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Abstract. In this paper, we study a modified Hegselmann – Krause model
of opinion dynamics based on the bounded confidence principle. This model is
formulated as a discontinuous and nonlinear dynamical system. At any time
moment of the process of opinion formation, the operator of forming the next
opinion of an agent is two-step; first, one takes the average of opinions of agents
sharing similar opinions plus his/her own; in the second step, a regularization
procedure is performed. A new regularization procedure is applied. We find
conditions under which every trajectory tends to a fixed point of the system
and study stability properties of fixed points.
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1. Introduction. At present, opinion studies are a well-developed field of
research (see, for example, the monographs [18, 23] and the recent surveys [2,
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26]). The main goal of opinion dynamics is to analyze evolution of public
opinion in social systems.

Various (mostly linear) models of opinion dynamics have been studied since
1950s ([10, 11]). The linearity of a model allows one to apply more or less
standard methods of linear dynamical systems.

One of the first nonlinear models was suggested in [13, 16], where the notion
of “bounded confidence” had been introduced. This notion formalizes the fact
that, in the course of formation of public opinion, a member of the society is
mostly influenced by individuals sharing a similar opinion.

The first opinion model based on the notion of bounded confidence, intro-
duced by Hegselmann and Krause, was later called the Hegselmann – Krause
(HK) model; this model and its generalizations have been intensively studied
by various authors, see, for example, [9, 20, 17, 5, 19, 8, 7, 14, 24, 25, 12].
Mostly, the results were based on computer simulations, and it was noted that
“rigorous analytical results are difficult to obtain [13].

To introduce the HK model, let us consider the dynamics of opinions in a
society of voters who have to choose between two options, -1 and 1. Assume
that the society is formed by N individuals (usually called “agents”), and let
vnk ∈ [−1, 1], k ∈ {1, . . . , N}, be the opinion of individual k at time moment n.

Fix a positive ε < 1 (the level of bounded confidence in the society) and
consider for k ∈ {1, . . . , N} the set of indices

J(vnk ) = {l ∈ {1, . . . , N} : |vnl − vnk | ≤ ε}.

This is the set of indices of agents whose opinions influence agent k at time
moment n. Denote by I(vnk ) the cardinality of the set J(vnk ) (note that I(v

n
k ) >

0).

In the original HK model (see [15]), the dynamics is governed (in our nota-
tion) by the equalities

vn+1
k =

1

I(vnk )

∑
l∈J(vnk )

vnl , k ∈ {1, . . . , N}, n ≥ 0. (1)

In the paper [21], the following modification of the HK model had been
studied. Fix a number h > 0 and consider the dynamics governed by the
equalities

vn+1
k = vnk +

h

I(vnk )

∑
l∈J(vnk )

vnl , k ∈ {1, . . . , N}, n ≥ 0. (2)
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In the paper [6], it is explained that system (2) appears as an application
of the one-step Euler method to the differential equation

d

dt
vtk =

1

I(vtk)

∑
l∈J(vtk)

vtl , k ∈ {1, ..., N}, t ≥ 0

which is naturally a variant of the “bounded confidence” model with continuous
time.

System (2) is the main object of study in the present paper.

Let us explain the main differences between systems (2) and (1).

First, if J(vnk ) = {k} (i.e., agent k does not have agents with ε-close opinions
at time n), then vn+1

k = vnk in model (1), i.e., his/her opinion does not change.
In contrast, vn+1

k ̸= vnk in model (2). A sociological meaning of this phenomenon
is explained in [21].

The second very important difference is that the dynamics of models (2)
and (1) are essentially different.

It is easily seen that since |vnk | ≤ 1 in model (1), similar inequalities hold
for vn+1

k , i.e., formulas (1) define a dynamical system on [−1, 1]N .

At the same time, this is not so for model (2); hence, one has to apply
some regularization procedure to get a properly defined dynamical system on
[−1, 1]N .

Two such regularization procedures have been applied in the papers [21]
and [1].

For an array V n = (vn1 , . . . , v
n
N), introduce an auxiliary array W (V n) =

(wn
1 , . . . , w

n
N) by setting

wn
k = vnk +

h

I(vnk )

∑
l∈J(vnk )

vnl . (3)

Clearly, |wn
k | ≤ 1 + h.

In the paper [21], a “cutting” procedure had been applied.

Set
unk = vnk if |wn

k | ≤ 1,

unk = 1 if wn
k > 1,

unk = −1 if wn
k < −1,

and
Φ(V n) = (un1 , . . . , u

n
N).
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Then Φ([0, 1]N) ⊂ [0, 1]N , and we get a properly defined dynamical system
on [−1, 1]N .

In the paper [1], a different procedure had been applied. Take a nonzero
array V n, define an auxiliary array W (V n) by formulas (3) (clearly, W (V n) is
also nonzero), and set

unk =
wn

k

maxl=1,...,N |wn
l |

and
Φ(V n) = (un1 , . . . , u

n
N).

Clearly, the system Φ is also a properly defined dynamical system on
[−1, 1]N .

In this paper, we consider one more natural regularization procedure.

For a nonzero array V n = (vn1 , . . . , v
n
N) and the corresponding array W (V n)

given by (3), define

µ(W (V n)) = max(1, max
l=1,...,N

|wn
l |)

and set
Φ(V n) = (un1 , . . . , u

n
N), (4)

where

unk =
wn

k

µ(W (V n))
.

As in the previous cases, formula (4) defines a dynamical system Φ on
[−1, 1]N which we study in this paper.

One of the main properties of systems modeling opinion dynamics is the con-
vergence of their trajectories as time tends to infinity. For the above dynamical
systems, known sufficient conditions of such a convergence are essentially differ-
ent. In the paper [21], this condition has the form ε ≤ 1/2, while in the paper
[1] it has the form ε(N − 1) < 1.

In this paper, we show that if

ε < 1, (5)

then all the trajectories of system Φ defined by formula (4) converge as time
tends to infinity.

In addition, we show that any trajectory of Φ tends to a fixed point and
study stability properties of fixed points.
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Everywhere in the paper, it is assumed that condition (5) is satisfied.

The structure of the paper is as follows. In Section 2, we describe basic
properties of the system and define two classes of initial points: standard and
singular. Section 3 is devoted to trajectories of singular points. In Section 4,
we show that trajectories of standard points converge; in Section 5, it is shown
that all trajectories tend to fixed points of Φ. In Sections 6, 7, we study
stability properties of fixed points. It is shown that singular fixed points are
Lyapunov unstable, the system Φ has two asymptotically stable fixed points
P+ = (1, . . . , 1) and P− = (−1, . . . ,−1), and, finally, that any standard fixed
point different from P+ and P− is Lyapunov stable but not asymptotically
stable.

2. Basic properties of the system. Denote by Ψ the set of points
V = (v1, . . . , vN) such that v1 ≤ v2 ≤ · · · ≤ vN .

Proposition 1 If V ∈ Ψ, then Φ(V ) ∈ Ψ.

The proof of this Proposition repeats the proof of Proposition 3.1 of [PC].

Since the set of elements of Φ(V ) does not depend on the order of the values
v1, . . . , vN , in what follows, we only consider trajectories of points V ∈ Ψ.

Proposition 2 If |vmk − vmk+1| > ε, then |vm+1
k − vm+1

k+1 | ≥ |vmk − vmk+1|.

Proof. Since |vmk −vmk+1| > ε, J(vmk ) ⊂ {1, . . . , k} and J(vmk+1) ⊂ {k+1, . . . , N}.
Hence, the following inequalities are valid:

vmk ≥

∑
i∈J(vmk )

vmi

I(vmk )

and

vmk+1 ≤

∑
j∈J(vmk+1)

vmj

I(vmk+1)
.

We apply these inequalities to estimate the difference vm+1
k+1 − vm+1

k :

vm+1
k+1 − vm+1

k =
1

µ(W (V m))

vmk+1 + h ·

∑
j∈J(vmk+1)

vmj

I(vmk+1)
− vmk − h ·

∑
i∈J(vmk )

vmi

I(vmk )

 ≥
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≥ 1

µ(W (V m))
(vmk+1(1 + h)− vmk (1 + h)) =

1 + h

µ(W (V m))
(vmk+1 − vmk ) ≥ vmk+1 − vmk ,

as required. □

Corollary 1 If vmk+1 − vmk > ε, then

vmk+1 − vmk ≤ vm+1
k+1 − vm+1

k ≤ vm+2
k+1 − vm+2

k ≤ . . . .

Definition 1 We call a point (array V 0) standard if the inequalities
µ(W (V k)) > 1 hold for all k large enough. The points that do not satisfy
this condition are called singular.

In what follows, we prove that all singular points are fixed points of Φ, and
they are Lyapunov unstable. First we prove the following simple Proposition.

Proposition 3 If µ(W (V k0)) > 1, then µ(W (V k)) > 1 for all k > k0.

Proof. We prove the Proposition using induction on k.

Base. The statement is obviously valid for k = k0.

Induction step. Let us show that if µ(W (V k)) > 1, then µ(W (V k+1)) > 1
as well. By definition, the first inequality means that max

t=1,...,N
|wt(V

k)| > 1. As

was noted above,
w1(V

k) ≤ w2(V
k) ≤ · · · ≤ wN(V

k).

Hence, either |w1(V
k)| = µ(W (V k)) or |wN(V

k)| = µ(W (V k)). This implies
that |vkj | = 1 either for j = 1 or for j = N .

Consider for definiteness the second case and assume that vkN = 1 (the
remaining possible cases are considered similarly).

Note that

wN(V
k+1) = vk+1

N +
h

I(vk+1
N )

∑
t∈J(vk+1

N )

vk+1
t .

We claim that the sum S :=
∑

t∈J(vk+1
N )

vk+1
t is nonzero and has the same sign

as vkN . The statement of our Proposition is a corollary of this claim since in
this case,

µ(W (V k+1)) ≥ wN(V
k+1) = 1 +

S

I(vk+1
N )

> 1.
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To prove the claim, note that if t ∈ J(vk+1
N ), then vk+1

t has the same sign as
vk+1
N since vk+1

N − vk+1
t ≤ ε < 1 and vk+1

N = 1. In addition, the sum S is nonzero
since it contains the nonzero term vk+1

j . The claim is proved. □

Remark. In the proof of Proposition 3, the inequality ε < 1 has been
explicitly applied.

Corollary 2 If V 0 is a singular point, then µ(W (V n)) = 1 for all n.

Corollary 3 If V 0 is a standard point, then either vn1 = −1 or vnN = 1 for all
n large enough.

3. Trajectories of singular points. In this section, we classify all
singular points and describe their trajectories.

Proposition 4 If v1 ≤ −ε or vN ≥ ε, then the point V = (v1, . . . , vN) is
standard.

Proof. Assume that, under our assumption, the equality µ(W (V n)) = 1 holds
for all n. Consider the case where vN ≥ ε. In this case, vl ≥ 0 for any l ∈ J(vN),
and it follows that

v1N = vN +
h

I(vN)

∑
l∈J(vN )

vl ≥ vN +
h

N
vN = vN(1 +

h

N
).

Now we apply induction to show that vk+1
N ≥ vN(1+

h
N )k for k > 1. Indeed,

if this inequality holds for some k, then vk+1
N ≥ vN ≥ ε and vk+1

l ≥ 0 for any
l ∈ J(vk+1

N ). Since µ(W (V k+1)) = 1, we can estimate vk+2
N as follows:

vk+2
N = vk+1

N +
h

I(vk+1
N )

∑
l∈J(vk+1

N )

vk+1
l ≥ vk+1

N +
h

I(vk+1
N )

vk+1
N ≥

≥
(
1 +

h

N

)
vk+1
N ≥

(
1 +

h

N

)k+1

vN .

Hence, vk+1
N ≥ vN(1 + h

N )k for all k, which contradicts the inequalities
vk+1
N ≤ 1. The case v1 ≤ −ε is considered similarly.

Hence, µ(W (V n)) > 1 for some n. Consequently, point V is standard by
Corollary 2. □
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Proposition 5 If vN−v1 ≤ ε and, in addition, the sum v1+· · ·+vN is nonzero,
then the point V = (v1, . . . , vN) is standard.

Proof. To get a contradiction, assume that µ(W (V n)) = 1 for all n.

Denote by s the sum 1
N

N∑
l=1

vl. Assume that s > 0 (the case s < 0 is

symmetric). We prove by induction that vnN − vn1 = vN − v1 and vnd ≥ vd +
nhs, d = 1, . . . , N . The base n = 0 is obvious.

Assuming that for n = k our claim is valid, let us prove it for n = k + 1.

Due to our assumption,

vk+1
d = vkd +

h

I(vkd)

∑
l∈J(vkd)

vkl = vkd +
h

N

N∑
l=1

vkl .

Substitute d = 1 and d = N in the above formula to conclude that vk+1
N −

vk+1
1 = vkN − vk1 = vN − v1.

In addition, our assumption implies that

vk+1
d = vkd +

h

N

N∑
l=1

vkl ≥ vd + khs+
h

N

N∑
l=1

(vl + khs) ≥

≥ vd + khs+
h

N

N∑
l=1

vl = vd + (k + 1)hs, d = 1, . . . , N.

Hence, our claim is valid for all n. But vNd ≤ 1, while vd+nhs > 1 for large
n which is a contradiction. It follows that µ(W (V n)) > 1 for some n which
means (see Corollary 2) that the point V is standard. □

Remark. It is easily seen that if vN − v1 ≤ ε and v1 + · · · + vN = 0, then
(v1, . . . , vN) is a singular fixed point.

Proposition 6 If ε < vN − v1 < 2ε, then V = (v1, . . . , vN) is a standard point.

Proof. To get a contradiction, assume that µ(W (V n)) = 1 for all n.

Denote by x the value vN − v1 − ε. Clearly, x > 0.

Apply induction to prove that

vnN − vn1 ≥ vN − v1 +
hnx

N
, n ≥ 0.
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The base n = 0 is obvious. Assume that the induction assumptions is valid
for some n; we prove it for n+ 1.

The equalities µ(W (V n)) = 1 imply that

vn+1
1 = vn1 + h

vn1 + · · ·+ vnm
m

and

vn+1
N = vnN + h

vnN + vnN−1 + · · ·+ vnN−k+1

k
,

where k = I(vnN) and m = I(vn1 ). It follows from the inequalities vnN−vn1 > ε+x
and vnm − vn1 ≤ ε that vnN − vnm > x.

In the case where N − k + 1 ≥ m,

vn+1
N ≥ vnN + h

vnN + (k − 1)vnm
k

≥ vnN + h
x+ kvnm

k
≥ vnN +

hx

N
+ hvnm

and

vn+1
1 ≤ vn1 + h

mvnm
m

≤ vn1 + hvnm.

The induction assumption implies that

vn+1
N − vn+1

1 ≥ (vnN +
hx

N
+ hvnm)− (vn1 + hvnm) ≥ vN − v1 +

hnx

N
+

hx

N
=

= vN − v1 +
h(n+ 1)x

N
.

In the case where N − k + 1 < m, denote by y the arithmetic mean of the
values vnN−k+1, . . . , v

n
m. In other words,

vnN−k+1 + · · ·+ vnm = y(m+ k −N).

Then
vn1 ≤ · · · ≤ vnN−k+1 ≤ y ≤ vnm ≤ · · · ≤ vN .

In addition, it follows from the above reasoning that vnN −y ≥ vnN −vnm ≥ x.

We apply these two inequalities to estimate vn+1
N and vn+1

1 in terms of y:

vn+1
N = vnN + h

vnN + · · ·+ vnm + y(m+ k −N)

k
≥

≥ vnN + h
vnN + y(k − 1)

k
≥ vnN + h

x+ ky

k
≥ vnN + hy +

hx

N
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and

vn+1
1 = vn1 + h

vn1 + · · ·+ vnm
m

= vn1 + h
vn1 + · · ·+ vnN−k + y(m+ k −N)

m
≤

≤ vn1 + h
ym

m
= vn1 + hy.

Now the induction hypothesis implies that

vn+1
N −vn+1

1 ≥ (vnN +hy+
hx

N
)−(vn1 +hy) = vnN −vn1 +

hx

N
≥ vN −v1+

h(n+ 1)x

N
,

which completes the induction step.

It follows that

vnN − vn1 ≥ vN − v1 +
hnx

N
> 2ε

for n large enough.

But if the inequality vtN − vt1 ≥ 2ε holds for some t, then vt1 and vtN cannot
simultaneously belong to the interval (−ε, ε); hence, V t satisfies the assumptions
of Proposition 4, which means that V is a standard point. □

Thus, we can characterize all the singular points.

Corollary 4 If V = (v1, . . . , vN) is a singular point, then V is a fixed point of
Φ, vN − v1 ≤ ε, and v1 + · · ·+ vN =0.

4. Converegence of trajectories of standard points. Clearly, we
have the following representaion for points of trajectories of our dynamical
system:

V r+1 =
E + hAr

µ(W (V r))
· · · E + hA0

µ(W (V 0))
V 0,

where {Ar} is a sequence of stochastic N ×N matrices such that the l-th row
of a matrix Ar contains precisely I = I(vr−1

l ) nonzero entries and has the form(
0, 0, .., 0,

1

I
, . . . ,

1

I
, 0, 0, . . . , 0

)
in which the nonzero entries ail have indices i ∈ J(vr−1

l ).

Denote

Gk :=
E + hAk

1 + h
;
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it is easily seen that Gk is a stochastic matrix.

We can represent the vector V r+1 in terms of these matrices as follows:

V r+1 =
(1 + h)r

µ(W (V 0)) · · ·µ(W (V r))
GrGr−1 · · ·G0V

0. (6)

To prove the convergence of such products for standard initial points V 0,
we refer to the following Theorems 1 and 2.

Theorem 1 (Lorenz, [3]). Let {Gk} be a sequence of stochastic matrices sat-
isfying the following conditions:

(a) the diagonal entries of all he matrices Gk are positive;

(b) (Gk)ij = 0 if and only if (Gk)ji = 0;

(c) there exists a δ > 0 such that any nonzero entry of any matrix Gk is
larger than δ.

Then the infinite product GkGk−1 · · ·G0 converges as k → ∞.

Let us show that the matrices Gk satisfy the assumptions of Theorem 1.

• The diagonal entries of the matrices E and Ak are positive; hence, as-
sumption (a) is satisfied;

• the matrices E and Ak satisfy assumption (b), hence, Gk satisfies this
assumption as a linear combination of E and Ak.

• any nonzero entry of a matrix Ak is not less than 1
N ; hence, any nonzero

entry of the matrix Gk is not less than h
(1+h)N . Hence, Gk satisfies condition

(c).

Thus, it follows from Theorem 1 that the product GrGr−1 · · ·G0 converges.
Next, we show that this product does not converge to the zero matrix. First,
we need the following two definitions.

Definition 2 A sequence {Gt} of n× n stochastic matrices is called balanced
if there exists a number α ∈ (0, 1) such that for any matrix G in this sequence
and any subset S ⊂ {1, 2, . . . , n}, the following inequality holds:∑

i∈S,j∈S

Gij ≥ α ·
∑

i∈S,j∈S

Gji,

where S is the complement to S in {1, . . . , n}.
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Definition 3 We say that a sequence of matrices has feedback property if
there exists a number γ > 0 such that all diagonal entries of all matrices in the
sequence are not less than γ.

The feedback property is introduced in ([4], Section 4.2) for chains of ran-
dom matrices. Namely, strong feedback property, feedback property, and weak
feedback property are considered (see [4], page 37). For chains of deterministic
matrices, the strong feedback property coincides with the feedback property,
while they differ from the weak feedback property (see [4], Example 5.2, pages
38-39).

Definition 4 (see [4], Definition 4.5.) We say that a chain of random matrices
{W (k)} belongs to the class P∗ if there exists a vector-valued random process
π(k+1) = W (k)π(k) such that π(k) > p∗ almost surely for all k ≥ 0 and some
number p∗ > 0.

Remark. As in [4], we write π(k) > p∗ if any component of the vector π(k)
is larger than p∗ (see [4], page 8).

Theorem 2 (Touri, Nedić, [4]). Let {Gk} be a balanced sequence of stochastic
matrices having the feedback property. Then {Gk} belongs to the class P∗.

Let us check that that the sequence of matrices {Gk} satisfies the conditions
of the above theorem.

First we show that it is balanced. It was mentioned above that if cij are the
entries of a matrix Gk, then cij ̸= 0 if and only if cji ̸= 0. In addition, if cij is a
nonzero entry, then 1 ≥ cij ≥ h

N(1+h) . It follows that for any i, j ∈ {1, . . . , N},
the inequality cij ≥ h

N(1+h)cji holds.

Thus, if we fix an arbitrary set of indices S ⊂ {1, 2, . . . , N}, then the
following inequality is valid:∑

i∈S, j∈S

cij ≥
h

N(1 + h)

∑
i∈S, j∈S

cji.

The feedback property is obvious since the diagonal entries of any of the
matrices Gk are not less than 1

1+h .
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Thus, the sequence {Gk} belongs to the class P∗, i.e., there exists a vector
Z0 such that the sequence GrGr−1 · · ·G0Z

0 does not converge to zero. Hence,
the product GrGr−1 · · ·G0 does not converge to the zero matrix as r → ∞.

Since µ(W (V r)) ≤ 1 + h, the sequence

kr :=
(1 + h)r

µ(W (V 0)) · · ·µ(W (V r))

is nondecreasing.

The left-hand sides of equalities (6) are bounded; the convergence of the
products GrGr−1 · · ·G0 implies the convergence of the sequence kr.

Note that, in addition, if V 0 is a standard point, then

µ(W (V r)) → 1 + h, r → ∞. (7)

Thus, we have shown that the trajectory of any standard point converges;
below we show that it converges to a fixed point of Φ.

5. Convergence of trajectories to fixed points. As was shown above,
any singular point V is a fixed point of Φ; hence, its trajectory obviously con-
verges to V .

Let us show that the trajectory of any standard point also converges to a
fixed point.

Definition 5 For a sequence vkn, consider the value

S(vnk ) =
1

I(vnk )
·

∑
j∈J(vnk )

vnj .

Proposition 7 If V is a standard point, then lim
n→∞

S(vnk ) = lim
n→∞

vnk .

Proof. Fix an arbitrary n ∈ N and represent the difference vn+1
k −vnk as follows:

vn+1
k − vnk =

vnk + hS(vnk )

µ(W (V n))
− vnk =

=
vnk (1 + h)

µ(W (V n))
+

−hvnk + h · S(vnk )
µ(W (V n))

− vnk =
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= vnk

(
1 + h

µ(W (V n))
− 1

)
+

h

µ(W (V n))
(S(vnk )− vnk ).

As was shown, the trajectory of any standard point converges; hence, the
limit of the left-hand side as n → ∞ in the first line above is 0:

0 = lim
n→∞

[
vnk

(
1 + h

µ(W (V n))
− 1

)
+

h

µ(W (V n))
(S(vnk )− vnk )

]
.

In addition, for a standard point, equality (7) holds; hence,

lim
n→∞

vnk

(
1 + h

µ(W (V n))
− 1

)
= 0,

and it follows that

lim
n→∞

h

µ(W (V n))
(S(vnk )− vnk ) = 0

and
lim
n→∞

S(vnk ) = lim
n→∞

vnk .

□

Proposition 8 If V is a standard point, then there exists a τ ∈ N such that
J(V τ

k ) = J(V t
k ) for any t > τ and k ∈ {1, . . . , N}.

Proof. Denote lim
n→∞

V n = V ∗ = (v∗1, ..., v
∗
N).

Find the maximal index k in {1, . . . , N} for which there exists an l ∈
{1, . . . , N} such that the set {t | l ̸∈ J(vtk), l ∈ J(vt+1

k )} is infinite. If such
a pair of indices (k, l) does not exist, then the statement of our Proposition is
valid.

The condition l ̸∈ J(vtk), l ∈ J(vt+1
k ) is equivalent to the condition

|vtk − vtl | > ε ≥ |vt+1
k − vt+1

l |.

Note that l ̸∈ J(V t
k ), l ∈ J(vt+1

k ) if and only if k ̸∈ J(V t
l ), k ∈ J(vt+1

l ). Thus,
the set {t | k ̸∈ J(vtl), k ∈ J(vt+1

l )} is infinite as well. Since we selected the
maximal such k, k > l.

Hence, if m ∈ {k, k + 1, . . . , N}, then the set {t | m ̸∈ J(vtk), m ∈ J(vt+1
k )}

is finite. Thus, if a number τ is large enough, then

J(vτk) ∩ {k, k + 1, . . . , N} = J(vτ+1
k ) ∩ {k, k + 1, . . . , N} =
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= J(vτ+2
k ) ∩ {k, k + 1, . . . , N} = . . . .

Select an arbitrary t > τ in the set {t | l ̸∈ J(vtk), l ∈ J(vt+1
k )}. The sets

J(vtk) and J(vt+1
k ) consist of consecutive indices, J(vtk) ∩ {k, k + 1, . . . , N} =

J(vt+1
k ) ∩ {k, k + 1, . . . , N}, and l ̸∈ J(vtk), l ∈ J(vt+1

k ) for some l < k. Hence,
J(vtk) = {l2, . . . , r} and J(vt+1

k ) = {l1, . . . , r} for some l1, l2, r ∈ {1, . . . , N} such
that l1 ≤ l < l2 ≤ k ≤ r.

According to our notation,

S(vtk) =
vtl2 + · · ·+ vtr
r − l2 + 1

and

S(vt+1
k ) =

vt+1
l1

+ · · ·+ vt+1
r

r − l1 + 1
.

Due to the corresponding convergencies, we may assume that τ is so large
that |vtm − v∗m| < ε/(12N) and |S(vtm) − v∗m| < ε/(12N) for all t ≥ τ and
m = 1, . . . , N . In particular,

|vtm − vt+1
m | ≤ |vtm − v∗m|+ |v∗m − vt+1

m | < ε

6N
.

This inequality implies that

S(vtk) =
vtl2 + ...+ vtr
r − l2 + 1

≥
(vt+1

l2
− ε

6N ) + ...+ (vt+1
r − ε

6N )

r − l2 + 1
=

=
vt+1
l2

+ ...+ vt+1
r

r − l2 + 1
− ε

6N
.

Hence,

S(vtk) +
ε

6N
≥

vt+1
l2

+ · · ·+ vt+1
r

r − l2 + 1
.

Apply this inequality to estimate S(vt+1
k ) from above:

S(vt+1
k ) =

vt+1
l1

+ · · ·+ vt+1
r

r − l1 + 1
=

vt+1
l1

+ · · · vt+1
l2−1 + (vt+1

l2
+ · · ·+ vt+1

r )

r − l2 + 1
=

=
vt+1
l1

+ · · ·+ vt+1
l2−1 + (r − l2 + 1)

vt+1
l2

+···+vt+1
r

r−l2+1

r − l1 + 1
=

=
vt+1
l1

+ · · ·+ vt+1
l2−1

r − l1 + 1
+

r − l2 + 1

r − l1 + 1
·
vt+1
l2

+ · · ·+ vt+1
r

r − l2 + 1
≤
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≤
vt+1
l1

+ · · ·+ vt+1
l2−1

r − l1 + 1
+

r − l2 + 1

r − l1 + 1
·
(
S(vtk) +

ε

6N

)
.

Let us continue the chain of inequalities taking into account that ε/(6N) ≥
|vt+1

m − vtm|:
vt+1
l1

+ · · ·+ vt+1
l2−1

r − l1 + 1
+

r − l2 + 1

r − l1 + 1
·
(
S(vtk) +

ε

6N

)
≤

(vtl1 +
ε
6N ) + · · ·+ (vtl2−1 +

ε
6N )

r − l1 + 1
+

r − l2 + 1

r − l1 + 1
·
(
S(vtk) +

ε

6N

)
=

=
vtl1 + · · ·+ vtl2−1

r − l1 + 1
+

l2 − l1
r − l1 + 1

· ε

6N
+

r − l2 + 1

r − l1 + 1
·
(
S(vtk) +

ε

6N

)
.

Since vtl1 ≤ · · · ≤ vtl2−1 ≤ vtk and l2 − 1 ̸∈ J(vtk) (i.e., |vtl2−1 − vtk| > ε), we
conclude that vtl1 ≤ · · · ≤ vtl2−1 < vk − ε.

Hence,

S(vt+1
k ) ≤

vtl1 + ...+ vtl2−1

r − l1 + 1
+

l2 − l1
r − l1 + 1

· ε

6N
+

r − l2 + 1

r − l1 + 1
·
(
S(vtk) +

ε

6N

)
≤

≤ (l2 − l1)(v
t
k − ε)

r − l1 + 1
+

l2 − l1
r − l1 + 1

· ε

6N
+

r − l2 + 1

r − l1 + 1
·
(
S(vtk) +

ε

6N

)
≤

≤ l2 − l1
r − l1 + 1

vtk −
l2 − l1

r − l1 + 1
ε+

l2 − l1
r − l1 + 1

· ε

6N
+

r − l2 + 1

r − l1 + 1
·
(
S(vtk) +

ε

6N

)
.

The corresponding convergencies imply that

|vtm − S(vtm)| ≤ |vtm − v∗m|+ |v∗m − S(vtm)| <
ε

6N
for m = 1, ..., N ;

hence, vtk ≤ S(vtk)+
ε
6N . Apply this inequality to rewrite the estimate of S(vt+1

k ):

S(vt+1
k ) ≤ l2 − l1

r − l1 + 1
(S(vtk) +

ε

6N
)− l2 − l1

r − l1 + 1
ε+

l2 − l1
r − l1 + 1

· ε

6N
+

+
r − l2 + 1

r − l1 + 1
·
(
S(vtk) +

ε

6N

)
= S(vtk)

[
l2 − l1

r − l1 + 1
+

r − l2 + 1

r − l1 + 1

]
+

+ε

[
l2 − l1

r − l1 + 1
· 1

6N
− l2 − l1

r − l1 + 1
+

l2 − l1
r − l1 + 1

· 1

6N
+

r − l2 + 1

r − l1 + 1
· 1

6N

]
=

= S(vtk) + ε

[
1

6N
− l2 − l1

r − l1 + 1
+

l2 − l1
r − l1 + 1

· 1

6N

]
=
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= S(vtk) + ε

[
1

6N
− l2 − l1

r − l1 + 1
· 6N − 1

6N

]
.

The inequalities 1 ≤ l1 < l2 ≤ r ≤ N imply that l2− l1 ≥ 1, r− l1+1 ≤ N ,
and (l2 − l1)/(r − l1 + 1) ≥ 1/N . Substitute this into the above inequality:

S(vt+1
k ) ≤ S(vtk) + ε

[
1

6N
− 1

N
· 6N − 1

6N

]
≤

≤ S(vtk) + ε

[
1

6N
− 1

N
· 5

6

]
= S(vtk)−

2

3N
ε,

i.e., |S(vt+1
k ) − S(vtk)| ≥ 2ε/(3N) for an infinite set of t. But this contradicts

the relation lim
t→∞

S(vtk) = v∗k, which completes the proof. □

Now we prove the main result of this section.

Theorem 3 Trajectory of any standard point tends to a standard fixed point.

Proof. Let lim
n→∞

V n = V ∗ = (v∗1, . . . , v
∗
N). Without loss of generality, we may

assume that v∗1 = −1 (see Corollary 3). By the previous Proposition, for a
fixed k ∈ {1, . . . , N}, the sets J(vtk) coincide starting from some t. For brevity,
denote Jk = J(vtk) = J(vt+1

k ) = . . . , and the cardinality of this set will be
denoted by Ik.

Let us show that if indices k, l ∈ {1, . . . , N} satisfy the inequality vl ∈
[v∗k, v

∗
k + ε], then v∗k = v∗l . We prove this using induction on k.

Base. k = 1. By Proposition 7, lim
n→∞

1
I1

∑
j∈J1

vnj = lim
n→∞

S(vn1 ) = −1. Passing

to the limit, we conclude that ∑
j∈J1

v∗j

I1
= −1.

Since v∗j ≥ −1 for all j ∈ J1 and the arithmetic mean of these numbers equals
-1, v∗j = −1 for all j ∈ J1.

The equalities v∗q = −1 hold for all q ∈ J1; thus, a similar reasoning shows
that ∑

j∈Jq
v∗j

Iq
= −1
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and v∗j = −1 for all j ∈ Jq. In particular, this means that

Jq = J1 = {s ∈ {1, . . . , N} | v∗s = −1}

for any q ∈ J1. Further we assume that q is the largest index in J1.

Since q+1 ̸∈ J1 and J1 = Jq, there exists a large enough τ ∈ N and a number
α > 0 such that |vτq − vτq+1| > ε+ α. By Corollary 1, |vtq − vtq+1| > ε+ α for all
t > τ . Hence, |v∗q −v∗q+1| ≥ ε+α > ε. Since v∗q = −1, −1+ε < v∗q+1 ≤ · · · ≤ v∗N .
This proves the induction base.

Induction step. Assume that our statement is proved for k and prove
it for k + 1. If v∗k+1 = v∗k, then the statement is obviously true. Otherwise,
v∗k+1 > v∗k + ε and k ̸∈ Jk+1.

By Proposition 7, lim
n→∞

1
Ik+1

∑
j∈Jk+1

vnj = lim
n→∞

S(vnk+1) = v∗k+1. Passing to the

limit, we get the equality ∑
j∈Jk+1

v∗j

Ik+1
= v∗k+1.

The arithmetic mean of numbers in the set Jk+1 equals v∗k+1, and v∗j ≥ v∗k+1 for
all j ∈ Jk+1 since k ̸∈ Jk+1. Hence, v

∗
j = v∗k+1 for all j ∈ Jk+1.

Since v∗q = v∗k+1 for all q ∈ Jk+1, a similar reasoning shows that∑
j∈Jq

v∗j

Iq
= v∗k+1

and v∗j = v∗k+1 for all j ∈ Jq. In particular, this means Jq = Jk+1 = {s ∈
{1, . . . , N} | v∗s = v∗k+1} for any q ∈ Jk+1. Further we assume that q is the
largest index in Jk+1.

Since q + 1 ̸∈ Jq, there exists a large enough τ ∈ N and a number α > 0
such that |vτq − vτq+1| > ε+ α. By Corollary 1, |vtq − vtq+1| > ε+ α for all t > τ .
Thus, |v∗q − v∗q+1| ≥ ε + α > ε. Since v∗q = v∗k+1, v

∗
k+1 + ε < v∗q+1 ≤ · · · ≤ v∗N ,

which completes the induction step.

Thus, for any indices i, j ∈ {1, ..., N} either v∗i = v∗j or |v∗i − v∗j | > ε.
This precisely means that S(v∗k) = v∗k for any k ∈ {1, . . . , N} and wk(V

∗) =
v∗k + hS(v∗k) = (1 + h)v∗k. It is easily seen that µ(W (V ∗)) = |w1(V

∗)| = 1 + h.
Hence,

wk(v
∗)

µ(W (V ∗))
=

(1 + h)v∗k
1 + h

= v∗k,

which means that V ∗ is a fixed point. □
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Corollary 5 V = (v1, . . . , vN) is a standard fixed point if and only if for any
pair of indices i, j ∈ {1, . . . , N} either vi = vj or |vi − vj| > ε.

Proof. If lim
n→∞

V n = V ∗ = (v∗1, . . . , v
∗
N), then, according to the proof of Theorem

3, for any pair of indices i, j ∈ {1, . . . , N} either v∗i = v∗j or |v∗i − v∗j | > ε. Now
suppose V is a standard fixed point, V ∗ = V . Hence, for any pair of indices
i, j ∈ {1, . . . , N} either vi = vj or |vi − vj| > ε. □

6. Stability of fixed points.

Proposition 9 Singular fixed points are Lyapunov unstable.

Proof. If V = (v1, . . . , vN) is a singular fixed point, then |v1−vN | ≤ ε and v1+
· · ·+ vN = 0. Fix a small δ > 0 and consider the point U = (v1 + δ, v2, . . . , vN).

Since v1 + · · · + vN + δ > 0, the point U is standard. The trajectory
of the point U converges to a fixed point P = (p1, . . . , pN), and µ(W (P )) =
lim
k→∞

µ(W (V k)) = 1 + h. This means that P is a standard point. By Corollary

3, p1 = −1 or pn = 1. It follows from the classification of singular points (see
Corollary 4) that −ε ≤ v1 ≤ · · · ≤ vn < ε. Since δ is arbitrary, this means that
the fixed point V is unstable. □

Before classifying the standard points’ stability, let us introduce one more
object (see [1]).

Definition 6 We call a subset {k, . . . ,m} ⊂ {1, . . . , N}, where k ≤ m, a band
for a point U = (u1, . . . , uN) if |ui−uj| < ε for i, j ∈ {k, . . . ,m}, |uk−uk−1| > ε

(if k > 0), and |um − um+1| > ε (if m < N). The value |um − uk| is called the
width of the band {k, . . . ,m}.

Proposition 10 Standard fixed points are Lyapunov stable.

Proof. Consider a standard fixed point V = (v1, . . . , vN) and an arbitrary
ε0 > 0. Without loss of generality, we may assume that ε0 < ε, vN = 1.

Find a positive δ < ε0/(8N) such that for any point U = (u1, . . . , uN) with
|ui − vi| < δ for i = 1, . . . , N there does not exist a pair of indices p, q such
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that ε0/(4N) ≤ |up − uq| ≤ ε. In other words, for any p, q ∈ {1, . . . , N} either
|up − uq| < ε0/(4N) or |up − uq| > ε. The existence of such a δ follows from
Corollary 5.

Take an arbitrary point U 0 such that |u0i − vi| < δ for all i = 1, . . . , N . By
definition, the set of indices {1, . . . , N} can be represented as a disjoint union
of bands whose widths are not more than ε0/(2N). Consider one of these bands
{k, . . . ,m}. It is easily seen that

|vk − vm| ≤ |vk − u0k|+ |u0k − u0m|+ |u0m − vm| < ε.

By Corollary 5, vk = ... = vm. Therefore,

|u0k − u0m| ≤ |u0m − vm|+ |vm − vk|+ |vk − u0k| < 2δ.

By Corollary 1, |unk − unk−1| > ε (if k > 0) and |unm − unm+1| > ε (if m < N)
for any natural n. Here, as above, we denote Φn(U 0) by Un = (un1 , . . . , u

n
N).

Hence, for any integer n ≥ 0 and any index i ∈ {k, . . . ,m}, the inclusion
J(uni ) ⊂ {k, . . . ,m} holds. In addition, the inequalities unk ≤ · · · ≤ unm imply
the estimates

S(unk) =

∑
j∈J(un

k )

unj

I(unk)
≥ unk

and

S(unm) =

∑
j∈J(un

m)

unj

I(unm)
≤ unm.

Thus,

|un+1
m − un+1

k | =

∣∣∣∣∣∣∣∣
unm + h ·

∑
j∈J(unm)

un
j

I(un
m)

µ(W (Un))
−

unk + h ·

∑
j∈J(un

k
)

un
j

I(un
k )

µ(W (Un))

∣∣∣∣∣∣∣∣ ≤
≤

∣∣∣∣ unm(1 + h)

µ(W (Un))
− unk(1 + h)

µ(W (Un))

∣∣∣∣ ≤ |unm − unk | ·
1 + h

µ(W (Un))

and

|un+1
m −un+1

k | ≤ |unm−unk | ·
1 + h

µ(W (Un))
≤ |un−1

m −un−1
k | · (1 + h)2

µ(W (Un))µ(W (Un−1))
≤

≤ ... ≤ (1 + h)n+1

µ(W (Un))µ(W (Un−1))...µ(W (U 0))
|u0k − u0m|.
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Consider the band {L, ..., N} for U 0. Applying S(unL) ≥ unL, we conclude
that

un+1
L =

unL + hS(unL)

µ(W (Un))
≥ unL(1 + h)

µ(W (Un))
≥ unL,

and

un+1
L ≥ 1 + h

µ(W (Un))
unL ≥ 1 + h

µ(W (Un))
· 1 + h

µ(W (Un−1))
· un−1

L ≥ ... ≥

≥ (1 + h)n+1

µ(W (Un))µ(W (Un−1))...µ(W (U 0))
u0L.

As we already know, un+1
L ≤ 1, vL = ... = vN = 1 and |u0L − vL| < δ. Therefore

1 ≥ (1 + h)n+1

µ(W (Un))µ(W (Un−1))...µ(W (U 0))
u0L,

and
1

1− δ
≥ (1 + h)n+1

µ(W (Un))µ(W (Un−1))...µ(W (U 0))
.

This means that

|un+1
m − un+1

k | ≤ (1 + h)n+1

µ(W (Un))µ(W (Un−1))...µ(W (U 0))
· |u0k − u0m| ≤

≤ 1

1− δ
· |u0k − u0m| ≤

2δ

1− δ
.

Hence, if δ < ε/(8N), then {k, ...,m} is a band for all Un, n ∈ N, and its width
does not exceed 3δ at any time moment. Consequently, J(uni ) = {k, ...,m}
for any integer n ≥ 0 and any index i ∈ {k, ...,m}. Denote Tn := S(unk) =
S(unk+1) = ... = S(unm). Now let us write a recurrence relation for Tn’s:

Tn+1 =
un+1
k + ...+ un+1

m

m− k + 1
=

(unk + hTn) + ...+ (unm + hTn)

µ(W (Un)) · (m− k + 1)
=

1 + h

µ(W (Un))
Tn.

Therefore,

Tn+1 =
(1 + h)n+1

µ(W (Un))µ(W (Un−1))...µ(W (U 0))
T0.

This implies that

T0 ≤ Tn+1 ≤
1

1− δ
· T0 = T0 +

δ

1− δ
· T0.
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Since u0k, ..., u
0
m ∈ (vk − δ, vk + δ), then T0 ∈ (vk − δ, vk + δ) and

|Tn − vk| ≤ max(T0 − vk, T0 +
δ

1− δ
T0 − vk) ≤ δ +

δ

1− δ
· |T0| <

2δ

1− δ
< 3δ.

Due to the fact that unk ≤ Tn ≤ unm and |unm − unk | < 3δ, we see that

|unj − vj| = |unj − vk| ≤ |unj − Tn|+ |Tn − vk| < 6δ < ε

for arbitrary n and j ∈ {k, ...,m}.
As was said above, the set {1, . . . , N} decomposes into a disjoint union of

bands for any point U 0 in the δ-neighborhood of V .

In addition, we have shown that for any time moment n and for any index
i belonging to any band, the inequality |uni − vi| < ε is satisfied. This means
that the point V is Lyapunov stable. □

7. Asymptotic stability.

Proposition 11 The points P− = (−1, . . . ,−1) and P+ = (1, . . . , 1) are
asymptotically stable.

Proof. The proof of this fact is based on the same idea as the proof of item 1
of Theorem 5.1 in [1].

Let us prove the statement for the point P+. Fix a positive δ < ε. Consider
an arbitrary point U 0 such that u0i ∈ [1 − δ, 1], i = 1, . . . , N . Let n be an
arbitrary time moment.

Since un1 ≤ · · · ≤ unN , ∑
j∈J(un

1 )

unj

I(un1)
≥ un1

and

un+1
1 =

un1 + h ·

∑
j∈J(un1 )

un
j

I(un
1 )

µ(W (V n))
≥

un1 + h ·

∑
j∈J(un1 )

un
j

I(un
1 )

1 + h
≥ un1 .

The point U 0 is standard, and u01 ≤ u11 ≤ u21 ≤ · · · . The trajectory of the
point U 0 converges to a standard fixed poit P = (p1, . . . , pN). Since lim

n→∞
un1 = p1

and the sequence {un1}∞n=1 is monotonically increasing, p1 ≥ u01 ≥ 1− δ.

By Corollary 3, pN = 1. This means that p1−pN ≤ δ < ε, and p1 = · · · = pN
by Corollary 5. We have shown that P = P+.

https://doi.org/10.21638/11701/spbu35.2024.403 Electronic Journal: http://diffjournal.spbu.ru/ 74



Differential Equations and Control Processes, N. 4, 2024

A similar reasoning can be applied in the case of the point P−. □

Proposition 12 Standard fixed points different from P− and P+ are not asymp-
totically stable.

Proof. The proof of this fact is based on the same idea as the proof of item 2
of Theorem 5.1 in [1].

Assume that there exists an asymptotically stable standard fixed point U =
(u1, . . . , uN) different from P− and P+. By Corollary 3, either u1 = −1 or
uN = 1. Without loss of generality, assume that u1 = −1. Note that in this
case uN ̸= −1 (since U and P− are different) and uN > −1 + ε by Corollary 5.

For the point U , there exists a decomposition of {1, . . . , N} into bands,
and, as shown above, 1 and N belong to different bands. Consider the band
{k, . . . , N}. By definition, uk − uk−1 > ε. By Corollary 5, uk = · · · = uN . Take
an arbitrary positive δ < uk − uk−1 − ε and the point U ′ = (u1, . . . , uk−1, uk −
δ, uk+1 − δ, · · · , uN − δ).

Note that U ′ is a fixed point since (uk−δ)−uk−1 > ε and uk−δ = uk+1−δ =
· · · = uN − δ. Thus, any neighborhood of the point U contains a fixed point,
which means that the point U is not asymptotically stable. □
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