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Abstract: The proposed paper describes a simple and environmentally friendly method for the
synthesis of three-component polymer–inorganic composites, which includes the modification of zinc
oxide or montmorillonite (MMT) with chitosan (CS), followed by the immobilization of palladium on
the resulting two-component composites. The structures and properties of the obtained composites
were characterized by physicochemical methods (IRS, TEM, XPS, SEM, EDX, XRD, BET). Pd–CS
species covered the surface of inorganic materials through two different mechanisms. The interaction
of chitosan polyelectrolyte with zinc oxide led to the deprotonation of its amino groups and deposition
on the surface of ZnO. The immobilization of Pd on CS/ZnO occurred by the hydrolysis of [PdCl4]2−,
followed by forming PdO particles by interacting with amino groups of chitosan. In the case
of CS/MMT, protonated amino groups of CS interacted with negative sites of MMT, forming a
positively charged CS/MMT composite. Furthermore, [PdCl4]2− interacted with the –NH3+ sites of
CS/MMT through electrostatic force. According to TEM studies of 1%Pd–CS/ZnO, the presence of
Pd nanoclusters composed of smaller Pd nanoparticles of 3–4 nm in size were observed on different
sites of CS/ZnO. For 1%Pd–CS/MMT, Pd nanoparticles with sizes of 2 nm were evenly distributed
on the support surface. The prepared three-component CS–inorganic composites were tested through
the hydrogenation of 2-propen-1-ol and acetylene compounds (phenylacetylene, 2-hexyn-1-ol) under
mild conditions (T—40 ◦C, PH2—1 atm). It was shown that the efficiency of 1%Pd–CS/MMT is higher
than that of 1%Pd–CS/ZnO, which can be explained by the formation of smaller Pd particles that are
evenly distributed on the support surface. The mechanism of 2-hexyn-1-ol hydrogenation over an
optimal 1%Pd–CS/MMT catalyst was proposed.
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1. Introduction

In recent years, there has been great interest in the preparation and application of
organic–inorganic composite materials [1–6]. In the design of such materials, the combina-
tion of the advantages of both components determines the specific properties of nanocom-
posites and promotes the formation of composite compounds with desired properties,
which positively affect the physicochemical properties of nanocomposite materials.

A special class of composites are materials obtained by combining polymers and
inorganic materials. The modification of the surface of inorganic materials with a polymer
layer is widely used to improve their properties [1–4]. Organo–inorganic structures are also
of interest from the position of expanding the possibilities of the application of inorganic
materials (metals, oxides, sorbents, and minerals) in various spheres of science and technol-
ogy [7–10]. There are two main approaches to surface functionalization with polymers: physical
and chemical [1]. The chemical approach is preferable because it excludes polymer desorption
due to the chemical bonds between polymer chains and the support surface [1].

Molecules 2024, 29, 4584. https://doi.org/10.3390/molecules29194584 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules29194584
https://doi.org/10.3390/molecules29194584
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-8153-4765
https://orcid.org/0000-0002-8999-2864
https://orcid.org/0000-0002-4422-0684
https://doi.org/10.3390/molecules29194584
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules29194584?type=check_update&version=2


Molecules 2024, 29, 4584 2 of 22

Due to the requirements of green chemistry, researchers in this field are currently focus-
ing on the use of renewable resources to create new environmentally friendly nanomaterials
for wide applications [11–23]. Polysaccharides (PS) obtained from natural sources are a suit-
able alternative to synthetic polymers produced from petroleum products [11–14]. PS have
a large number of functional groups in their structure and therefore can create composites
with mineral supports and transition metal ions [11–13,15,16,18]. Thus, chitosan-based
composites have received great attention due to the specific characteristics of chitosan
(CS), such as chemical properties, non-toxicity, renewability, and high availability [20–23].
Research on the use of chitosan in the synthesis of catalysts as a complexing and stabilizing
agent has been conducted [20,21]. Due to the presence of active amino groups, thermal sta-
bility, and insolubility in organic solvents, chitosan has great promise as a universal carrier
for supporting nanoparticles of metal ions for use in various catalytic processes [22–27].
The synthesis of chitosan-based copper catalysts, which involves mixing a suspension of
chitosan with a metal precursor solution, was proposed in [25]. The developed catalysts
(CS@CuSO4, CS@Cu(OAc)2, CS@Cu2O) were investigated in C-O and C-N conjugation
reactions without ligands. CS@Cu2O was synthesized by the ultrasonic stirring of Cu2O
and chitosan nanoparticles in toluene. This catalyst demonstrated high activity and stability.
Reddy [26] developed palladium catalysts deposited on chitosan (Pd/Chit) by physically
mixing chitosan, palladium (II) chloride, sodium hydroxide, and ascorbic acid. The synthe-
sized palladium catalyst showed high reactivity in the reduction reaction of p-nitrophenol
to p-aminophenol in an aqueous medium at 300 K. The TOF was 8.498 h−1 and the product
yield was 96%. The catalyst showed high stability, and no significant decrease in catalytic
activity was observed when used ten times. In [27], Pd catalysts deposited on chitosan
microspheres were developed using the electrospraying of a PdCl2/chitosan mixture in
an aqueous solution of trifluoroacetic acid into an aqueous solution of sodium hydroxide.
Next, the chitosan microspheres were cross-linked with glutaraldehyde. The synthesized
Pd composite was tested in the Mizoroki–Heck reaction of aromatic iodides with olefinic
compounds. At 110 ◦C, the yields of the products were 82–98%. The good reactivity of
the Pd composites deposited on chitosan microspheres is due to the high dispersion of the
metal and the small size of the chitosan microspheres.

The use of chitosan in design catalysts (as support or for stabilization) promotes
the formation of composite systems with regulated catalytic properties due to the effect
of the polymer on the physicochemical properties (size, shape, morphology) of active
metal particles. On the other hand, using chitosan as a catalyst support can provide
a number of disadvantages, such as insufficient resistance to abrasion and a low specific
surface area. To solve this problem, it is possible to use inorganic sorbents such as metal
oxides and aluminosilicates modified by CS as a support material [28–31]. Montmorillonite
(MMT) is a typical layered silicate, whose parallel layers are interconnected by weak
electrostatic forces [17]. This structure allows the preparation of different types of polymer-
layered silicate composites, depending on the synthesis conditions and the nature of the
components [32]. In addition, MMT, due to its large surface area, is a promising material
for the synthesis of heterogeneous catalysts based on chitosan [33]. However, to our
knowledge, the composites based on CS and MMT have not been practically used in the
design of supported metal catalysts.

In our prior works, PS-containing Pd/ZnO catalysts obtained by the green one-pot
technique were shown to be promising for use in the hydrogenation of various unsaturated
compounds [34–36]. In this work, a detailed study of each stage of the formation of three-
component polysaccharide-inorganic composites containing metal (Pd), polymer (chitosan),
and inorganic sorbents (clay mineral and ZnO) has been carried out for the first time. The
obtained results were confirmed by a complex of physicochemical methods of analysis. The
reaction ability of the synthesized three-component chitosan–inorganic palladium composites
was studied in the low-temperature hydrogenation of 2-propen-1-ol and acetylene compounds
(phenylacetylene and 2-hexyn-1-ol). The mechanism of reaction for the hydrogenation of
2-hexyn-1-ol over an optimal 1%Pd–CS/MMT catalyst was also discussed.
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2. Results
2.1. Modification of Inorganic Materials with Chitosan

The first stage of the modification of inorganic materials (ZnO, MMT) was carried out
by the dropwise addition of chitosan (CS) solution to an aqueous suspension of zinc oxide
or MMT. The amount of CS adsorbed was assessed by measuring the viscosity of a mother
liquor taken after the sorption process and following the determination of the polymer
concentration using a calibration curve (Table 1).

Table 1. The results of the assessment of chitosan content in composites.

m(CS) in the
Initial Solution, mg

m(CS) in Solution
after Sorption, mg m(CS) Adsorbed, mg Adsorption Degree, % CS Content, %

CS/MMT
10.1 0.4 9.7 96.0 1.0
20.4 0.4 20.0 98.0 2.0
30.9 0.4 30.5 98.7 3.0
52.6 4.2 48.4 92.0 4.6

CS/ZnO
10.1 0.3 9.8 97.0 1.0
20.4 0.3 20.1 98.5 2.0
30.9 0.3 30.6 99.0 3.0
52.6 0.4 52.2 99.2 5.0

The results obtained shows that ZnO possesses an excellent ability to adsorb chitosan
macromolecules. The adsorption degree achieved 97–99% regardless of the amount of
CS introduced. In the case of MMT, the degree of chitosan adsorption decreased from
98% to 92% when the amount of the polymer introduced increased from 31 mg to 53 mg.
Depending on the amount of chitosan solution introduced, the calculated CS content was
found to be 1.0%wt., 2.0%wt., 3.0%wt., and 5.0%wt. for CS/ZnO and 1.0%wt., 2.0%wt.,
3.0%wt., and 4.6%wt. for CS/MMT composites.

The presence of chitosan in the composites was confirmed by IR spectroscopy. Table 2
shows the IR spectra data for chitosan, chitosanium chloride (salt of chitosan with HCl),
ZnO, MMT, CS/ZnO, and CS/MMT. For CS, the main characteristic peaks are found at
3410 and 3160 cm−1 (O–H and N–H stretching vibration), 2921 and 2853 cm−1 (C–H stretch-
ing vibration), 1612 cm−1 (C=O stretching vibration), 1564 cm−1 (N–H in-plane bending
vibration), and 1076 cm−1 (absorption frequencies of β-d-pyranoside in chitosan) [24,28,37].
The dissolving of chitosan in a dilute HCl solution leads to the protonation of amino
groups with the formation of positively charged water-soluble cationic polyelectrolyte [38],
while shifting the vibration band of –NH-groups at 1564 cm−1 towards shorter wavenum-
bers [39,40]. The introduction of an acidified chitosan solution into a zinc oxide suspension
results in the formation of a CS/ZnO composite, which is accompanied with the shifting
of the vibration band of the –NH-groups of the polymer from 1502 to 1559 cm−1. This
shift can be explained by the deprotonation of amino groups (–NH3+) of water-soluble
chitosan polyelectrolytes due to their interaction with ZnO. The polymer loses its charge
and becomes insoluble.

2R-NH3+ + ZnO = 2R-NH2↓ + Zn2+ + H2O

The vibration bands of the –NH-, –OH-, and C–O–C groups of chitosan in the CS/ZnO
composite at 1559, 3491, and 1055 cm−1 were also shifted to compare with those of the
initial chitosan, probably due to the intermolecular interaction of CS with ZnO through
van der Waals forces [41].

In the case of the CS/MMT composite, a shift in the absorption band of the stretching
vibrations of –NH-groups from 1502 to 1512 cm−1 was observed, which can be explained
by the electrostatic interaction between the protonated amino group of the polymer and
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the negatively charged sites of the aluminosilicate surface [32]. In addition, the chitosan
macrocation can be retained on the sorbent surface due to the interaction of the hydroxyl
groups of MMT with the -OH groups of the biopolymer [17,32], as evidenced by the shift
of the absorption bands in the 3000–3700 cm−1 area, as well as the slight shift of the νAl–O
and νSi–O bands (Table 2) [17].

Table 2. The results of the IR spectroscopy of the studied samples.

Sample νOH
νNH νCH δNH

νC–O–C
ν(C–C)K
ν(C–O)K

νZn–O
νSi–O
νAl–O

Chitosan 3410
3160

2921
2853

1616
1564

1076
1037

Chitosanium
chloride

3425
3144

2935
2861

1622
1502

1074
1037

ZnO 3444 494
446

MMT 3630
3430

1030
914
527

CS/ZnO
3569
3491
3226
3142

2925
2862

1621
1559

1153
1055
1031

478
442

CS/MMT
3636
3429
3179

2920
2842

1657
1512

blocked by the
MMT signal

1034
920
530

Additional studies on the composite’s structure were carried out by X-ray diffraction
(XRD). Figure 1 shows the XRD patterns of zinc oxide, chitosan, and the composite based
on them. The characteristic peaks at 37.0◦, 40.2◦, 42.3◦,55.8◦, 66.7◦, 74.5◦, 78.9◦, 80.9◦, 82.3◦

observed in both ZnO and CS/ZnO correspond to the (100), (002), (101), (102), (110), (103),
(200), (112), and (201) planes of the ZnO wurtzite structure (JCPDS card no. 79-0206) [42].
A broad peak at 20–30◦ observed in the XRD pattern of CS/ZnO can be attributed to
the amorphous phase of the chitosan (Figure 1b). Thus, as expected, the deposition of
polysaccharide on the surface of zinc oxide does not lead to a change in its phase state.
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According to the literature [43,44], three types of composites—microcomposites and
intercalated and exfoliated nanocomposites—can be formed when the polymer is intro-
duced into the layered silicate. The formation of each of the three types of composites is
accompanied by a preservation or change in the position (001) of the basal reflection.

The diffractogram of the original montmorillonite sample (Figure 2a) is represented by
a wide reflex (001) at 2θ = 7.06◦ and a second-order reflex at 14.20◦, which both indicate that the
clay is a sodium montmorillonite with one layer of water molecules in the interlayer space of the
crystallites (Na-MMT—12.5 Å). An additional second-order reflex at 2θ = 12.00◦ (d001 = 14.73 Å)
can be corresponded to the Ca form of montmorillonite (Ca-MMT—14.6 Å) [17]. Thus, the clay
was shown to be composed of both sodium and calcium forms of MMT.
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The modification of MMT with chitosan by the adsorption of the polymer from the
aqueous solution promoted the aggregation of MMT particles and the formation of a
flake-like precipitate, which was followed by a change in the position of the basal (001)
reflection (Figure 2). A comparison of the diffractograms of CS/MMT composites with
initial MMT showed an increase in d001 from 12.5 Å to 15.2–15.4 Å. This is probably due to
the intercalation of one layer of chitosan polymer chains, 4.4 Å thick [45], into the interlayer space
of MMT. In addition, in the XRD pattern of 4.6%CS/MMT, a broad peak at 20–30◦ appeared,
which can be corresponded to the amorphous phase of the chitosan on the MMT surface.

The textural characteristics and morphology of CS–inorganic composites was studied
using low-temperature nitrogen adsorption–desorption and scanning electron microscopy
(SEM) methods.

The results of the measurement of the specific surface area of ZnO, MMT, and their
CS-modified composites are presented in Table 3.

Table 3. Specific surface area of zinc oxide, MMT, and CS-modified composites.

Sample Specific Surface Area, m2/g Blocked Surface, %

ZnO 12.3 -
2.0%CS/ZnO 10.2 17.1
5.0%CS/ZnO 7.8 36.6

MMT 100.7 -
2.0%CS/MMT 96.1 4.6
4.6%CS/MMT 86.5 14.1
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The results obtained (Table 3) show that the modification of inorganic materials results
in the formation of CS/ZnO and CS/MMT composites with decreased surface areas. For
example, the specific surface area of ZnO (12.3 m2/g) and MMT (100.7 m2/g) decreased
to 10.2 m2/g and 96.1 m2/g, respectively, after loading 2% of chitosan on their surface.
Moreover, further increases in the amount of polymer being loaded led to a decrease in the
specific surface area of the resulting CS/ZnO and CS/MMT composites of up to 7.8 m2/g
and 86.5 m2/g, respectively. Such changes in the specific surface area of inorganic materials
can be explained by their surface being blocked with chitosan and the percentage of the
blocked surface increasing as the polymer loading increases.

The comparison of the pore size distribution curves also indicates the interaction of
chitosan with the surface of the inorganic materials (Figure 3).
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The modification of MMT with chitosan causes a redistribution of pore sizes
(Figure 3a,b), promoting an increase in the average diameter of mesopores from 2.6 to
3.8 nm and blocking pores with sizes of 4–6 nm, which contributes to a more than twofold
decrease in the total pore volume. In the case of coating ZnO with chitosan (Figure 3d), the
changes in pore size distribution were less pronounced, which is probably due to the weak
interaction of the polymer with the metal oxide surface.

According to the data of scanning electron microscopy, the initial zinc oxide is a finely
dispersed powder (Figure 4a). The modification of zinc oxide with chitosan promotes
changes in the particle shape and size, and probably causes them to clump together into
larger aggregates due being enveloped by the polymer (Figure 4b).
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In the case of the clay mineral, the change in morphology after its modification with
chitosan was also observed. SEM images of MMT show thin curved sheets connecting along
the basic planes, which leads to the formation of microaggregates. The border between
microaggregates is not well traced, and one microaggregate grades gradually into the next
(Figure 4c). The surface of the CS/MMT composite is more homogeneous, representing
sheets and microaggregates of MMT superimposed on each other, which are covered with
a CS layer.

Thus, based on the results obtained, it can be assumed that chitosan, due to the
interactions of its –NH- and –OH functional groups with hydroxyl groups of zinc oxide
and MMT, forms a macromolecular layer on the surface of inorganic sorbents, changing
their surface morphology and textural properties. Chitosan can also change the structure
of MMT by intercalating into the interlayer space of the clay mineral (Figure 9a).

2.2. Synthesis of Chitosan–Metal Complexes Supported on Zinc Oxide and MMT

The next stage for the preparation of polymer-modified Pd catalysts is an immobiliza-
tion of palladium on a polymer–inorganic support. Immobilization was carried out by the
adsorption of [PdCl4]2− ions on CS/ZnO and CS/MMT composites. The amount of Pd
immobilized on a support material was determined by the change in the concentration
of [PdCl42−] ions in the mother liquor before and after sorption using the photoelectric
colorimetric method (PEC).

According to PEC data, 98–99% of the amount of palladium ions introduced was adsorbed
on CS/ZnO composites. Thus, the calculated content of Pd in all synthesized Pd–CS/ZnO
catalysts was 1 wt.%, which is confirmed by EDX elemental analysis data (Table 4).

A somewhat different situation is observed for palladium sorption on CS/MMT. MMT
is a layered silicate with a negatively charged surface and is unable to adsorb the negatively
charged palladium ion ([PdCl4]2−). The modification of MMT with chitosan promotes
a change in its surface charge, due to which chitosan-modified composites are able to
adsorb anions. So, the adsorption of palladium ([PdCl4]2−) reaches 86% already at the
1% loading of MMT with chitosan. A further increase in the chitosan content up to 2–5%
increases the adsorption of palladium up to 95–99%. These results were confirmed by EDX
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elemental analysis, according to which the palladium content in Pd–CS/MMT was found
to be 0.9–1.2 wt.% (Table 5).

Table 4. Sorption of palladium on CS-modified ZnO.

PS Content, %
m(Pd) in Initial

Solution, mg
m(Pd) in Solution
after Sorption, mg

m(Pd)
Adsorbed, mg Ads. Degree, %

Pd Content, %
FEC Elem. Analysis

1

10.1

0.1 10.0 99.0 1.0 0.97
2 0.1 10.0 99.0 1.0 1.30
3 0.1 10.0 99.0 1.0 n.d.*
5 0.1 10.0 99.0 1.0 n.d.

* n.d.—not detected.

Table 5. Sorption of palladium on CS-modified MMT.

PS Content, %
m(Pd) in Initial

Solution, mg
m(Pd) in Solution
after Sorption, mg

m(Pd)
Adsorbed, mg Ads. Degree, %

Pd Content, %
FEC Elem. Analysis

1

10.1

1.4 8.7 86.1 0.9 0.90
2 0.5 9.6 95.0 1.0 0.98
3 0.1 10.0 99.0 1.0 1.10
5 0.1 10.0 99.0 1.0 1.22

Figure 5 shows the SEM and EDX elemental mapping images of Pd, Zn, Al, and O from
the 1%Pd–CS/ZnO and 1%Pd–CS/MMT catalysts. All elements (Pd, Zn, O for 1%Pd–CS/ZnO
and Pd, Al, O for 1%Pd–CS/MMT) are homogeneously distributed, corresponding to the SEM
images, suggesting that Pd is homogeneously immobilized on CS/ZnO and CS/MMT supports.
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The presence of the both chitosan and palladium on the surface of the inorganic support
was also confirmed by an XPS study. The lines of carbon, nitrogen, and palladium were observed
in the survey XPS spectrum of the Pd–CS/ZnO and Pd–CS/MMT catalysts (Figure 6).
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Figure 6. Survey XPS spectrum of 1%Pd-CS/ZnO (a) and 1%Pd-CS/MMT (b) catalysts.

According to the XPS data, palladium in Pd–CS/ZnO occurred in an oxidized state
with a 3d5/2 binding energy of ~336.9 eV (Figure 7a), which could probably be attributed
to the PdO (337.3 eV) [46] formed due to the hydrolysis of [PdCl4]2− in the presence of
the basic CS/ZnO composite. It is likely that a shift toward smaller energies was caused
by the interaction of palladium with the amino group of chitosan [47]. In the spectrum of
Pd catalysts supported on CS/MMT (Figure 7b), peaks characteristic of both the oxidized
(337.8 eV) and reduced (335.6 eV) forms of palladium were detected. A major peak at
337.8 eV can be attributed to [PdCl4]2− [48], while a minor peak at 335.6 eV is corresponding
to palladium in a zerovalent state [46].
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After the treatment of the catalysts with hydrogen in a reactor at 40 ◦C, most palladium
(>50%) was reduced to a zerovalent state. In the Pd3d5/2 XPS spectrum of 1%Pd–CS/ZnO,
a new peak at 335.1 eV corresponding to Pd0 appeared, which had a negative shift of
0.3 eV [46]. At the same time, the N signal of 1%Pd–CS/ZnO (Figure 7e) had a positive
shift of 0.6 eV [47]. On the contrary, in the Pd3d5/2 XPS spectrum of 1%Pd–CS/MMT,
a peak of Pd0 at 335.6 eV was shifted towards higher energies (0.2 eV) [46], while the N
signal of 1%Pd–CS/MMT (Figure 7f) at 401.6 eV could be assigned to the interim state
between [PdCl4]2−-loaded −NH3+ (402.1 eV) and free −NH3+ (400.6 eV) [48], which was
probably caused by the interaction of −NH3+ groups of chitosan with both [PdCl4]2− and
Pd0. This suggests that in both cases, the palladium species interact with amino groups of
the polymer even after their reduction to a zero-valence state.

The interaction between palladium species and amino groups of chitosan can affect
the Pd particle size and their distribution on an inorganic support material [35]. Figure 8
shows the transmission electron microscopy (TEM) microphotographs of 1%Pd–CS/ZnO
and 1%Pd–CS/MMT catalysts.
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According to TEM studies, the 1%Pd–CS/ZnO catalyst represents separate “islands”
of Pd nanoclusters located on different sites of the CS–ZnO support (Figure 8a). The
analysis of a TEM microphotograph of the catalyst at a higher magnification level showed
that these nanoclusters are composed of smaller spherical Pd nanoparticles of 3–4 nm in
size (Figure 8b). In the case of the 1%Pd–CS/MMT catalyst, spherical Pd nanoparticles of
2 nm in size were uniformly distributed on the support surface (Figure 8a,b).

Thus, it was assumed that the basic character of the CS/ZnO composite led to the
hydrolysis and quantitative deposition of [PdCl4]2− anions on its surface. At the same time,
the deposited Pd species can interact with amino groups of chitosan and form nanoclusters
on different sites of the CS–ZnO support (Figure 9c). In the case of Pd–CS/MMT, [PdCl4]2−

anions can interact with –NH3+ sites of CS/MMT, forming a supported polymer–metal
complex, in which the polymer is an outer-sphere cation (Figure 9b).
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1%Pd–CS/ZnO (c) composites.

2.3. Catalytic Properties of Composites

Composites based on polymer-stabilized transition metal nanoparticles show catalytic ac-
tivity in hydrogenation processes [49,50]. Therefore, the obtained palladium composites were
tested in the hydrogenation of 2-propen-1-ol, which is often used as a model compound [51].

We showed that the modification of inorganic materials with biopolymers leads to
the stabilization and dispersion of the transition metal particles supported on them [35].
Increasing the polysaccharide content in such systems should increase the proportion of
stabilized metal particles, but this may create diffusion difficulties for the transferring of
substrates to active centers inside the polymer matrix. Therefore, the dependence of the
effect of polysaccharide content on the catalytic properties was investigated to determine
the optimal composition of the catalysts. The effectiveness of the catalyst was tested under
mild conditions (t—40 ◦C, P—1 atm) in an ethanol medium.

Increasing the polysaccharide content from 1% to 2% in the catalyst composition
leads to an increase in the reaction rate (Table 6). As the polymer content of the catalyst is
increased up to 5%, the process rate decreases. According to the chromatographic analysis
of the reaction products, 100% conversion of the substrate was observed in all cases, while
the introduction of the polymer was attributed to an increase in the propanol selectivity
of the process. This is probably due to the stabilization of palladium nanoparticles by
the polymer, a specific orientational “tuning” of the substrate to the active centers of the
catalytic system, preventing isomerization (Table 6).
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Table 6. Hydrogenation of 2-propen-1-ol in the presence of 1%Pd–CS/ZnO catalysts containing
different amounts of chitosan *.

Chitosan
Content,%

Reaction
Rate(W)·10−6, mol/s

Selectivity, %
Conversion, %

Propanal Propanol

1 3.6 19.6 80.4 100
2 4.3 17.2 82.8 100
3 3.3 17.0 83.0 100
5 2.7 15.6 84.4 100

* Experimental conditions: mcat—0.05 g; Csub—14.87 mol/L; solvent ethanol—25 mL; T—40 ◦C; PH2—1 atm.

The testing of the 1% Pd–CS/MMT composite containing 2% polymer in the hydro-
genation of 2-propen-1-ol showed that its activity was 1.4 times higher than that of a similar
catalytic system in which zinc oxide (1% Pd–CS/ZnO) was used as a support, while the
propanol selectivity of both systems had commensurate values and exceeded 80% (Table 7).

Table 7. Catalytic properties of 1% Pd–CS/ZnO and 1% Pd–CS/MMT composites in the hydrogena-
tion of 2-propen-1-ol *.

Support Reaction Rate
(W) · 10−6, mol/s

Selectivity, %
Conversion, %

Propanal Propanol

ZnO 4.3 17.2 82.8 100
MMT 6.0 15.2 84.8 100

* Experimental conditions: mcat—0.05 g; Csub—14.87 mol/L; solvent ethanol—25 mL; T —40 ◦C; PH2—1 atm.

The results obtained are probably due to the higher specific surface area of aluminosil-
icate (100.7 m2/g) compared to zinc oxide (12.0 m2/g).

The developed 1%Pd–CS/ZnO and 1%Pd–CS/MMT composites containing 2% chi-
tosan were studied in the hydrogenation reaction of acetylene compounds such as pheny-
lacetylene and 2-hexyn-1-ol.

During phenylacetylene hydrogenation, styrene and ethylbenzene were formed. The
hydrogenation rate of phenylacetylene on 1%Pd−CS/MMT was almost two times higher
than that on the ZnO-based catalyst and was 1.5 × 10−6 mol/s and 0.9 × 10−6 mol/s,
respectively (Figure 10b). The half-hydrogenation points (50 mL) on these catalysts were
reached after 27 and 48 min (Figure 10a). The amount of hydrogen absorbed was in agreement
with the chromatographic analysis (Figure 11). The maximum styrene yields were 87.1% on
the 1% Pd−CS/ZnO and 89.9% on 1% Pd−CS/MMT. Following the near-total conversion of
phenylacetylene to styrene, the latter was hydrogenated to ethylbenzene (Figure 11).
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Figure 10. Kinetics of the hydrogen uptake (a) and the change in reaction rate (b) on 1%Pd−CS/ZnO
and 1%Pd−CS/MMT catalysts at the hydrogenation of phenylacetylene. Reaction conditions: T—40 ◦C,
PH2—1 atm, mcat—0.05 g, solvent C2H5OH—0.25 mL, and Csub—0.09 mol/L.
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served at 102 min and was 78% (Figure 12b). The selectivity for 2-hexen-1-ol was 91.5%. 

Figure 11. Changes in the composition of the reaction mixture during the hydrogenation of phenylacety-
lene in the presence of 1%Pd−CS/MMT (a) and 1%Pd−CS/ZnO (b). Reaction conditions: T = 40 ◦C,
PH2—1 atm, mcat—0.05 g, solvent C2H5OH—0.25 mL, and Csub—0.09 mol/L.

The comparison of catalytic properties of 1%Pd−CS/ZnO and 1%Pd−CS/MMT are
presented in Table 8.

Table 8. Results of the hydrogenation of phenylacetylene on 1%Pd−CS/ZnO and 1%Pd−CS/
MMT composites *.

Catalyst Wmax·10−6, mol s−1 Selectivity, % Conversion, %

1%Pd−CS/MMT 1.5 90.9 98.9
1%Pd−CS/ZnO 0.9 93.8 92.9

* Experimental conditions: mcat—0.05 g; Csub—0.09 mol/L; solvent ethanol—25 mL; T—40 ◦C; PH2—1 atm.

The hydrogenation of 2-hexyn-1-ol lead to the formation of cis-2-hexen-1-ol,
trans-2-hexen-1-ol, and hexan-1-ol, which was confirmed by the chromatographic analysis
of the reaction products (Figure 12). In the presence of CS-modified Pd catalysts, supported
on MMT, the maximum yield of cis-2-hexen-1-ol was observed at 29 min and was 76.6%,
which, with a conversion of 82.4% of 2-hexyn-1-ol, corresponds to the selectivity of 92.9%
for cis-2-hexen-1-ol (Figure 12a).
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PH2—1 atm, mcat—0.05 g, solvent C2H5OH—0.25 mL, and Csub—0.09 mol/L.
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The maximum yield of cis-2-hexen-1-ol on the 1%Pd−CS/ZnO composite was ob-
served at 102 min and was 78% (Figure 12b). The selectivity for 2-hexen-1-ol was 91.5%.
The results of 2-hexyn-1-ol hydrogenation on the synthesized CS-containing palladium
composites are presented in Table 9.

Table 9. The results of 2-hexyn-1-ol hydrogenation on the synthesized f 1%Pd−CS/ZnO and
1%Pd−CS/MMT composites *.

Catalyst W·10−6, mol s−1 Selectivity to
cis-2-hexen-1-ol, %

Conversion, %C≡C C=C

1%Pd−CS/MMT 2.4 2.4 92.9 82.4
1%Pd−CS/ZnO 0.3 0.3 91.5 85.2

* Experimental conditions: mcat—0.05 g; Csub—0.09 mol/L; solvent ethanol—25 mL; T—40 ◦C; PH2—1 atm.

A comparison of the dependence of selectivity on cis-2-hexen-1-ol vs. the conversion
rates for 1%Pd−CS/MMT and 1%Pd−CS/ZnO composites is shown in Figure 13. In
the presence of 1%Pd−CS/ZnO, the olefin selectivity decreased slightly to 40% when
the 2-hexyn-1-ol conversion reached 100%. On 1%Pd−CS/MMT, the process selectivity
decreased to 10% when 100% substrate conversion was reached.
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Thus, it is shown that the efficiency of the palladium catalyst supported on CS/MMT is
higher than that on zinc oxide, which can be explained by the formation of finer palladium
particles (2 nm compared to 3–4 nm on ZnO) evenly distributed on the support surface.

Figure 14 shows the plausible reaction pathways for the hydrogenation of 2-propen-1-ol,
phenylacetylene, and 2-hexyn-1-ol. The process of the hydrogenation of 2-propen-1-ol
to propanol (Figure 14a, reaction 1) is followed by a side reaction of isomerization and
the formation of propionic aldehyde (Figure 14a, reaction 2). The hydrogenation of the
phenylacetylene is a consecutive process, wherein styrene is an intermediate product and
ethylbenzene is formed via the hydrogenation of the C=C bond in the alkene molecule
(Figure 14b, reactions 1 and 2). The direct formation of ethylbenzene is also possible
(Figure 14b, reaction 3). During the hydrogenation of 2-hexyn-1-ol, the triple C-C bond of
the substrate is reduced to double C-C, forming cis-2-hexen-1-ol (Figure 14c, reaction 1),
which was then hydrogenated to hexan-1-ol (Figure 14c, reaction 2). At the same time, the
accumulation of cis-2-hexen-1-ol is accompanied with the formation of trans-2-hexen-1-ol
and hexan-1-ol as side products (Figure 14c, reactions 1′, 4 and 3). It should be noted that
the formation of trans-isomers of olefinic alcohol can be carried out by both hydrogenation
(Figure 14c, reaction 1′) and isomerization (Figure 14c, reaction 4) reactions. It is well
known that catalytic hydrogenations commonly involve the formation of metal hydrides as
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key intermediates [52,53], which subsequently interact with unsaturated C–C bonds. This
suggests that the steric hydrogenation of the triple C-C bond of 2-hexyn-1-ol should result
in the formation of cis-2-hexen-1-ol. Consequently, in the initial period of the reaction, the
formation of trans-2-hexen-1-ol through the isomerization process (Figure 14c, reaction 4) is
more possible. This assumption is supported by chromatography analysis data (Figure 12a),
according to which after passing the semi-hydrogenation point, a part of cis-2-hexen-1-ol
that had accumulated was transformed to its trans-isomer, which eventually was reduced
to hexanol (Figure 14c, reaction 2′). Thus, the semi-hydrogenation of 2-hexyn-1-ol is
accompanied with both isomerization and over-hydrogenation processes as side reactions.
In more details, in the first step of the reaction, Pd nanoparticles interact with parahydrogen
to form PdH2 species [53]. Then, PdH2 intermediate interacts with the triple C-C bond of
2-hexyn-1-ol to form cis-2-hexen-1-ol, followed by its desorption from active sites of the
catalyst. A small amount of cis-2-hexen-1-ol before its desorption from the active sites of
the catalyst is transformed to trans-2-hexen-1-ol and hexan-1-ol through isomerization and
over-hydrogenation reactions, respectively.
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To confirm the proposed mechanism of the reaction, a series experiment investigating
the kinetics of 2-hexyn-1-ol hydrogenation over the most active 1%Pd-CS/MMT catalyst
was performed. The reaction parameters, such as catalyst dosage (25–100 mg), 2-hexyn-1-ol
amount (0.1–1.00 mL), hydrogen concentration in the H2:He gas mixture (30–100 vol%),
and temperature (25–50 ◦C), were varied (Figure 15).
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order to hydrogen is equal to 1 (Figure 15c). A variation in the reaction temperature 
showed that increasing the temperature from 25 °C to 40 °C led to an increase in the reac-
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Figure 15. Effect of the variation of reaction parameters on the activity of the 1%Pd-CS/MMT catalyst
in the 2-hexyn-1ol hydrogenation: catalyst dosage (a); 2-hexyn-1-ol amount (b); concentration of
hydrogen in hydrogen–helium mixture (c); temperature (d). Reaction conditions: 40 ◦C, 0.1 MPa,
100% H2, catalyst—25–100 mg, 2-hexyn-1-ol—0.25 mL, ethanol—25 mL (a); 40 ◦C, 0.1 MPa, 100% H2,
catalyst—50 mg, 2-hexyn-1ol—0.10–1.00 mL, ethanol—25 mL (b); hydrogen percentage in H2:He
gas mixture—30–100 vol%, catalyst—50 mg, 2-hexyn-1ol—0.25 mL, ethanol—25 mL (c); 25–40 ◦C,
0.1 MPa, 100% H2, catalyst—50 mg, 2-hexyn-1ol—0.25 mL, ethanol—25 mL (d).

Figure 15a shows that the WC≡C reaction rate is proportional to the amount of the
catalyst in the range of 25–75 mg. Further increases in the catalyst amount (100 mg) did
not affect the rate of reaction. This suggests that measurements under the experimental
conditions studied (50 mg) are within the kinetic regime. A variation in the substrate
amount, in the range of 0.10–1.00 mL (0.9–9.1 mmol), did not significantly affect the
rate (Figure 15b), and the reaction to 2-hexyn-1ol seemed to be of zero-order under the
reaction conditions studied. The hydrogenation rate decreased linearly with decreasing H2
concentrations in the direction of the origin of the coordinates, suggesting that the reaction
order to hydrogen is equal to 1 (Figure 15c). A variation in the reaction temperature showed
that increasing the temperature from 25 ◦C to 40 ◦C led to an increase in the reaction rate
(Figure 15d). However, further increases in the temperature, up to 50 ◦C, resulted in
a significant decrease in the hydrogenation rate, which can be explained by collapsing
(shrinking) the polymer at higher temperatures [35], making the Pd-active centers less
available to the substrate.
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Hence, the empirical kinetic equation for hydrogenation of 2-hexyn-1-ol over 1%Pd-
CS/MMT is

W =
dH2

dt
= keff.[H 2][Pd] (1)

The proposed mechanism of the reaction may be presented by the following equations:

Pd + H2
k1
⇌
k−1

PdH2 (2)

PdH2+C →
k2

PdH + CH (3)

PdH + CH →
k3

Pd + CH2 (4)

Pd + CH →
k4

Pd + CH′ (5)

where C is 2-hexyn-1-ol; CH is cis-2-hexen-1-ol; CH′ is trans-2-hexen-1-ol; and CH2 is
hexan-1-ol.

According to chromatography analysis data (Figure 12a), in the initial period of
the reaction (before achieving the semi-hydrogenation point), the accumulation of cis-2-
hexen-1-ol occurred much faster than the formation of trans-2-hexen-1-ol and hexan-1-ol.
Consequently, in the first approximation, the steady-state reaction rate can be expressed as
follows (based on Equations (2) and (3)):

−dH2

dt
=

k1k2[Pd][H2][C]

k−1 + k2[C]
(6)

When the reaction (3) is fast, i.e., k2[C] >> k−1, then the obtained Equation (6) conforms
to the empirical one (1). Thus, keff. = k1.

Taking into account the hydrogen solubility in ethanol [54], the rate constant of the
second order is 82.9 L/mol·s at 40 ◦C and PH = 0.1 MPa.

The dependence of the rate constant on the temperature in Arrhenius coordinates is
linear. Eact. = 15.6 kJ/mol (H# = Eact. − RT = 13.0 kJ/mol; S# = −0.167 kJ/mol·K). The high
negative entropy of activation suggests the easy formation of PdH2 intermediates, which,
according to the proposed mechanism, is a limiting step of the reaction.

3. Materials and Methods
3.1. Materials

Chitosan (CS) is a polysaccharide whose macromolecules consist of randomly bonded
β-(1-4) D-glucosamine links and N-acetyl-D-glucosamine [27,28]. The degree of deacetyla-
tion is 85%, Mw = 250,000 (Sigma-Aldrich, St. Louis, MO, USA). Palladium (II) chloride
(59–60% Pd) and zinc oxide (chemically pure) were acquired from Sigma-Aldrich, St. Louis,
MO, USA. Montmorillonite (MMT) from Tagansky deposit (Ust-Kamenogorsk, Kazakhstan)
produced by LLP “Sorbent” (Ust-Kamenogorsk, Kazakhstan).

2-Propen-1-ol, phenylacetylene, and 2-hexyn-1-ol were acquired from Sigma-Aldrich,
St. Louis, MO, USA. Ethanol (reagent) was purchased from Talgar Alcohol LLP (Talgar,
Kazakhstan) and purified via distillation.

3.2. Preparation of Composites

The synthesis of chitosan–inorganic composites is based on the adsorption of polysac-
charides on the surface of the inorganic material, as well as the adsorption of metal ions
onto the polymer-modified composite from the aqueous solution [35,36].

3.2.1. Preparation of CS/MMT(ZnO) Composites

Chitosan (1 g) was dissolved in 100 mL of a 1% hydrochloric acid solution at 60 ◦C and
stirred for 4 h to prepare a 1% chitosan solution. Then, the 1% chitosan solution was added
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to the aqueous suspension of MMT (ZnO) (1 g in 15 mL of water) at room temperature
under constant stirring. Furthermore, the volume of the mixture was brought to 20 mL and
stirred for 2 h. The obtained composites were kept in the mother liquor until their complete
precipitation, after which the precipitate was washed with water and dried in air.

The polymer content in composites was estimated on an Ubbelohde viscometer by
the change in the viscosity of the mother liquor before and after sorption using calibration
curves. The amounts of the chitosan solution introduced were taken from the calculation to
obtain composites with the polysaccharide contents of 1, 2, 3, and 5 wt. %.

3.2.2. Preparation of Composites Based on CS–Palladium Complexes Fixed on MMT (ZnO)

To an aqueous suspension of the CS-containing composites obtained in Section 3.2.1.
(1 g in 15 mL of water), 5 mL of an aqueous solution of palladium(II) salt (K2PdCl4)
containing 0.0101 g of Pd was added dropwise at room temperature and stirred for 3 h.
The obtained composites were kept in the mother liquor for at least 10 h, after which
the precipitate was washed with water and dried in air. The amount of Pd adsorbed was
determined by the difference in the metal ion concentrations in the mother liquor before and
after sorption. The concentration of palladium ions was determined on the spectrophotometer
SF-2000 (OKB Spectr, Saint-Petersburg, Russia). The calibration of the spectrophotometer was
carried out using a series of standard solutions at wavelengths λPd = 425.

3.3. Characterization of the Composites by Physicochemical Methods

IR spectra were obtained using a Nicolet iS5 from Thermo Scientific (Waltham, MA,
USA), with a resolution of 3 cm−1 in the 4000–400 cm−1 region. Pellets for infrared analysis
were obtained by grinding a mixture of a 1 mg sample with 100 mg dry KBr, followed by
pressing the mixture into a mold.

X-ray diffraction (XRD) patterns from samples based on ZnO were recorded on a
DRON-4-0.7 diffractometer from Bourevestnik (Saint Petersburg, Russia), with Co-Kα

radiation at a wavelength of 0.179 nm. XRD patterns from MMT-containing samples
were obtained on a PANalytical X’Pert MPD PRO diffractometer (PANalytical, Almelo, The
Netherlands) in copper-filtered radiation with a wavelength of 0.154 nm. The preparation of
MMT-containing samples for analysis was carried out by pipetting an aqueous suspension
of the sample onto a glass plate followed by air drying until water was completely removed.

The specific surface area and porosity of the samples were measured by the Brunauer–
Emmett–Teller (BET) method using an Accusorb analyzer (Micromeritics, Norcross, GA,
USA). The studied samples were pre-degassed in a vacuum at 60 ◦C for 4 h, and then the
adsorption isotherm was taken. The gas adsorbent was nitrogen.

Scanning electron microscopy (SEM) micrographs were obtained on a scanning elec-
tron microscope JSM-6610 LV (“JEOL” Ltd., Tokyo, Japan) at an accelerating voltage of
15–20 kV. EDX elemental analysis was performed using an energy-dispersive detector built
into the microscope (EDX Oxford Instruments, Oxford, UK).

Transmission electron microscopy (TEM) micrographs were obtained on a Zeiss Li-
bra 200FE transmission electron microscope (Carl Zeiss, Oberkochen, Germany) with an
accelerating voltage of 100 kV.

X-ray photoelectron spectra (XPS) of palladium composites were recorded on an
ESCALAB 250Xi X-ray and ultraviolet photoelectron spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA).

3.4. Methodology of Hydrogenation

The hydrogenation of the 2-propen-1-ol and acetylene compounds (2-hexyn-1-ol and
phenylacetylene) was carried out in a thermostated glass reactor according to the procedure
described in Ref [36]. The reaction was carried out in an ethanol medium (25 mL) at
atmospheric hydrogen pressure and a temperature of 20–50 ◦C, under intensive stirring
(600–700 oscillations per minute). Before hydrogenation, the nanocatalyst (0.05 g) was
reduced with hydrogen in the reactor for 30 min under conditions of intensive stirring.
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After the hydrogen treatment, a substrate (14.87 mol/L of 2-propen-1-ol and 0.09 mol/L
2-hexyn-1-ol and phenylacetylene) was added to the reactor.

The hydrogenation products were analyzed using gas–liquid chromatography on
a Chromos GC1000 chromatograph (Chromos Engineering, Dzerzhinsk, Russia) with
a flame ionization detector in isothermal mode. A BP21 capillary column (FFAP) with
a polar phase (PEG modified with nitroterephthalate) was used. This device was 50 m in
length and 0.32 mm in inner diameter. The column temperature was 90 ◦C, the injector
temperature was 200 ◦C, and helium served as the carrier gas. A total of 0.2 mL of the
sample was investigated. Selectivity was calculated as the fraction of the target product
present in the reaction products at a given degree of substrate conversion.

4. Conclusions

The present work provides a detailed study of each stage of the formation of three-
component 1%Pd−CS/ZnO and 1%Pd−CS/MMT composites. The characterization of
two- and three-component composites using physicochemical methods revealed some
of the following noticeable facts: (1) Interaction of the water-soluble form of chitosan
with zinc oxide lead to the deprotonation of the polymer amino groups and the chitosan
macromolecule became insoluble, covering the surface of ZnO. (2) Protonated amino groups
of chitosan interacted with negative sites of MMT, forming a positevely charged CS/MMT
composite. (3) Chitosan covered the surface of both MMT and ZnO, and the percentage of
the surface blocked increased as the polymer loading increased. (4) In the case of CS/MMT,
an intercalation of one layer of chitosan polymer chains into the interlayer space of MMT
also took place. (5) The quantitative immobilization of palladium on chitosan-modified
zinc oxide occurred due to the basic character of the CS/ZnO composite, providing the
hydrolysis of [PdCl4]2− anions to form PdO. The resulting PdO particles of 3–4 nm in
size interacted with amino groups of chitosan, forming larger aggregates (nanoclusters) on
the different sites of CS/ZnO. (6) [PdCl4]2− anions interacted with –NH3+ sites of CS/MMT,
forming a supported polymer–metal complex, in which the chitosan was an outer-sphere cation.

The developed three-component Pd−CS–inorganic composites were tested in the
hydrogenation of 2-propen-1-ol and acetylene compounds (phenylacetylene, 2-hexyn-1-
ol) under mild conditions (T—40 ◦C, PH2—1 atm). The results show the great potential
of the 1%Pd−CS/MMT as a catalyst for the hydrogenation of unsaturated compounds.
This composite is characterized by the presence of 2 nm CS-stabilized palladium particles
uniformly distributed on the support surface. The investigation of the kinetics of 2-hexyn-
1-ol hydrogenation over the most active 1%Pd-CS/MMT catalyst confirmed the proposed
mechanism of the reaction: (1) Pd nanoparticles of the catalyst interact with H2 to form
PdH2 intermediate; (2) the PdH2 interacts with the triple C-C bond of 2-hexyn-1-ol to form
cis-2-hexen-1-ol, which is then desorbed from the active sites of the catalyst; (3) a small
amount of cis-2-hexen-1-ol before its desorption from the active sites is transformed to trans-2-
hexen-1-ol and hexan-1-ol through isomerization and over-hydrogenation reactions, respectively.
The limiting step of the proposed mechanism is the fomation of PdH2 species, which, acording
to the calculations performed, are formed quite easily (S# = −0.167 kJ/mol·K).
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