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Adiabatic quantum algorithm

The Hamiltonian of the system is equal to the energy of the system.
® Hinit(o) is an initial Hamiltonian, o is a state of the system.
® Hrinai(o) is a final Hamiltonian encoding the solution of some
problem.

Evolution of Hipst into H fing is an
evolution of the system with the
Hamiltonian

H(t) = (1 - t/T)HlTth + (t/T)Hfinala

where T is the time of system evolution.

solution



Types of the final Hamiltonian

Ising problem
Hising( Z +Z Z szszsja
=1 =1 j=1+1
S; € {+1, —1}, Jij,hi eR
QUBO problem
N N
qubo th(h + Z Z ‘]Zj(:hq] ZZJU%'QJ"
=1 j=i+1 =1 j=1
g € {0, 1}, Jij,hi € R, Ji = hy, (¢ = @).
The main idea

The desired solution of some problem is the point where H has its
global minimum.



The problem
We consider a one-dimensional equation ax = b.

Construct a final Hamiltonian H(x) = (az — b)? whose minimum
point is b/a.

Represent the variable as = = ¢y — d, where

R-1
xX= >, 27" €0,2) with Vg; € {0, 1} and ¢,d > 0.
i=0

Hence z € [—d,2c — d)

The Hamiltonian with variables g; has the form
R—1 R-1

H(QO?"'?QR 1 ZhZQz+Z Z sz‘]sz

=0 j=i+1

hi =2 "ac (2 'ac — 2(ad + b))

Ji]’ = 202227



D-Wave's computers

D-Wave 2000Q (2041 qubits)

Advantage System (5627 qubits)



Probabilistic nature of adiabatic
quantum computers

Boltzmann distribution (BD)

Let H(x) be a Hamiltonian of the system,
z1,...,xn be all possible states of the system.
Then the probability that the system is in the state x

1
P(ry) = e 1),

where Q = Ze—ﬁH(Ij), B = k}g% is the parameter of the distribution,
kp is the Boltzmann constant, T is the thermodynamic temperature of
the system. We will omit physical nature of the parameter 3 in further

considerations.



The limit distribution

If the number of states of the system tends to infinity and the states
become more dense then the distribution becomes normal.

Statement
1) Let X,, be a random variable such that

n—1
X, €0, = {i > a2

i=—n

qz-e{O,l}} CR.

2) Let P, be a probability measure on Q,, such that
Py(x) = Py(X, = 2) x e PH@)
where H(x) = (ax — b)%, 3> 0. Then

D b 1
X, —N|-,—= ]|, n—
<a W2ﬁ> e



Proof

e Welet pn(A) :== > P,(xk)d.(A) be a measure on R where

[ Pn (xk) — ée_ﬁ(axk_b)2’ QTL — Z e_ﬁ(axi_b)Q
T, €EQp
e \We then compute an asymptotic formula for Q,,
Q, = 2" Z 2%6—5(0331'—17)2

a)iGQn
00
~ N —Blat—b)2 74 _ 2"y/T
2 _{Oe dt /i

e Now we can calculate the limit of p,
—B(axy—b)?
pn(A) = g 2 e Plemh 6, (4)

TLEQY
no% ayB [ o-plat-bPg — 1 [~ GE gy o =
NG J e = a\/ﬂA e - , o=

1
av/2p



Parameters of the distribution of
solutions

Normal distribution
t—b/a)?

® Let F,(z) = —= [ e 207 dt be the CDF of the limit normal

o2
distribution, o = ﬁ
e let Fn(z) be the eCDF of a sample then
& = arg min ||y (2) — Fx (@) 12
Boltzmann distribution 0
® Let () be the BD, ¢; be the probability of x;,
® Let P be the empirical distribution, p; be the frequency of x;.

~

5 = arg min JSD(PHQ)
B

JSD(P||Q) = 3Dk (PI|M) + 3Dk r(QlIM), M = 3(P +Q), eg.
Dk r(P||Q) =32, pilog Tt



Examples

°* Jx=1
R-1 .
— — — . — —
ox_x—i;)Z ql:>:c€[0,2),weusea—am,R—7
N(0.33,0.198), beta=1.42 BD(1.15), sigma=0.22
2.00 | 2.00 |
175 1.75
150 1.50
1.25 1.25
1.00 1.00
0.75 1 0.75
0.50 0.50 4—
0251 — PpF of Normal Distr. 0254 PpF of Boltzmann Distr.
I Histogram I Histogram
0.00 —— 1 1 0.00 — y ? ?
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

® The best solution is 0.328
® Sample mean is 0.387 S
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® 3r=-5

Examples
e r=2y—-3€[-3,1), R=8
N(-2.33,0.375), beta=0.39 BD(0.34), sigma=0.406
I —I PDFIcf Nom‘ml Dist‘r. I —_— ‘PDF of Ein\tzmalnn Distlr.
12 mmm  Histogram 12

W Histogram

-3.00

—-2.75 -2.50 -2.25 -2.00

-1.75 -1.50 -1.25

-3.00 -2.75 -2.50

® The best solution is -2.328
11

® Sample mean is -2.246

-2.25 =200 -1.75 -1.50 -1.25
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Improving the solution

Let x;, be an approximate solution of ax = b
The exact solution z = x;, + Ay
The equation for Ay is aA, = b — axy,

The next approximation to the solution is xx11 = z; + Ag

b—ax 1 .
Assume Ay ~ N ( i W) according to the statement

about the limit distribution

Then x;, does not converge to g



Improving the solution

Another scheme
 Leta€ (3,1) and Ay, = 2'Ay, such that |Ag| € (3,1)
e Equation for Ay then is aAy = 2L (b — axy,)

The same assumption gives Ay ~ iN (M #)

If a € (3,1) then [b—ax| € (21+2, 21) but assume |b — axy| ~ %

Thus we can write Ap ~ (b — axy)N (E? m/ﬁ)

Then xp1 = xx + Ay does converge to 3
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Improving the solution

Theorem (convergence of the approximations)

Let xg =0, xx11 = x + A for k > 0, where Ay, is a random variable
distributed as (b — ax)N (%, a), where a > 0,b € R. Then xj — 2 in
probability as k — oo if ac < \/2e?, where v ~ 0.577 is the
Euler-Mascheroni constant.

. o 1 . ol
It can be reformulated if 0 = o758 then the condition ao < v/2e2

l,—
becomes 3 > je
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Proof of the theorem

: P
Consider z, = a3, — g and prove z — 0. Denote &, ~ N (%, a). We
can simply derive the recurrence relation for zj

2 = —(a€r—1 — 1)zp—1 = —Ch—12k-1

where (, ~ N (0,a0). Since 2y = —2 then

2, = (—1)FH §COC1 o Cr1

Taking log of the above relation we get

b
log |2x| = log M + log |o| +1og |C1] + - . . + log |Cr—1]

Next we find an expectation of log |(;|



Proof of the theorem

Omitting details of calculations of an integral we get

ac
Elog |G| = log — — *
og |Gl %8 53

oo
(we use here a nice equality [ e log z dx = —% 7 (v + 2log2))
0

Since ac < v/2e? then Elog|¢| < 0. So by Law of large numbers we
have

(10g|(o|+log\§1|+...+log|Ck_1|)i)logﬁ 5

| =

Hence log ]§| + log |Co| + - - . + log |Cr—1] P exponentiating we
get |z 0.

16



Speed of convergence

Statement
Let 9 =0, xp1 = x + Ay, where A ~ (b — azi) N (é, 0) and
ao < \/ie%. Let

25\ *
() vy

where § > 0. Then (mk — g) Sk £.o.
® Let 6 =0 and assume sy, ‘azk — 2’ ~1

® So ’xk — g ~ ek such that (e” : 2\/B67)k ~1

~ 1
® Hence 8 ~ ;=5

17



Speed of convergence

® (0.75x = 0.25
® On each step we are in [—1,1) and R = 10
0
L4 ® log|x_k - b/al, k=0,...,19
-5 4 ___ Linear regression
-1.904k-2.588
710 r
_15 <
_204
254
_30_
_35 ]
—40 4

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

* 3=6.32



Speed of convergence

® (0.875x = —0.625
® On each step we are in [—1,1) and R = 10

.. ® log|x_k - b/al, k=0....,19
5 ° Linear regression
-1.688k-3.182

—~10 1
15 4
—20
—25 4
—=30 4
—-35 4

T T T T T T T T

0.0 2.5 5.0 75 10.0 125 15.0 17.5
* =41
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The case of a truncated normal
distribution
Limit distribution

It the statement about the limit distribution of solutions X, was a
random variable which took values from

Qn={x>" a2 |¢ac{0,1}} CR

Now let X, € Q, = {i S g2t € (r1,m) | g € {0, 1}},
re<<ro & R

As before P,(X,, = x) x e~Blaz=b)> _ Boltzmann distribution
over €,

Then X, N Y (b 1 1"1,7“2) which has the density

a’a 23’
1 _(t=b/a)?
p(t) = U\/ﬂ@e 202 1(r1,r2)(t)7
where Q = @ (”;b/a> - P (Tl*b/a> and o = ﬁ
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Case of a truncated normal
distribution

Improving the solution

Let x; be an approximate solution of ax = b, then the exact
solution is x = z, + Ay

The equation for Ay, is aA, = b — ax;,, the next approximation to
the solution is zp41 = xp + Ak

Assume Ay ~ N (bi%,o, b_%(l + 5)), where o0 =
e>0

Ay = 2'A} such that |§k| c (%, 1), then aAy = 2L (b — axy)

Hence Ay ~ %N (2l(b7“m’“) , 0, 2l(b;“z’“) (1+ 5))

a

1
av/2p’

1

If a € (3,1) then [b— axy| € (21%,%) = |b—azy| = 5

Thus Ay ~ (b — azg)N (2,0, 1(1+¢))
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Case of a truncated normal
distribution

Improving the solution

Theorem

Let xg =0, xpy1 = T + Ag Where Ay, is the random variable
distributed as (b — axk)N( ,0,1(1+¢)) where a,e,0 > 0,b € R.

Then if = < e then z;, 2> © o Ifa > e and F(e,a0) < 0 where

F(g,a0) = log \fao* (/fw - dx)

P
then xj, — 2.

Remark

-1

(/ 7 g’ logacdac) )
0

If € — 0o then the first integral — @ the second one

— —%(7+2log2), so F(e,a0) — log 4Z

NG

<0:>a0<\f67/2
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An equation with two variables

. Limit distribution of solutions
For an equation

ax +by=-c

We have the distribution of solutions

P((z,y)) o e~ Plastby=c’

e |f we want to find the limit distribution of solutions then we
cannot impose no restrictions on the values of solutions since the
integral [ [g. e~ Blaz+by=o)? 41 qy does not converge.

e |f we let Q) be the set of values that solutions can take then the
limit distribution has the density function

¢~ Blaz+by—c)?

[[ e~ Blantby—cPdpdy
Q

1Q($7y)



An equation with two variables

Limit distribution of solutions
® We take Q = [—1,1]2 and sample 1000 times the «solutions» of
the equations 2y = 0.3 with precision R = 8 bits.
e Also we project samples onto the line orthogonal to 2y = 0.3.

® Expected bias is the mean distance between samples and the line
2y = 0.3

- T — T
. ° s ® . ® pe o —— Gaussian KDE
075 FARPWC L 32 T A A_’.' e B | 200 —— Expected bias
° ®® by mmm Histogram of frequencies
050 & d- '.-: ._'&ﬂ\ PP r) 1'?; 175
. t e ® % o e v
g % 150
0.25
125
0.00 1 —
o, 3 ML - of 8 4 ?* 100
-0.25 b} AL L L 207 oo
° 4 e ° |® ° 0.75
) .
-0.50 S 050
-0.75 s 0.25
® Sample mean
-1.00 v T f — 0.00
-1.00 -0.75 -0.50 —0.25 000 025 050 075 100 -100 -0.75 -050 -0.25 0.00

or <5 = E» =



An equation with two variables

Limit distribution of solutions

Samples for x +y = 0.2.

T T
—— Gaussian KDE
30 —— Expected bias
mm Histogram of frequencies

T T T
@ Sample mean

—0.25

—0.50

05

—0.75

-1.00

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50

Q>



An equation with two variables

Limit distribution of solutions

Samples for 2z + 3y = 3.

T T
—— Gaussian KDE
71— Expected bias
mmm Histogram of frequencies

-0.25

-0.50

-0.75

‘@ Sample mean
I L I r

-1.00

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Q>
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Two equations with one variable

a1xr = bl,
agsl = b2.

Solving this system is equivalent to solving one equation

a
lalle = (b) ,
Tal

whose solution is pseudo-solution of minimal norm of the above
system. Here a = (a1,a2), b= (b1, b2).

This can be generalized to any overdeterminated system, i.e.
finding a normal pseudo-solution of the system (n + k) x n is
equivalent to solving some system n x n.

But is there an efficient algorithm for finding this quadratic
system?
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2 X 2 system

Limit distribution of solutions

a1121 + aipx2 = by
Axr=1b or ’
a2171 + agxs = ba.

® | et the Boltzmann distribution of solutions have the Hamiltonian
||Az — b||? and parameter f3.

® Let det A # 0, Ay and As be the first and the second columns of
A. If there is no restrictions on the range of values of «

e then the limit distribution of solutions is N (i, K), where

o oo (AL AL (Ag Ad)
p=A"b, K7'=28 <(A1,A;) (A;Az)>
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Sampling from «almost» normal
distribution using AQC

For the one dimensional case if we want to sample from normal
distribution NV (11, o) then we can construct a Hamiltonian for the
Boltzmann distribution with parameter .

2
x 1
H(x) = —
() (J\/26 J\/26)
where we used the statement about the limit distribution of
solutions of an equation ax = b.
The same we can do for multivariate normal distribution.

But it is time-consuming to construct a Hamiltonian because in
order to do this we (again) need to invert given covariance matrix.



