOD parameter can be regarded as a cate-
gorical representation of sea ice type, which serves as a proxy
indicator for the physical thickness of the sea ice cover, and
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thus the relative ease of traversability. This parameter classifies
the sea ice into five discrete categories: 0 - Open Water, 1 -
New Ice, 2 - Young Ice, 3 - Thin First-Year Ice, 4 - Thick
First-Year Ice, and 5 - Old Ice, where the latter class refers to
sea ice that has persisted for more than one year.

3) FLOE: The FLOE parameter provides a categorical
characterization of the spatial continuity and areal extent of
the sea ice cover, with discrete classifications ranging from 0
to 6. The FLOE classes are defined as: 0 - Open Water, 1 -
Cake Ice, 2 - Small Floes, 3 - Medium Floes, 4 - Big Floes, 5
- Vast Floes, and 6 - Bergs, the latter of which encompasses
variants of icebergs and glacier ice fragments.

III. METHOD

A. Architecture

The convolutional neural network (CNN) has been widely
recognized for its progressive and superior performance in
learning high-dimensional feature representations from radar
remote sensing images [1, 9, 30, 59, 60], which can be
attributed to the efficacy of its hierarchical feature extraction
architecture. In this study, we first proposed the SSL method
MLFMIM for multimodal data. The overall training process
of MLFMIM is illustrated in Fig. 2. The multimodal encoder
is pre-trained using MLFMIM, with the objective of achieving
more stable and robust feature representations for subsequent
cross-scene tasks [55]. Following this, we propose the MFDA,
which consists of three key modules: the Multimodal Encoder,
the Domain Adaptation module, and the Multi-task Decoding
Predictor. The MLFMIM self-supervised pre-training method
is employed to initialize the weights of the multimodal encoder
within the MFDA framework. Subsequently, the weights of the
pre-trained model are fine-tuned through supervised learning.
The MFDA framework comprises three key modules: the
multimodal encoder, the domain adaptation module, and the
multi-task decoding predictor. The domain adaptation module
is specifically designed to bridge the gap between the feature
representations of the source and target domains through ad-
versarial learning methods. This approach enables comprehen-
sive exploration and extraction of domain-invariant semantic
features from multimodal remote sensing data, facilitating the
transfer of these robust features across different domains.

B. Self-Supervised Model

In previous studies, a masking strategy has been employed
to partition the input image into non-overlapping blocks and
randomly mask subsets of these blocks. In the MAE [61],
Transformer is utilized as the decoder, where only the visible
blocks are provided as input to the encoder, and mask markers
are appended to the decoder to reconstruct the masked blocks.
On the other hand, SimMIM adopts a fully connected layer
as the decoder and feeds both the mask markers and visible
patches to the encoder. Mathematically, the masking process of
the MIM approach can be defined as xmask = x⊙ (1−M)+
T ⊙M, where M represents a random occlusion mask, and T
denotes the learnable mask mark.

To adapt the MIM approach for multimodal and multi-
resolution data, we masking the higher-resolution (HR) data

while leveraging the low-resolution (LR) data as a contex-
tual cue, which is then integrated with the masked features.
Simultaneously, we aim to enable the model to effectively
capture and represent the LR physical characteristics, thereby
facilitating the decomposition of complex relationships. By
implementing this strategy, we can better handle data with
disparate resolutions and improve the overall performance of
the model.

While the pixel-level reconstruction employed by SimMIM
has shown promising performance on natural image datasets,
its direct adaptation to multimodal remote sensing data faces
several challenges. Initially, the raw pixel values in remote
sensing imagery frequently exhibit significant low-level spatial
redundancies and are deficient in high-level semantic features.
This characteristic can impede the model’s capacity to discern
meaningful scene-level abstractions. Furthermore, the inherent
differences between Earth observation data and natural RGB
images render the original single-layer decoder architecture of
SimMIM less effective in comprehensively modeling the com-
plex feature characteristics of remote sensing data, potentially
impeding model convergence. Fortunately, recent studies have
demonstrated that incorporating low-frequency information
as the prediction target can help accelerate the convergence
of masking-based models in hyperspectral remote sensing
applications [55]. Moreover, the reconstruction of features
across multiple scales has been demonstrated to enhance the
model’s multi-level semantic comprehension of the remote
sensing scene [56].

To address these challenges, we propose a novel multimodal
MIM framework tailored for remote sensing applications.
Specifically, we use low-pass filtered signals as the target to
capture the low-frequency information in remote sensing data
and avoid being interfered by the redundant spatial information
of the original pixel values and the inherent noise of SAR
images, which is beneficial for the model to learn high-
level semantic features. Additionally, we introduce a local
multi-scale reconstruction method to explicitly guide multiple
lower layers of the model, effectively modeling remote sensing
image features at different scales. This overcomes the problem
that a single Decoder is difficult to capture complex features
and promotes rapid convergence of the model. Compared to
previous works that focus on accelerating the encoding process
through asymmetric encoder-decoder strategies or reducing in-
put blocks, our approach explicitly leverages the characteristics
of multimodal remote sensing data to enhance the model’s
learning efficiency.

The architecture of MLFMIM is depicted in Fig. 2. It
consists of three primary components: the Training Target
Generator (G (·)), the Reconstruction Encoder (RE), and the
Reconstruction Decoder (RD). The key benefit of the proposed
method is the use of simple low-pass filtering for training
target construction and reconstruction from partial observa-
tions, which helps to mitigate the noise in the generated
features and facilitates the learning of more effective rep-
resentations. Specifically, RE extracts latent representations
from the unmasked feature segments, while RD reconstructs
low-pass filtered representations of the masked data based on
these latent representations. Furthermore, the introduction of
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TABLE I: Data Variables and Resolutions

Variable Description Variable Abbreviation Original Resolution Resolution Training

Sentinel-1 EW Data

HH 40 × 40 m 0.4 × 0.4 km
HV 40 × 40 m 0.4 × 0.4 km
Lat - 1.6 × 1.6 km
Lon - 1.6 × 1.6 km

AMSR2 Data

18.7GHz H 14 × 22 km 1.6 × 1.6 km
18.7GHz V 14 × 22 km 1.6 × 1.6 km
36.5GHz H 7 × 12 km 1.6 × 1.6 km
36.5GHz V 7 × 12 km 1.6 × 1.6 km

ERA5 Data

10m windspeed 0.25 × 0.25◦ 1.6 × 1.6 km
2m air temperature 0.25 × 0.25◦ 1.6 × 1.6 km

total column water vapor 0.25 × 0.25◦ 1.6 × 1.6 km
total column cloud liquid water 0.25 × 0.25◦ 1.6 × 1.6 km

Time Data scene acquisition month - 1.6 × 1.6 km

Reference Data

SIC 40 × 40 m 0.4 × 0.4 km
SOD 40 × 40 m 0.4 × 0.4 km

FLOE 40 × 40 m 0.4 × 0.4 km

hierarchical constraints is shown to accelerate the convergence
of the model, thereby improving the efficiency of the pre-
training process.

1) Training Target Generator: In the target generator part,
we introduce a low-pass filter to calculate the frequency
domain information of each channel by performing a discrete
Fourier transform (DFT) on the image. For an input image
I ∈ RH×W , the DFT is mathematically defined as follows:

FDFT (I)(u,v) =

h=H∑
h=1

w=W∑
w=1

I (h,w) e−2πi(uh
H + vw

W ), (1)

where (H,W ) represents the spatial size, (u, v) and (h,w)
respectively denote the frequency spectrum and spatial coordi-
nates. FDFT (I) represents the frequency representation of the
image. To retain the low-frequency components of the image
in the spectral dimension, an ideal low-pass filter (FLPF ) is
defined as follows:

FLPF (u,v) =

{
1,
(

(u−uc)
2

(H
4 )

2

)
+
(

(v−vc)
2

(W
4 )

2

)
≤ 1

0, otherwise (O.W.)
(2)

where uc and vc represent the center coordinates of the
frequency spectrum. We control the amount of high-frequency
components filtered out from the spectrum based on the
dimensions H × W of the image, with a default setting of
1/4 of the central region. Subsequently, the filtered spectrum
undergoes an Inverse Discrete Fourier Transform denoted as
FIDFT to generate the final reconstructed image. Therefore,
the generation objectives of low-pass filtering can be defined
as:

G (I) = FIDFT

(
FLPF (u,v) ⊗ FDFT (I)(u,v)

)
(3)

where FDFT and FIDFT can be efficiently computed using
the fast fourier transform and ⊗ denotes element-wise multi-
plication.

2) Reconstruction Encoder and Decoder: Let XHR ∈
RH×W×C1 denote the HR data, and XLR ∈ RH

4 ×W
4 ×C2

denote the LR data, where H and W represent the height and
width of the images, and C1 and C2 represent the number
of channels in the HR and LR data, respectively. XHR is
then encoded using a patch embedding [62] to obtain the

feature representation x0
HR ∈ RH

4 ×W
4 ×64. Subsequently, x0

HR

undergoes a masking operation, resulting in the masked feature
representation, which can be formulated as follows:

xmask
HR = x0

HR ⊙ (1−M) + T ⊙M (4)

where M represents random occlusion mask and T denotes
the learnable mask mark.
XLR is similarly encoded using a patch embedding to

obtain the feature representation x0
LR ∈ RH

4 ×W
4 ×64. xmask

HR

and x0
LR are then fed into the two branches of the Encoder,

which extracts multi-scale features denoted as
{
xi
HR

}4

i=1
and{

xi
LR

}4

i=1
respectively. For the ith stage of the HR branch,

we fuse it with the corresponding feature from the LR branch,
represented as xi

HR = xi
HR +xi

LR. The output of the RE can
be represented as

{
xi
HR

}4

i=2
= fen (XHR, XLR), where fen

denotes the transformation performed by the Encoder blocks.
The hierarchical features

{
xi
HR

}4

i=2
obtained from fen are

passed to the RD. Subsequently, the RD utilizes the function
G(·) to guide the reconstruction of features at various levels.
Since the decoder is only utilized for output prediction during
the pre-training stage, it can leverage a variety of architectural
choices, such as a series of Vision Transformer [63], Swin
Transformer [62], or convolutional layers. Although numer-
ous studies have demonstrated that employing a lightweight
decoder architecture can be sufficient to learn generalizable
representations, it remains challenging to use a lightweight
decoder for multimodal tasks. This is due to the difficulty in
effectively reconstructing features from disparate modalities.
In the field of remote sensing, architectures capable of achiev-
ing both local and global information propagation have been
widely adopted. Therefore, this study employs a 2-layer Swin
Transformer as the decoder architecture.

3) Reconstruction Loss: During the pre-training phase, SSL
techniques are employed, utilizing unlabeled training data.
The loss function is defined as the mean square error (MSE)
between the mask data and the reconstructed mask data [55],
which can be represented by the following formula:

LMLFMIM =
∑
l∈κ

wl ·
1

Nl

Nl∑
i=1

Ml
i ·

(
G
(
yli
)
− ŷli

)2
(5)

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3491190

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



6

Fig. 1: Data set region visualization, Source and Target in the Arctic region.

where κ denotes the set of selected layers, wl represents
the coefficient of each local loss, and Ml

i is calculated by
upsampling/downsampling the initial mask M. Nl indicates
the number of samples, G(yli) represents the expected output
of the i-th sample at the l-th layer, and ŷli denotes the
predicted output of the i-th sample at the l-th layer. These
local losses guide the patches on multiple selected layers
to perform semantic interactions at different scales, which
not only accelerates the learning of multiple layers but also
facilitates multi-scale semantic understanding of the input.

C. MFDA

The model architecture of MFDA is illustrated in Fig. 3.
Our MFDA comprises three main components: Multimodal
Encoder (E), Domain Adaptor (DA) (consisting of Discoverer
(D) and Corrector (C)), and Multi-task Decoding Predictor
(P ).

1) Multimodal Encoder: The Multimodal Encoder is com-
posed of two parallel branches specifically designed for feature
extraction, with the gradual integration of LR data features

into the corresponding HR branches. Each branch of the en-
coder comprises Stem, Convolution Transformer Blocks,
Downsampling, and Window Transformer Blocks.

In the context of the LR branch, we extract hierarchical
features individually denoted as

{
Elr

i

}4

i=1
, which are subse-

quently incorporated into the HR branch. The hierarchical fea-
ture representation for the HR branch is defined as

{
Ehr

i

}4

i=1
.

To ensure information fusion at each stage, these features are
fused, resulting in the fused features of the HR branch and
LR branch expressed as Ei = Ehr

i +Elr
i , where Ehr

i and Elr
i

correspond to the feature maps from the respective stage. For
each branch, the Stem and Downsampling consist of convo-
lutional layers with downsampling aligned to the convolution
kernel size and stride. Convolution Transformer Blocks
and Window Transformer Blocks are essential compo-
nents in MFDA. Although Transformer has shown good per-
formance in sea ice prediction and extraction, it increases
model parameters and computational complexity due to its
global information extraction [64, 65]. Local information has
been emphasized in remote sensing tasks like classification
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Fig. 2: The overall architecture of MLFMIM is depicted in the figure. The input HR image is divided into a series of non-overlapping
patches, where the masked patches are replaced with learnable mask tokens. The encoded LR image features are then concatenated with the
visible patches. The encoder can be selected from the Transformer or CNN families. The output features of the encoder can be expressed
as Stage {1, 2, 3, 4}. In the decoding stage, three decoders are introduced, corresponding to the predictions of Stage2, Stage3 and Stage4
respectively. To train the model, low-pass filtering is applied in the Fourier domain to the real HR images to construct the generated targets,
and the mean squared error (MSE) is used to measure the difference between the predicted and real images.

and semantic segmentation [20, 66]. Utilizing a convolution-
like architecture in the upper layers retains local relevant
features and keeps the model compact. Recent studies, such as
[67, 68], confirm the importance of Transformer architecture
design. A more general architecture was adopted, incorporat-
ing Transformer-style convolution modules in Stages 1 and 2,
along with relative position encoding to enhance the model’s
inductive bias and emphasize its local modeling capability. The
W-MSA and SW-MSA variants within the Swin Transformer
model have demonstrated effectiveness in sea ice classification
and ice-water separation tasks, exhibiting lower quadratic
complexity than the standard MSA [62]. Consequently, MSA
was replaced with W-MSA/SW-MSA in Stages 3 and 4 of the
model, enabling it to possess both local and global modeling
capabilities, thereby rendering it suitable for MTL of sea ice.

Within the HR branch, the Conv Transformer Blocks
involve the definition of input features as Ei−1 and output
features as Ehr

i , which can be expressed as:

E′
i = Ei−1 + ConvAtt (BN (Ei−1)) (6)

Ehr
i = E′

i + CMLP (BN (E′
i)) (7)

ConvAtt (x) = Convpw2 (Convdw (σ (Convpw1 (x)))) (8)

where Convpw (·) represents point-wise convolution,
Convdw (·) represents depth-wise convolution, σ (·) represents
the activation function, BN (·) represents Batch Normalization,
and CMLP (·) consists of two layers of convolution with
an activation function in between. In the HR branch, for
Window Transformer Blocks, we define the input
features as Ei−1 and the output features as Ehr

i , which can
be expressed as:

E′
i−1 = Ei−1 + W-MSA (LN (Ei−1)) (9)

E′′
i−1 = E′

i−1 + MLP
(
LN

(
E′

i−1

))
(10)

E′
i = E′′

i−1 + SW-MSA
(
LN

(
E′′

i−1

))
(11)

Ehr
i = E′

i + MLP (BN (E′
i)) (12)

where LN refers to Layer Normalization, MLP refers to multi-
layer perceptron, and W/SW-MSA is derived from the Swin
Transformer architecture proposed in [62]. Subsequently, a
sequence of convolutional and upsampling modules is applied
to E0 and {Ei}4i=1, followed by their concatenation to form
fusion features F . This process can be expressed as:

F = Cat
(
W 0

EE0,
{

Up×22i−2

(
W i

EEi

)}4

i=1

)
(13)
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where Up×22i−2 denotes the upsampling operation, ×22i−2

represents the scale factor of upsampling, W i
S represent learn-

able parameter.
2) Domain Adaptation: Fig. 4 shows the detail of Domain

Adaptation module. GANs have gained significant popularity
in addressing pixel-level alignment and knowledge transfer
challenges across diverse source and target domains. Taking
inspiration from previous works [39–44, 69–71], we intro-
duced a domain adaptation module to tackle the domain
offset issue after merging features. Our approach involves
training a cross-domain segmentation network using randomly
selected images from both the source and target domains
through adversarial training. To achieve improved alignment
between the target and source domains, we employ two types
of convolution-based discriminant networks, namely Discov-
erer (D) and Corrector (C) (including Csic, Csod, Cfloe).
These networks facilitate effective alignment by addressing
the representation offset between the domains. Specifically,
D generates pixel-level confidence scores, enabling local cor-
rection of the representation offset by reweighting interme-
diate features. Concurrently, the multi-task category C aims
to enhance global semantic alignment by considering three
distinct label distributions during the final prediction stage.
This global semantic alignment operation can be viewed as
a soft constraint, bringing different task categories closer and
promoting similarity among the same categories across the
domains.

Let Xs and Xt be the sets of input images for the source
and target domains, respectively. Additionally, let Fs and
Ft represent the fusion features extracted from the source
and target domains, respectively, using the encoder E. To
align the feature distributions of Ft and Fs, we optimize
the discriminator D using the adversarial loss function LD

adv .
This comparison provides an aligned confidence score for each
position in Ft, resulting in the formation of an attention map
denoted as α. Notably, α is then utilized to reweight Ft,
resulting in a new feature map denoted as F̂t = α ⊗ Ft.
Subsequently, pixel-level predictions psict , psodt , and pfloet are
obtained through P , with a heightened focus on poorly aligned
areas. Subsequently, we employ the loss function LC

adv to
optimize the discriminator C, which facilitates adversarial
learning by comparing the predictions pt and ps. The above
procedures can be expressed as:

psict , psodt , pfloet = P (Ft) (14)

psics , psods , pfloes = P (Fs) (15)

3) Multi-task Decoding Predictor: Regarding the target do-
main features F̂t obtained from the DA module, we employ the
convolution group module for feature representation modeling,
followed by upsampling. The convolution group module com-
prises three consecutive convolutional layers, where each layer
is accompanied by a batch normalization layer and a ReLU
function. Additionally, we introduce three sets of Deformable
convolutions at the model’s final stage. In comparison to
conventional fixed grid convolutions, Deformable convolutions
[72] adapt to irregular shapes and structures by learning
spatial transformations, enabling more precise capture of target

features. This convolutional approach allows the model to
dynamically adjust its receptive field, thereby enhancing its
adaptability to the diverse and complex input data. The in-
corporation of deformable convolutions significantly improves
the model’s ability to adapt to changes in the shape of sea ice.

4) Loss Function: The overall loss function mainly consists
of three loss terms:

L = Lseg + ηLD
adv + µLC

adv (16)

where η and µ are hyperparameters that have been set to 0.5.
The first term on the right-hand side of Eq. 16 can be expressed
as:

Lseg(y, ŷ) = λ1Lce(ysic, ŷsic)

+ λ2Lce(ysod, ŷsod)

+ λ3Lce(yFLOE, ŷFLOE)

(17)

where Lce represents the label smoothing cross-entropy loss
function [73]. And the second term on the right-hand side of
Eq. 16 can be expressed as:

LD
adv (D) = min

D
EXs∼p(Xs)

[
(D (Fs)− 0)

2
]

+ EXt∼p(Xt)

[
(D (Ft)− 1)

2
] (18)

LD
adv (E) = min

E
EXt∼p(Xt)

[
(D (E (Ft))− 0)

2
]

(19)

where Fs represents the feature map extracted from the
input sample Xs in the source domain, while Ft represents
the feature map extracted from the input sample Xt in the
target domain. The term EXs∼p(Xs) and EXt∼p(Xt) denote
the expectation of sampling from the data distribution of the
source domain and target domain, denoted as p (Xs) and
p (Xt). And the third term on the right-hand side of Eq. 16
can be expressed as:

LC
adv (C) = min

C
EXs∼p(Xs)

[(
C
(
psics , psods , pfloes

)
− 0

)2
]

+ EXt∼p(Xt)

[(
C
(
psict , psodt , pfloet

)
− 1

)2
] (20)

LC
adv (E,P ) = min

E
EXt∼p(Xt)[

(C ({Psic, Psod, Pfloe} ◦ E(Xt))− 0)2
] (21)

where Pκ ◦ E (Xt) represents the category mapping of fea-
tures extracted from target domain input samples, the pa-
rameters psics , psods , pfloes from Eq. 14 and the parameters
psict , psodt , pfloet from Eq. 15 are incorporated into Equation
20.

IV. EXPERIMENTS

A. Experimental platform parameter settings
The experiments were conducted on a desktop equipped

with an NVIDIA GeForce RTX 4060Ti 16GB GPU using
PyTorch 1.10. For the training of both MLFMIM and MFDA,
we employed the Adam optimizer [74] as the initial optimizer,
with an initial learning rate of 5× 10−4 [55]. The MLFMIM
model was trained for 400 epochs with a batch size of 32. The
MFDA model was trained for 200 epochs with a batch size
of 32. To assess the efficacy of the model, we employed the
F1-score (F1) and overall accuracy (OA) as evaluation metrics.

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3491190

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



9

𝑋ுோ

Dow
nsam

pling

Stem

𝑋ோ

Stem

Dow
nsam

pling

Dow
nsam

pling

Dow
nsam

pling

Dow
nsam

pling

Dow
nsam

pling

Convolution
Transformer

Blocks
×N

Convolution
Transformer

Blocks
×N

Window
Transformer

Blocks
×N

Window
Transformer

Blocks
×N

Window
Transformer

Blocks
×N

Window
Transformer

Blocks
×N

Conv
Transformer

Blocks
×N

Conv
Transformer

Blocks
×N

𝐸ଶ𝐸ଵ 𝐸ଷ 𝐸ସ 𝐸ହ

Channel
MLP

W-MSA

Norm

Norm

Channel
MLP

Convolution
Attention

Norm

Norm

Conv
Transformer

Blocks

Window
Transformer

BlocksDomain 
Adaptation

𝐻
4
ൈ
𝑊
4

𝐻
8
ൈ
𝑊
8

𝐻
16

ൈ
𝑊
16

𝐻
32

ൈ
𝑊
32

𝐻
4
ൈ
𝑊
4

𝐻
8
ൈ
𝑊
8

𝐻
16

ൈ
𝑊
16

𝐻
32

ൈ
𝑊
32

Stage 1 Stage 2 Stage 3 Stage 4

Stage 1 Stage 2 Stage 3 Stage 4

Multimodal Encoder

Multi-task Decoding Predictor

𝐸ଵ, 𝐸ଶ, 𝐸ଷ, 𝐸ସ, 𝐸ହ

Deformable
Conv

Deformable
Conv

Deformable
Conv

ConvM
odule

ConvM
odule

ConvM
odule

Trans SIC

SOD

FLOE

Trans
Trans

Trans：TransposeConv2D

ConvModule：Conv,BN,Relu

Stem：Patch embedding

Downsampling：Downsampling
with scale 2

Norm: LayerNorm

(a)

(b)

(c) (d)
ℱ

Multi-task Decoding Predictor

Fig. 3: Overall description of the proposed MFDA framework. XLR represents low-resolution data and XHR represents high-resolution data,
the Stem represents patch embedding [62], and the Downsampling module utilizes convolutional downsampling. The feature maps from the
Multimodal Encoder, which fuses features from different Stages, are concatenated and provided as input to the Predictor. Subsequently, after
DA and a series of convolutional modules, various Deformable Convolution and Transposed Convolution layers are employed to upsample
the feature maps and obtain the results for the three tasks.

B. Determination of MFDA Parameters

The current study investigates the optimal configuration
of the MFDA. The experimental outcomes are delineated in
Table II, corroborating the findings with previous studies that
have dissected the effects of varying stage layer stacking on
model efficacy [62, 66]. This experiment aims to determine the
optimal architectural parameters of MFDA through experimen-
tal evaluation. Specifically, the study explores the influence
of the number of channels and the layers across different
stages on model performance. A total of 9 experimental
combinations were designed to investigate the impact of basic
channel numbers of {16, 32, and 64}, as well as the layers of
{[2,2,2,2], [2,2,6,2], and [3,4,8,3]}. The findings suggest that a
larger number of channels can lead to an excessive number of
parameters, increase model complexity, and potentially result
in overfitting, thereby reducing the model’s generalization
performance. A smaller number of channels may not be able
to fully capture the rich features of the input data, limiting the
model’s expressiveness. A medium-sized number of channels,
such as 32 channels, appears to provide a better balance
between performance and model complexity.

The findings indicate that when the stage stacking configura-
tion in MFDA is an even number, such as [2,2,2,2] or [2,2,6,2],
the model performance is superior to the odd stage stacking
configuration, such as [3,4,8,3]. The shifted window attention
mechanism proposed in Swin Transformer [62] appears to
function more effectively under the even stage configuration.
Specifically, Stage3 and Stage4 utilize this mechanism to
promote cross-window feature communication and fusion,
thereby enhancing the model’s receptive field and expression
ability. However, an excessively low number of stage stacks,

such as [2,2,2,2], may limit the model’s expression ability and
prevent it from fully learning the complex features in the data.
Therefore, this study selects the [2,2,6,2] layers configuration
as a more reasonable compromise. This configuration retains
the advantages of the Swin Transformer’s shifted window
mechanism while increasing the stacking depth of Stage 3,
thereby enhancing the model’s expressive capability.

TABLE II: The impact of different hyperparameters on the model
performance was investigated, while MLFMIM and DA were not
incorporated. In the MFDA, the number of channels in the first stage
was set to C, and the channel numbers in the subsequent stages
increased in the manner of [C, 2C, 4C, 8C]. Layers denotes the
number of stacked blocks at each stage of the network, and gray
represents the best result.

C Layers SIC SOD FLOE
F1 (%) OA (%) F1 (%) OA (%) F1 (%) OA (%)

16 [2,2,2,2] 73.3 71.5 68.6 69.4 72.7 74.6
16 [2,2,6,2] 74.1 72.0 68.1 70.6 75.3 76.5
16 [3,4,8,3] 73.7 72.0 67.8 69.3 68.3 70.6
32 [2,2,2,2] 75.6 72.7 67.9 69.6 72.8 74.7
32 [2,2,6,2] 76.3 73.1 70.0 70.7 75.6 75.8
32 [3,4,8,3] 76.4 73.3 68.8 71.4 71.6 73.2
64 [2,2,2,2] 74.0 72.0 68.2 70.2 70.4 72.4
64 [2,2,6,2] 76.2 73.1 70.2 71.4 74.8 75.6
64 [3,4,8,3] 73.3 71.5 68.6 69.4 72.7 74.6

C. The Efficacy of Multi-Task Learning

To investigate the efficacy of MTL, we performed three
task experiments. The experimental results are presented in
Table III. Notably, the Multi-Task model achieved a marked
enhancement in F1-scores, with increments of 0.9%, 2.4%,
and 4.6% for the respective tasks, thereby outperforming the
Single Task model. These results demonstrate that MTL yields
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Fig. 4: Details of Domain Adaptation Model. It is composed of Discoverer (D) and Corrector (C) (including Csic, Csod, Cfloe), which are
used to better align the gap between the target domain and the source domain.

TABLE III: Comparison between multi-task and single-task learning,
gray represents the better result.

Task SIC SOD FLOE
F1 (%) OA (%) F1 (%) OA (%) F1 (%) OA (%)

Single Task 75.6 72.7 67.6 69.5 71.0 71.9
Multi Task 76.3 73.1 70.0 70.7 75.6 75.8

improved performance. This enhancement can be attributed to
the inherent correlations among various sea ice parameters and
the capacity of MTL to bolster the model’s robustness against
noise and uncertainty. When the training dataset for sea ice
is limited, the feature representation achieved through MTL
outperforms that of single-task learning, thereby enhancing
the model’s generalization ability. This approach leverages
positive transfer between tasks, wherein the learning of one
task actively facilitates the learning of other related tasks,
thus improving overall training and inference performance. For
instance, in a specific region, higher SIC is typically associated
with larger floe sizes. In a MTL framework, the model can
learn these correlations, resulting in simultaneous performance
improvements across all tasks. By integrating multiple related
tasks and reusing features, MTL establishes implicit con-
straints between tasks, offering a more effective solution com-
pared to traditional single-task learning. Furthermore, through
information sharing and optimization processes, MTL not only
enhances model performance but also effectively mitigates
the risk of overfitting, thereby further improving the model’s
generalization ability.

D. Parameter Sharing Experiment

In this study, we examined the performance difference
between soft parameter sharing and hard parameter sharing

methods for sea ice classification tasks. Specifically, we con-
figured the model’s decoder according to different sharing
strategies. For the soft parameter sharing approach, we used
three independent decoder parameter sets to learn the distinct
classification tasks of SIC, SOD, and FLOE. In contrast, for
the hard parameter sharing method, we employed a single
shared decoder and achieved MTL by connecting three in-
dependent classification heads.

The comparative experimental outcomes are provided in
Table IV. In the evaluation of OA across the SIC, SOD,
and FLOE tasks, the UNetHard model demonstrated superior
performance over the UNetSoft model, with respective OA
improvements of 2.1%, 0.3%, and 0.5%. Additionally, the
MFDAHard model surpassed the MFDASoft model in the
SOD task by an OA margin of 3.6%. These findings indicate
that in sea ice applications, soft parameter sharing methods
perform less effectively than hard parameter sharing in MTL.
The advantages of hard parameter sharing lie in its simplicity
and efficiency, particularly when addressing highly correlated
tasks [75]. By sharing representations, hard parameter sharing
mitigates the risk of overfitting to a single task and enhances
training and inference efficiency by reducing the number of
parameters. Given the inherent similarities among different
sea ice classification tasks—such as the correlation where a
higher SIC corresponds to a higher floe ratio in a specific
area—hard parameter sharing can better leverage these task
similarities, thus improving the effectiveness of MTL for sea
ice classification. In contrast, soft parameter sharing tends
to increase the number of model parameters, which can
complicate training and diminish the model’s generalization
performance. Consequently, the subsequent experiments in this
study adopt a hard parameter sharing configuration.
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TABLE IV: Comparison results between different parameter sharing,
gray represents our method.

Parameter Sharing SIC SOD FLOE
F1 (%) OA (%) F1 (%) OA (%) F1 (%) OA (%)

UNetSoft 72.6 70.8 68.2 70.0 75.9 76.3
UNetHard 75.8 72.9 67.5 70.3 75.9 76.8
MFDASoft 76.6 73.7 72.6 74.1 76.1 77.4
MFDAHard 78.0 73.7 75.8 77.7 79.8 79.7

E. Fusion paradigm selection

In this work, we investigate the impact of different fusion
paradigms on multi-modal data fusion for semantic segmenta-
tion. Existing deep learning models for this task can be broadly
categorized into CNN-based and Transformer-based fusion
methods. For the CNN-based approaches, the choice of fusion
level has a significant impact on the overall performance.
Conversely, for the Transformer-based fusion methods, the
self-attention mechanism can be leveraged to fuse multi-modal
features at the token level, which may offer advantages over
the CNN-based techniques. However, fusion at different levels
still plays a key role in determining the performance of
Transformer-based fusion methods as well.

For the CNN-based fusion, we conducted an evaluation of
four distinct training paradigms, as delineated in Fig 5. To
delineate these paradigms, we introduce a symbolic represen-
tation for input modalities and network components. Distinct
colors denote the Encoder Blocks/convolutions of each branch,
with the final blocks representing feature maps from various
stages.

Specifically, the different paradigms depicted in the corre-
sponding images can be described as follows: (a) Direct re-
sampling of multi-modal data to a unified resolution, followed
by concatenation at the model input:

F = fen (XHR ∥ XLR) (22)

(b) Independent convolutional processing of modalities, sub-
sequent concatenation, and feeding into a shared Encoder:

F = fen (WHRXHR ∥ WLRXLR) (23)

(c) Separate convolutional layers for modalities, followed by
a shared Encoder with weight sharing:

F = fen (WHRXHR) , fen (WLRXLR) (24)

(d) Initial separate convolutional processing, fusion of LR and
HR feature maps, and progressive integration of LR features
into the HR branch via an independent Encoder:

F = fen (WHRXHR) + fen (WLRXLR) (25)

For the Transformer-based fusion methods, the different
paradigms are shown in Fig. 6. We adopt methodologies
from the CrossFormer [76] and MFT [46] frameworks. The
schematic representation employs color coding to differenti-
ate the Encoder Block/Convolution/Transformer components
across various branches, with the final blocks indicating the
aggregated feature maps from successive stages. The notation
Cross. in the figure signifies the CrossBlock1/CrossBlock2
fusion operations.

The different fusion methods can be described as follows:
(a) Initial feature extraction is conducted via convolutional

layers for each input modality, succeeded by the application
of CrossBlock (denoted as ’Cross.’) for feature fusion across
modalities:

F = fen (Cross. (WHRXHR,WLRXLR)) (26)

(b) Features are extracted for each modality using separate
Encoders post convolutional processing. Subsequently, the
Cross. operation is applied to integrate features from different
modalities and stages:

F = {Cross.i (fen(WHRXHR)i, fen(WLRXLR)i)}
4
i=1

(27)

Let the input feature as zk−1 and the output as zk. The
forward process of Transformer [46, 77, 78] can be expressed
as:

z′k = zk−1 + MSA (LN (zk)) (28)

zk = z′k + MLP (LN (z′k)) (29)

We denote the input features at Stage i are zHR and
zLR, then map zHR to Qh,Kh, Vh, and zLR to Ql,Kl, Vl.
Subsequently, we perform the cross-attention mechanism to
compute the output representations. Finally, convolution is
applied, and the features are projected to the same dimension.
The forward process can be expressed as:

z′HR = zHR + MSA

LN

zLR, zHR, zHR︸ ︷︷ ︸
Ql,Kh,Vh


 (30)

z′LR = zLR + MSA

LN

zHR, zLR, zLR︸ ︷︷ ︸
Qh,Kl,Vl


 (31)

ẑHR = z′HR + MLP (LN (z′HR)) (32)

ẑLR = z′LR + MLP (LN (z′LR)) (33)

zo = W o
i (ẑHR ∥ ẑLR) (34)

where W o
i refers to learnable materix. In addition, the forward

process of MFT can be expressed as follows:

z′ = zHR + MSA

LN

zLR, zHR, zHR︸ ︷︷ ︸
Ql,Kh,Vh


 (35)

zo = W o
i (z′ + MLP (LN (z′)) + zLR) (36)

The results of different paradigms are presented in Table
V. It should be noted that we did not evaluate MLFMIM
and DA, which allows us to examine the differences between
the various fusion paradigms. For the CNN-based paradigm,
Paradigm d performs best on the SIC task. Compared to
Paradigms a, b, and c, the F1 score is higher by 4.2%, 4.1%,
and 2%, respectively. However, the F1 and OA scores of
Paradigm d on the SOD task are lower than Paradigm c
by 0.9% and 1.4%, respectively. This suggests that for both
CNN-based and Transformer-based methods, it is preferable
to process HR and LR data separately. Using a shared-weight
feature extraction module to process HR and LR data simulta-
neously can lead to confusion in the feature extraction module,
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resulting in decreased model accuracy. For the Transformer-
based paradigm, the F1 score of Paradigm ac on SIC is better
than ad, bc, and bd by 3.2%, 4.3%, and 2.7%, respectively,
but its performance on SOD is the worst. Paradigm bc has the
best F1 score on FLOE, which is better than ac, ad, and bd by
0.9%, 4.9%, and 2.1%, respectively. This suggests that using
CrossFormer and MFT to replace the splicing and addition
operations can improve the model, but the introduction of
Transformer modules in shallow fusion will slow down the
training and cause confusion between different tasks. The
strategy of progressive fusion using Paradigm c achieves the
best results, as it separates the feature extraction modules
for HR and LR data and considers the interaction between
different layers. Therefore, we choose this paradigm as our
baseline method.

TABLE V: Comparative evaluation of data fusion paradigms across
CNN-based and Transformer-based, MLFMIM and DA are not
used, and gray represents our method. In the CNN-based methods,
paradigms a, b, c, and d denote the distinct fusion strategies. In the
Transformer-based approaches, ac and bc refer to the paradigms a
and b of the CrossFormer module within the Cross. fusion technique.
Additionally, ad and bd represent the paradigms a and b of the MFT
fusion approach in the Cross. framework.

Method SIC SOD FLOE

F1 (%) OA (%) F1 (%) OA (%) F1 (%) OA (%)

CNN

a 72.1 70.7 68.6 68.9 70.4 71.9
b 72.2 70.2 68.5 66.5 73.6 74.7
c 74.3 72.3 70.9 72.1 68.4 70.5
d 76.3 73.1 70.0 70.7 75.6 75.8

Transformer

ac 76.2 72.9 68.4 69.0 76.5 76.8
ad 73.0 71.1 69.1 69.7 72.5 73.6
bc 71.9 70.5 69.4 71.1 77.4 78.5
bd 73.5 71.4 70.1 69.9 75.3 76.5

F. MIM Ablation Experiment

To explore the potential of the MIM method on multimodal
data, we investigated the impact of various improvements on
MLFMIM. The experimental results are presented in Table
VI. We define the baseline models, which include SimMIM
[54] and LocalMIM [56]. LocalMIM outperforms SimMIM,
particularly on the SOD task, where the F1 score and OA
are higher by 2% and 3%, respectively. This suggests that
the multi-stage constraint method is effective. Given the
versatility of MLFMIM, we explored replacing the original
linear decoder with a 2-layer Multi-Layer Perceptron (MLP)
or Transformer/Swin Transformer decoder. We found that the
Swin Transformer decoder is more efficient, especially in
improving the FLOE index, where the F1 score and OA
reached 77.1% and 78.1%, respectively. For the prediction
target, considering that remote sensing data are typically
processed by low-pass and high-pass filtering, we compared
the original pixels, low-pass filtering, and high-pass filtering as
targets. Using high-pass filtering resulted in a gradient effect,
causing the model to degrade, particularly in the F1 index
of SIC, which was 3.3% and 4.3% lower than the RGB and
Low targets, respectively. Additionally, as shown in Fig. 7, we
visualized the reconstruction of different features. We found
that using low-pass filtering as the training target is more

effective. It is challenging for the model to reconstruct the
edges, details, and noise in the original pixels and high-pass
filtering, and it is difficult to learn useful features.

G. Reconstruction Masking Analysis

Table VII presents the experimental results using different
masking ratios for the MLFMIM. The best performance was
achieved at a masking ratio of 60%. Notably, the MLFMIM
method was found to be effective even at low masking ratios,
highlighting the effectiveness of its independent reconstruction
approach. This improvement is attributed to the encoder’s abil-
ity to learn robust feature representations, thereby mitigating
the impact of multimodal data noise. From a masking ratio
of 20% to 60%, the model’s performance gradually increased
as the masking ratio increased. Even at higher masking ratios,
such as 75% to 90%, the model was still able to effectively
learn features. However, extremely high masking ratios, such
as 95%, posed challenges for the model in learning effective
features due to significant information loss and ambiguity.

H. Comparative Experiment

The proposed method was benchmarked against a diverse
set of representative deep learning techniques for semantic seg-
mentation, including CNN-based architectures such as UNet
[33], PSPNet [79], LinkNet [80], DeepLabv3 [81], MMSeaIce
[9], and UNet++ [82], as well as Transformer-based models
including SwinUNet [9], SwinUper [62], UniFormer [58], and
PoolFormer [67]. Additionally, DA approaches, specifically
AdaptSegNet [40] and DAST [71], were included in the
comparative evaluation. For a fair comparison, the network
configurations were kept consistent with the settings reported
in the original publications. Where necessary, minor parameter
adjustments were made to accommodate the requirements of
the multi-modal remote sensing data segmentation task.

The experimental results are presented in Table VIII. The
proposed method demonstrates significant advantages over the
baseline techniques. While UNet performs well within a single
region, it exhibits suboptimal performance in cross-region
retrieval tasks, particularly in the classification of different ice
types, achieving the lowest F1 score of 67.5%. LinkNet is less
effective than UNet in extracting FLOE features, likely due to
the absence of deconvolution operations. Both the PSPNet and
DeepLabV3 models demonstrated their respective strengths
across the three evaluation tasks. The PSPNet model achieved
the best overall results in the SIC and FLOE tasks, with F1
scores exceeding those of DeepLabV3 by 2.9% in SIC and
2.7% in FLOE. Notably, the MMSeaIce model, as a state-
of-the-art (SOTA) approach, performed well across all three
tasks; however, it exhibited suboptimal performance in FLOE
and struggled to distinguish between different types of sea ice
in the cross-scene SOD task. In the case of UNet++, its densely
connected architecture exhibited a tendency to overfit within a
single region, rendering it less suitable for cross-scenario clas-
sification tasks. Additionally, for the Swin Transformer model,
the UNet-like architecture proved inadequate, as evidenced by
its poor performance in the SOD task, where it achieved an F1
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Fig. 5: Overall description of the proposed data fusion paradigm (CNN).

TABLE VI: Comparison of different data fusion paradigm, MLFMIM and DA are not used, and gray represents we choose.

Method SIC SOD FLOE

F1 (%) OA (%) F1 (%) OA (%) F1 (%) OA (%)

Baseline SimMIM 75.7 72.6 73.3 74.5 73.1 74.4
LocalMIM 76.3 73.6 75.3 77.5 74.1 75.4

Decoder

Linear 76.5 73.7 74.2 75.6 74.4 75.3
2-layer-MLP 76.0 73.8 76.1 77.2 76.0 77.2

2-layer-Transformer 76.9 73.8 75.8 77.7 75.2 76.7
2-layer-Swin 76.8 73.8 75.9 77.7 77.1 78.1

Target
RGB 77.0 73.3 73.7 74.7 75.4 76.2
Low 78.0 73.7 75.8 77.7 79.8 79.7
High 73.7 72.3 73.7 75.8 74.4 75.9

TABLE VII: Comparison of different rate, and gray represents our
method.

Rate SIC SOD FLOE
F1 (%) OA (%) F1 (%) OA (%) F1 (%) OA (%)

20% 76.6 73.1 73.7 75.2 76.7 77.7
40% 76.7 73.6 74.9 76.2 77.3 78.3
60% 78.0 73.7 75.8 77.7 79.8 79.7
75% 77.0 73.4 74.3 76.1 79.2 79.0
90% 77.3 74.1 74.0 75.7 77.0 78.0
95% 74.3 72.1 72.0 71.1 73.3 73.1

score of only 66.9%, consistent with findings from previous
literature [9].

Compared to the combination of the Swin Transformer and
UNet architectures, integrating the Swin Transformer with
the UperNet [83] approach demonstrated better suitability for
cross-scene classification tasks. Specifically, the F1-scores on
the SOD and FLOE benchmarks were 1.6% and 2.5% higher,
respectively, than the SwinUNet configuration. Regarding the

UniFormer model, the architecture was primarily designed for
video segmentation tasks; thus, the decoder design may need
to be reconsidered for optimal performance on cross-scene
classification problems. For the PoolFormer model, the results
confirm the superiority of the Transformer-based architecture.
In the context of sea ice classification, the use of complex
spatial representation acquisition methods may not provide
significant benefits, and architectural adjustments could lead
to substantial performance improvements. Regarding the DA-
based methods, such as AdaptSegNet, the F1 and OA on the
SOD task reached 67.7% and 68.9%, respectively, which are
weaker than the performance of DeepLabV3 and other bench-
mark models. However, these DA-based approaches exhibited
improved results on the FLOE task, surpassing DeepLabV3
by 1.6% higher F1-scores. The DAST model achieved an F1
of 76.3% on the SIC task, outperforming DeepLabV3 and
other methods, but underperformed on the SOD and FLOE
tasks. This disparity can be attributed to the fact that these
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Fig. 6: Overall description of the proposed data fusion paradigm (Transformer).
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Fig. 7: Reconstruction visualization results of different targets..

DA-based techniques were primarily designed for RGB image
inputs, and they fail to adequately capture the role of local
and global features in remote sensing imagery, rendering them
less effective in MTL scenes. In contrast, the MFDA achieved
the best overall results across the SIC, SOD, and FLOE
tasks, particularly excelling on the SOD task. This can be
attributed to the pre-training of the MLFMIM encoder, which
enabled the model to learn common features across diverse
scene images, and the subsequent introduction of domain
adaptation techniques, which further harmonized the feature
representations across different domains.

We present a visual comparison of the segmentation results
obtained from various deep learning methods across different
geographic locations and time periods. The results for the
freezing season are illustrated in Fig. 8 to Fig. 11. The UNet

and LinkNet models exhibit a tendency for minor classification
errors, with their delineation of ice-water boundaries appearing
relatively ambiguous. Conversely, the PSPNet and DeepLabV3
models struggle to accurately capture the variability in SIC;
however, their segmentation outputs tend to be more coherent
and natural compared to UNet and LinkNet, which may be
attributed to the effects of the global pooling mechanism.
The MMSeaIce model demonstrates strong performance in
segmenting SIC and effectively captures floes, yet it exhibits
significant misclassification results for SOD, likely due to
the pronounced variations in sea ice types across different
scenarios. The UNet++ architecture, with its nested encoding-
decoding structure, excels at capturing multi-scale feature
information, yet it frequently produces incoherent misclas-
sification artifacts when processing cross-scene images. The
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SwinUNet model tends to underestimate the presence of
sea ice and encounters challenges in accurately representing
the morphological characteristics of various ice types. Both
SwinUper and UniFormer perform comparably in the ice-
water separation task; however, the UniFormer model exhibits
more pronounced errors in simulating the dynamic changes of
the ice-water boundary, often failing to distinctly differentiate
between ice cubes of varying sizes and confusing small ice
cubes, pancake ice, and medium-sized ice cubes. In contrast,
the PoolFormer architecture effectively captures boundary
changes between different ice regions but often underestimates
the density and size of the ice. The results of AdaptSegNet
exhibit significant fluctuations along the ice-water separation
boundary, with SIC gradually increasing from 10% to 100%,
yet it often underestimates the overall SIC. Nevertheless,
AdaptSegNet achieves some correct classifications in the SOD
task, and the changes in the separation boundary are also re-
flected in the floe task. The DAST model does not demonstrate
a clear trend in the ice-water separation boundary for the SIC
task; however, it does exhibit a trend of change in the SOD
and floe tasks, and its performance aligns more closely with
the ground truth than with the actual situation, particularly
when compared to CNN or Transformer-based methods. The
introduction of deformable convolution [72] in the MFDA
model enhances its performance in the floe task, enabling it
to effectively capture the size characteristics of ice blocks and
clearly delineate the boundaries between different ice types;
however, it still exhibits limitations in ice-water separation.

The results for the melting season are presented in Fig.
12. CNN-based methods, such as UNet, tend to underestimate
SIC in the ice-water separation zone and produce inaccurate
estimates in areas with high SIC boundaries. Transformer-
and UperNet-based methods, including SwinUper, struggle to
effectively classify results across varying densities; however,
SwinUNet demonstrates improved performance in addressing
this issue. The integration of Transformer architectures with
U-shaped structures effectively delineates boundaries of dif-
ferent densities. In the case of the DA model, AdaptSegNet
can accurately partition SIC over a wide range, although it
still exhibits instances of misclassification. DAST tends to
overestimate SIC, particularly in the intermediate regions. The
MFDA model achieves the highest accuracy in SIC, providing
overall close classification results, yet it still faces challenges
in capturing the nuances of the ice-water melting process at
the boundary. In the SOD task, methods based on U-shaped
structures are prone to generating ambiguous classification
results, whereas Transformer- and UperNet-based methods
tend to produce more coherent outcomes. DA-based methods,
such as AdaptSegNet, often yield incorrect classifications in
areas where open water meets land boundaries. The MFDA
model achieves the best overall performance in the SOD task;
however, it occasionally misclassifies melted water as old
ice in open water regions. In the floe classification task, U-
shaped structure-based methods exhibit smoother boundaries
between different categories of floes. In contrast, Transformer-
and UperNet-based methods tend to focus on the global
category of floes but struggle to differentiate between vast
floes and big floes. The PoolFormer model faces challenges

in recognizing the size of ice due to its lack of an attention
mechanism. Although DA-based methods account for differ-
ences across various scenes, they do not adequately consider
the morphological characteristics of different floe categories.
While MFDA demonstrates the best overall results in the floe
classification task, it still encounters misclassification issues
near open water, which may be attributed to ice fragmentation.

I. Module Ablation Experiment

We conducted ablation experiments to analyze the contri-
butions of different modules, and the results are presented in
Table IX. The combination of Convolutional Transformer and
Window Transformer significantly improved the model perfor-
mance compared to CNN and Transformer baselines, with an
F1-score increase of 0.023 and 0.026 for the SIC task, and
an F1-score increase of 0.055 and 0.065 for the FLOE task.
The Discoverer and Corrector components played a key role in
the classification of SOD and FLOE. Removing the Discoverer
component reduced the model performance by 0.019 and 0.063
in F1-score for the SIC and FLOE tasks, respectively, but
increased the F1-score for the SOD task by 0.015. Removing
the Corrector component reduced the F1-score for the SIC
and FLOE tasks by 0.018 and 0.021, respectively, but it still
promoted the SOD task performance, which may be related to
the inherent error bias in the polynya classification of sea ice.
The introduction of Deformable Convolution also improved
the model, especially for the FLOE task, where it increased
the F1-score and OA by 0.044 and 0.035, respectively. This
is because Deformable Convolution is effective at capturing
shape relationships, which are highly correlated with the
FLOE task. Through the careful combination of these different
modules, the MFDA achieved the best overall results.

J. Feature Visualization

Fig. 13 presents a visualization of the selected encoder
output features from the proposed MFDA framework, with
and without the application of DA. A comparative analysis
was conducted on the first 16 feature maps. The results
indicate that the feature maps generated with the inclusion
of data augmentation exhibit a more refined and detailed
appearance, capturing finer-grained characteristics such as
object edges, contours, and textural structures. In contrast, the
feature maps produced without data augmentation demonstrate
a comparatively inferior visual quality. This visual comparison
provides empirical evidence supporting the effectiveness and
importance of incorporating DA within the MFDA framework.

V. CONCLUSIONS

Sea ice classification and segmentation based on SAR has
long been an indispensable and important research topic in the
field of polar remote sensing. The exploration and commercial
development of polar regions are inextricably linked to the
rapid advancement of sea ice retrieval remote sensing technol-
ogy. However, the well-designed and specialized segmentation
methods developed thus far are largely only applicable to
sea ice in relatively homogeneous single regions, and these
methods are often tailored to a single retrieval task, without
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TABLE VIII: Comparative experiments on Ai4Arctic dataset, gray represents our proposed method.

Method SIC SOD FLOE Params (M) FLOPs (G)F1 (%) OA (%) F1 (%) OA (%) F1 (%) OA (%)
UNet 75.8 72.9 67.5 70.3 75.9 76.8 0.490 2.699

PspNet 76.0 72.8 69.1 70.8 75.0 75.8 0.977 2.139
LinkNet 75.6 72.8 68.3 69.5 73.8 74.9 5.804 3.463

Deeplabv3 73.1 71.3 72.3 72.5 72.3 74.0 15.939 17.352
UNet++ 74.2 72.3 68.5 71.2 75.1 75.9 9.738 15.598

MMSeaIce 74.2 72.9 69.6 71.9 76.6 77.9 0.523 10.735
SwinUnet 75.6 72.7 66.9 68.4 69.9 71.0 50.057 4.635
SwinUPer 74.3 72.1 68.5 69.9 72.4 73.4 30.506 9.200
UniFormer 71.7 70.5 68.2 69.5 71.5 73.2 17.409 6.332
PoolFormer 74.4 71.7 66.8 68.0 71.3 72.6 23.415 7.943

AdaptSegNet 73.9 71.9 67.7 68.9 73.9 75.2 14.865 17.360
DAST 76.3 72.6 69.6 70.0 68.9 70.1 7.046 67.804
MFDA 78.0 73.7 75.8 77.7 79.8 79.7 9.421 4.746
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20201104T171455_dmi_prepFig. 8: This figure presents the sea ice mapping results in the SAR scene (ID: 20201104T171455 dmi) acquired through various models,
located near the Greenland Sea. The corresponding methodology and image label are indicated below. Unmarked land or regions in the
figure are depicted in white shading.

TABLE IX: Ablation experiments of different modules, where CNN represents the complete use of Conv Transformer as the
backbone, Transformer represents the complete use of Window Transformer as the backbone, and Mix represents the mixture
of the two. Discoverer and Corrector come from DA, and DefConv represents Deformable Conv.

Method CNN Transformer Mix Discoverer Corrector DefConv SIC SOD FLOE
F1 (%) OA (%) F1 (%) OA (%) F1 (%) OA (%)

a ! % % ! ! ! 75.7 73.1 71.5 73.2 74.3 76.2
b % ! % ! ! ! 75.4 72.8 70.5 72.7 73.3 75.2
c % % ! ! ! ! 78.0 73.7 73.7 75.0 79.8 79.7
d % % ! % % % 76.3 73.1 70.0 70.7 75.6 75.8
e % % ! % % ! 74.9 73.1 73.2 74.7 74.3 75.5
f % % ! ! % ! 76.2 73.5 73.8 75.4 77.7 78.6
g % % ! % ! ! 76.1 72.9 75.2 76.1 73.5 74.7
h % % ! ! ! % 77.0 73.3 73.7 74.7 75.4 76.2

considering the inherent relationships between different sea ice
parameters. This limitation seriously hinders the application
deployment in areas without readily available reference data,
as route planning and management tasks, such as policy

making and risk assessment, require research on multi-task
sea ice retrieval in diverse scenes.

To address this challenge, we studied the problem of cross-
scene multi-task sea ice retrieval and proposed a unified
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20190330T102526_dmi_prep
Fig. 9: This figure presents the sea ice mapping results in the SAR scene (ID: 20190330T102526 dmi) acquired through various models,
located at the junction of Baffin Bay and the Labrador Sea. The corresponding methodology and image label are indicated below. Unmarked
land or regions in the figure are depicted in white shading.

solution. First, we investigated the fusion of multimodal data.
We developed the MFDA, which utilizes a unified CNN
and Transformer architecture to solve MTL based on multi-
modal data fusion. Subsequently, we introduced a novel self-
supervised method to enable the Encoder component to learn
a common representation of multimodal data across different
scenes. Finally, we incorporated a DA module between the
common representation and the multi-task prediction head to
narrow the gap in data representation between different scenes.
Extensive experiments conducted on the Ai4Arctic dataset
demonstrate that the proposed MFDA model achieves state-of-
the-art segmentation performance, outperforming other CNN,
Transformer, and DA-based methods across a wide range of
key evaluation metrics.

In future work, we aim to extend the scope of our research
to the Antarctic region in order to more comprehensively
investigate the problem of cross-scene large-scale sea ice
retrieval. In recent years, diffusion models have demonstrated
remarkable performance in remote sensing tasks such as image
denoising, cloud removal, and image generation, which has
garnered significant attention from the academic and industrial
communities. Going forward, we will continue to explore the
application potential of diffusion models in SAR denoising and
generation, and assess their feasibility as data augmentation
tools. Simultaneously, we will further investigate the appli-
cation of conditional diffusion models to accurately estimate
sea ice density, with the aim of improving cross-scene sea ice
parameter retrieval.
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Fig. 12: This figure presents the sea ice mapping results in the SAR scene (ID: 20210706T115305 dmi) acquired through various models,
located near the Baffin Bay. The corresponding methodology and image label are indicated below. Unmarked land or regions in the figure
are depicted in white shading.
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