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Abstract—This paper is devoted to the theoretical investigation of the robustness of singular spectrum
analysis (SSA) if the length N of a time series tends to infinity. The latter condition distinguishes the
work from quite a lot of works on the robustness of SSA. Here, we used a version of the SSA method
that is intended for extraction of the signal from the sum of the signal and noise. Therefore, taking the
series corresponding to the available outliers as noise, we can obtain uniform estimates for the signal-
approximation errors at large N. If these estimates tend to zero as N → ∞, then the method is robust.
Several examples of this approach for specific signals and outliers are considered; some of them are
illustrated using computer experiments.
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1. INTRODUCTION
The paper discusses theoretical issues of robustness of the singular spectrum analysis (SSA) method if

the length N of a time series tends to infinity. We note straightaway that precisely the condition N → ∞
distinguishes this paper from quite a lot of works on the robustness of SSA (see, e.g., [1] or [2], § 3.12]).

In this case, we use a version of the SSA method designed to extract the signal from the sum of the sig-
nal and noise.

Therefore, considering the series corresponding to the existing outliers as noise and using the tech-
nique developed in ([3], § 5.3), we are able to obtain uniform estimates for the signal-approximation errors
at large N. If these estimates tend to zero as N → ∞, then the method is robust.

Subsection 2.1 describes the used version of the SSA method, and Subsection 2.2 describes a method
for estimating approximation errors with some constraints on the kind of signals.

Section 3 is devoted to the outliers themselves: the required definitions are given there, as well as the
necessary theory devoted to the so-called single outliers, see Section 3.1. Section 3.2 applies this theory to
several specific signals, and Section 3.3 presents considerations for multiple outliers.

Finally, Section 4 contains computational experiments that confirm and clarify some of the theoretical
facts proved.

2. GENERAL CONSIDERATIONS
2.1. SSA Method

Let us first look at the version of the singular-spectrum-analysis method that is used in this paper; a
general description of this method can be found in [4] or [5].

A real-valued “signal” F = ( f0, …, fn, …) is considered. It is assumed that the series F is governed by a
linear recurrent formula (LRF) of order d

(1)

which is minimal in the sense that there is no LRF of lower order governing series F.
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336 NEKRUTKIN
In addition, we introduce “noise” E = (e0, …, en, …) and assume that the series XN = FN + δEN is
observed, where FN and EN are matched segments of length N of the signal and noise, and δ is the pertur-
bation parameter. In other words,

The general problem is to extract (approximately) the signal FN from the sum XN. In this case, it is assumed
that only the order value d of the LRF (1) is known.

Description of the SSA method. The SSA method looks in this case as follows.
(i) The window length L < N is chosen and the Hankel trajectory matrix H(δ) of dimension L × K, K =

N – L + 1, with elements H(δ)[ij] = xi + j – 2, 1 ≤ i ≤ L, 1 ≤ j ≤ K, is constructed from the series XN. Here
we assume that min(L, K) ≥ d. In [4], this operation is called embedding.

If H and E denote the Hankel matrices obtained from the series FN and EN by the embedding operation
with the same window length L, then, of course, H(δ) = H + δE.

(ii) The matrix H(δ) is subjected to a singular-value decomposition and d principal (i.e., corresponding
to the largest singular values) elementary matrices of this decomposition are summed. The result of this
operation is denoted by (δ).

(iii) We search for the Hankel matrix (δ) that is closest to (δ) in the Frobenius norm. Explicitly,
this means that, for each secondary diagonal i + j = const, all elements of the matrix (δ) are replaced by
their average values. Therefore, this operation is called diagonal averaging in [4]. Denoting it by , we
obtain (δ) = (δ).

(iv) Finally, applying to (δ) the operation inverse to embedding, we arrive at the reconstructed series
FN(δ) = ( f0(δ), …, fN – 1(δ)), which is declared as an approximation to the signal FN.

It is natural to call the series RN(δ) = (r0(δ), …, rN – 1(δ)) with ri(δ) = fi(δ) − fi a series of reconstruction
errors. In ([3], § 5.3), a general scheme of asymptotic analysis of reconstruction errors is proposed. Let us
give a brief description of it.

2.2. Approach to the Analysis of Reconstruction Errors
First of all, we are interested in the uniform convergence of the residuals ri(δ) to zero, i.e., the behavior

of the norm ||FN(δ) – FN||max = max0 ≤ i < N|ri(δ)| as N → ∞.

Further, if  is a linear space generated by columns of the matrix H, then it follows from (1) that,
for L, K ≥ d, the dimension of  equals d.

Let us denote by  an orthogonal projector onto the linear space  and by (δ), an orthogonal pro-
jector onto a linear space generated by columns of the matrix (δ). Then, as shown in ([3], § 5.3),

(2)

In this paper, following [3], we use two matrix norms. For a matrix A of size L × K, the spectral norm ||A||
is the maximum singular number of this matrix and the uniform norm ||A||max is the maximum of the mod-
uli of the elements of A. The relation between these norms is well-known, according to [6] (see § 2.3.2), as

(3)

Since || A||max ≤ ||A||max, we obtain

(4)

Inequality (4) is used as follows. Some operator N :  is chosen and equality (2) is rewritten in the
form

If it turns out in this case that, as N → ∞,
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ON THE ROBUSTNESS OF SINGULAR SPECTRUM ANALYSIS 337
then (see (3)) checking the asymptotic behavior of the elements of a specific (even perhaps complex)
residual matrix  + NH(δ) remains.

In this paper, we use the following option for choosing the operator N.
Let us denote the maximum and minimum positive eigenvalues of the matrix HHT by μmax = ||H||2 and

μmin, respectively. In addition, let S0 be the pseudo-inverse Moore–Penrose matrix to the matrix HHT

with ||S0|| = 1/μmin. Further, we put

where  = P0EHTS0 + S0HETP0, P0 = I − , and I is the identity L × L matrix.
Then the following assertion holds (see [3], Theorem 2.4), which is derived using the classical results

of Kato ([7], Ch. 2, § 3).
Theorem 1. Let δ0 > 0 and ||B(δ)||/μmin < 1/4 for all δ ∈ [−δ0; δ0]. Then there exists an absolute constant

C such that

Thus, we arrive at the following inequality, which holds under the conditions of Theorem 1:

Considering that HTS0H = , where  is the matrix of orthogonal projection onto the space of rows
of the matrix H, we write

(5)

Thus, we obtain a natural estimate:

(6)

(7)

(8)

(9)

We now introduce additional constraints.
Lemma 1. Let N → ∞ and ||E|| ≥ c = const. If μmax/μmin ≤  = const and |δ| ||E||/||H|| → 0, then the term

J1 + J3 on the right side of (6) has the form O(δ2||E||2/||H||).
Proof. First of all, ||B(δ)||/μmin = O(|δ| ||E||/||H||) as N → ∞. Indeed, since ||B(δ)|| ≤ 2|δ| ||H|| ||E|| + δ2||E||2

and μmax = ||H||2, then

(10)
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338 NEKRUTKIN
Thus, the condition of Theorem 1 is satisfied, 1 – 4||B(δ)||/μmin → 1, (||B(δ)||/μmin)2 = O(|δ|2 ||E||2 ||H||−2),
and ||H(δ)|| ~ ||H||. The required assertion about J1 now follows from (7).

Since ||S0E|| ≤ ||S0|| ||E|| = ||E||/||H||2 and ||S0H|| ≤ ||S0|| ||H|| = ||H||–1, then, according to (3),
• ||P0EHTS0E||max ≤ ||P0EHTS0E|| ≤ ||P0|| ||E|| ||H|| ||S0E|| = ||E||2/||H||,
• similarly, ||S0HETP0E||max ≤ ||E||2/||H|| and ||P0EETS0H||max ≤ ||E||2/||H||,
• ||S0EETP0E||max ≤ ||S0EETP0E|| ≤ ||E||2/||H||2 and, similarly,
• ||P0EETS0E|| ≤ ||E||2/||H||2.
Therefore, J3 = O(δ2||E||2/||H||) + O(|δ|3 ||E||2/||H||2). Taking into account the fact that ||E|| is separated

from zero and |δ| ||E||/||H|| → 0, we obtain the desired assertion regarding J3.

Remark 1. The boundedness of the ratio μmax/μmin holds, in particular, for d = 1 and also (under natural
conditions for the dimension of the matrix H) for polynomial signals and signals that are a linear combi-
nation of different harmonics (see, for example, [3], Lemma 3.1).

Remark 2. It is easy to see that, if we replace the condition |δ| ||E||/||H|| → 0 in Lemma 1 by |δ|Δ/||H|| →
0, where ||E|| ≤ Δ = ΔN, then it turns out that J1 + J3 = O(δ2Δ2/||H||).

3. ROBUSTNESS TO OUTLIERS
In our case, the problem lies in examining the robustness of the SSA method to outliers. Let us give the

corresponding definitions.
Definition 1. Consider the sequence of series as N → ∞:

and denote by Re(N) the set of nonzero elements of the series EN. Let (N) = card(Re(N)).
For any signal F, we consider the sequence of series XN = FN + δEN. If (N)/N → 0 as N → ∞, then

the sequence of series EN will be called an asymptotic additive outlier with respect to the series F, and the
quantity |δ| |ei| will be called the power of the ith element of EN for i ∈ Re(N).

If (N) = 1 for any N, then the series EN will be called a single outlier.
Let us denote by ri(EN, δ) the error of reconstruction of the series FN for an additive outlier EN. In the

case of a single outlier with position M, we write ri(M, δ) instead of ri(EN, δ).
Definition 2. The SSA method is called asymptotically robust with respect to outliers EN if

max0 ≤ i < N|ri(EN, δ)| → 0 as N → ∞.
Remark 3. (i) Thus, the problem of checking the robustness of the SSA method with respect to outliers

can be solved in the way described in Subsection 2.1.
(ii) Here, the formal parameter δ is not assumed to be constant. That is, we believe it possible that |δ| =

|δ(N)| → ∞ or |δ| → 0 as N → ∞. In particular, the condition |δ| ||E||/||H|| → 0 of Lemma 1 can be satisfied
not only at ||H|| → ∞ but also under a bounded norm ||H|| due to δ → 0.

(iii) In this formulation, the problem of filling gaps can be formally reduced to the problem of robust-
ness to outliers. Indeed, if the gap numbers make up the set Im(N), and the gaps themselves are coded as
zeros, then for this it suffices to take Re(N) = Im(N) and put  = –fi(N) for i ∈ Re(N).

3.1. Single Outlier

If card(Re(N)) = 1, then we can assume that eM = 1 for M ∈ Re(N) and the magnitude of the outlier is
equal to δ.

Let  be an L × K matrix with  = 1 and the remaining zero terms, 1 ≤ k ≤ L, 1 ≤  ≤ K. Then =

, where  ∈  is the jth unit vector in . Therefore, || || = 1.
We consider noise of the form EN = (e0, …, eN – 1), where eM = 1 for 0 ≤ M ≤ N − 1 and the rest are zeros:

ej = 0. Thus, M is the position of a single outlier and M = M(N).
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ON THE ROBUSTNESS OF SINGULAR SPECTRUM ANALYSIS 339
Let E be an L × K-trajectory matrix of the series EN, L ≤ K. Then

where

Nevertheless, ||E||max = ||E|| = 1 for any behavior of M.

Since ||E|| = 1 for a single outlier, we have J1 + J3 = O(|δ2|/||H||) under the conditions of Lemma 1. Thus,
if |δ|2/||H|| → 0 as N → ∞, then, under the conditions of Lemma 1, we still have to take a look at the term
J2 on the right side of (6).

The next estimation will be useful here. Let G(1) be some matrix of size L × L, and let G(2) be a K × K
matrix.

Lemma 2. The inequalities ||G(1)E||max ≤ ||G(1)||max and ||EG(2)||max ≤ ||G(2)||max hold for any position M of
a single outlier.

Proof. The assertion for ||G(1)E||max follows from the fact that every nonzero element of the matrix G(1)E

coincides with some element of the matrix G(1). More precisely, let Gi ∈  denote the ith column of the
matrix G(1). Next, let Gij = [Gi : … : Gj] for 1 ≤ i, j ≤ K. Then, for L ≤ K,

where 0(i, j) is the zero matrix of size i × j. Therefore,

(11)

This immediately implies the assertion of the lemma for G1E. For EG2, everything is the same.

3.2. Examples. A Single Outlier

We consider a real-valued signal F = ( f0, …, fn, …) and assume that the series F is governed by the min-
imal linear recurrent formula of order d.

Noise is a sequence of single outliers EN = (e0, …, eN – 1), where eM = 1 for 0 ≤ M ≤ N − 1, and the rest
are zeros: ej = 0; so, M = M(N) is the position of a single outlier in the noise series EN. As usual, we assume
that L/N → α ∈ (0, 0.5].

Let N → ∞. We apply the SSA method to the series XN = FN + δEN with the choice of the d principal
components. In addition, let ri(M, δ) be the error of reconstruction of the term fi in the series FN when
the noise EN is used.
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340 NEKRUTKIN
Theorem 2. 1. If |δ| = o(aN/2), then, as M/N → β, for a growing exponential signal fn = an with a > 1,

2. If |δ|/N → 0, then, for a linear signal fn = θ1n + θ0 with θ1 ≠ 0,

(12)

3. We consider a constant signal F with fn = 1. Then

• if |δ| ≤ δ0, then maxM maxi|ri(M, δ)| = O(|δ|/N);

• if |δ| → ∞ and δ2/N → 0, then maxM maxi|ri(M, δ)| = O(δ2/N).

4. For the signal

(13)

with pairwise different frequencies ωi ∈ (0, 1/2) and nonzero amplitudes |bi|

• if |δ| ≤ δ0, then maxM maxi|ri(M, δ)| = O(|δ|/N);

• if |δ| → ∞ and δ2/N → 0, then maxM maxi|ri(M, δ)| = O(δ2/N).

Proof. In all the cases, we use inequality (6). To estimate the quantities J1, J2, and J3, we use the results
of Lemmas 1 and 2; moreover, representation (11) may be useful to us in the last case.

In other words, as follows from Subsection 3.1, if |δ|/||H|| → 0, then

1. For a growing exponential signal, d = 1 with ||H||  aN and therefore, since |δ|/aN → 0, we have J1 +
J3 = O(δ2a−N).

Since, for 1 ≤ i, j ≤ L,

it follows that  → const = 1 – a–2. Therefore, for the “worst” location of the place M of a single

outlier,  does not tend to zero. Similarly, for 1 ≤ i, j ≤ K,

and  does not tend to zero. At the same time, this may not be the case for specific locations
of the outlier. Let L ≤ K, L/N → α ∈ (0, 1/2]. Then

and therefore, it follows from (11) that  ~ (1 – a–2)a–(α – β)N for M/N → β < α.

But if M/N → β ≥ α, then  → 1 – a–2.
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Similarly, if M/N → β < 1 − α, then  ~ (1 – a–2)a–(1 – α – β)N, and if M/N → β ≥ 1 − α, then

 → 1 – a–2. In addition,

It immediately follows that, for L/N → α ∈ (0, 1/2] and M/N → β,

The statement is proved.
2. First of all, we can restrict ourselves to the case θ1 = 1.
Then, according to Lemma 3.1 in [3], if L/N → α ∈ (0, 1), then μmax/N4 → Θmax and μmin/N4 → Θmin

for some Θmax ≥ Θmin > 0.
Thus, since ||E|| = 1 and ||H||  N2 for L/N → α ∈ (0, 1), it follows from Lemma 1 that the term J1 + J3

on the right side of (6) has the order O(δ2N−2) = o(|δ|/N).

Let us now prove that the equality  = O(N−1) is true.

Indeed, elementary calculations show that, for 1 ≤ i, j ≤ L,

(14)

It immediately follows that  ≤ 4/L. A reference to Lemma 2 and to the relation L/N → α com-
pletes the proof.

In complete analogy,  = O(N−1).

Further, since  ≤   = O(N–1), then  ≤  +

= O(N–1) uniformly in M. Therefore, J2 = O(|δ|N–1) and the statement is proved.

3. In the case of a constant signal H = , where U ∈  and V ∈  are vectors with all the
same coordinates equal to 1/  and 1/ , respectively. Therefore, ||H|| ~ α(1 – α)N.

Further, in both cases, |δ|/||H|| → 0; therefore, J1 + J3 = O(δ2/||H||) = O(δ2/N).

Moreover,  = UUT and  = VVT; and so,     N–1 and  = O(N–1).

Therefore, maxM |rM(δ)| = O(δ2/N) + O(|δ|/N), which implies the result.

4. As follows from [8], in this case, d = 2r, and all the quantities ||H||, , and  have the order
of decrease O(N–1).

Therefore, the result is the same as for a constant signal.

Remark 4. It is seen that the order of convergence O(|δ|/N) in the theorem is completely determined by
the first (linear with respect to δ) term on the right side of (5). This means that, in this case, the use of the
linear version of perturbation theory (for example, [9]) is correct.

⊥
0 max

EQ
⊥
0 max

EQ

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

− −
− −

≥ =

− −= −
− −

o o
T

0 0 0 1 1 0 0 0max max max
1 1

2 2
2 2

min ( ) ( ) (1) (1)

( 1)( 1)(1 ) ( ).
( 1)( 1)

}

M
L K

N
L K

L K

a aa O a
a a

P EQ P Q P Q

( )⊥ ⊥ ⊥ ⊥

− α−β − −α−β

−

≤ δ + −

 + β < α
δ − α ≤ β < − α
 β ≥ − α

2 0 0 0 0max max max
( ) (1 )

2

min

,
~ (1 ) 1 1 ,

2 1 .

M
N N

J

a a
a

P E EQ P EQ

}

⊥
0 max

maxM P E

( ) ( )( )
⊥ −= + + − − − + −

+ +−
− − −= + − − − + − −
+ + − −

0 2
3( 1) 12 6[ , ] 1 ( 1)( 1) ( 2)

1 11
3( 1) 16 11 1 ( 1) 1 ( 1) .

1 1 1 1

LL i j i j i j
L LL

L j ii j
L L L L

P

⊥
0 max

P

⊥
0 max

maxM Q E

⊥ ⊥
0 0 max

P EQ ⊥
0 max

P ⊥
0 max

L EQ ⊥
0 0 max

P EQ ⊥
0 max

EQ
⊥ ⊥
0 0 max

P EQ

TLKUV R
L

R
K

L K

⊥
0P ⊥

0Q ⊥
0 max

P E }

⊥
0 max

EQ }

⊥ ⊥
0 0 max

P EQ

⊥
0 max

P ⊥

max
Q

h

VESTNIK ST. PETERSBURG UNIVERSITY, MATHEMATICS  Vol. 57  No. 3  2024



342 NEKRUTKIN
3.3. About Multiple Outliers

As before, we denote the set of nonzero elements of the series EN by Re(N) and put (N) =
card(Re(N)). We note that

where  has a single nonzero element equal to 1 at position j. Then, if E and Ej are L × K-trajectory

matrices of the series EN and , we have E = . Therefore, since ||Ei|| = 1,

In addition, ||E||max = maxj ∈ Re(N)  = ||EN||max.

Collecting the results of Lemma 1 and Remark 2 with Δ = ||EN||1, we find that, under the condition

||EN||1 > c = const and |δ| ||EN||1/||H|| → 0, we have J1 + J2 = .
Let us now see what Lemma 2 turns into. Since, for an arbitrary L × L matrix ||G1||,

and a similar inequality holds for ||EG2||max.
From here, for example, it immediately follows that, under the condition Θ = supN||EN||1 < ∞, all the

results of Theorem 2 remain in force with the replacement of |δ| to |δ|Θ on the right-hand side of the cor-
responding inequalities.

Remark 5. We note that the condition Θ < ∞, generally speaking, applies not only to outliers.
For example, as follows from Theorem 2 and previous arguments, for a linear signal and noise E = (e0, …,
en, …) with  < ∞, for fixed δ and L/N → α ∈ (0, 1), the relation maxi|ri(δ)| = O(N–1) holds.

4. COMPUTATIONAL EXPERIMENTS
This section presents several variants of computer experiments aimed at illustrating the theoretical

results of Section 3.
We consider three options for the signal fn:
(i) exponential signal (EXP): fn = an and a = 1.01;
(ii) linear signal (LIN): fn = an and a = 1/3;

(iii) harmonic signal (COS): fn = cos(2πωn) with ω = /4.
In all experiments, eM = 1 and L ≈ N/2 were taken.
The first point of Theorem 2 states, in particular, that the SSA method for the EXP signal at a fixed

position M of a single outlier is asymptotically robust, while this robustness cannot be obtained for the
outlier position at the last point of the series.

Figure 1 confirms both of these estimates: for M = 0, it is seen that the maximum reconstruction error
quickly tends to zero, while such a tendency is not observed for M = N – 1.

It follows from the second point of Theorem 2 that, for a linear signal, the reconstruction errors have
the form O(N–1) regardless of the position of a single outlier. Figure 2 confirms this theoretical result.

Finally, the fourth point of Theorem 2 and the reasoning of Section 3.3 allow us to state that, for the
COS signal in the case of multiple outliers of uniformly limited power with card (N) < const, all the
reconstruction errors have the order of decrease O(N–1). Figure 3 with (N) = {0, 1} and δ = 1 confirms
this conclusion.
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Fig. 2. N multiplied by the maximum reconstruction errors for two positions (M = 0 with δ = 1 and M = N – 1 with δ =
2) of a single outlier as a function of the series length N for the LIN signal.
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Fig. 3. N multiplied by the maximum reconstruction errors in the case of a double outlier with e0 = e1 = 1 as a function
of the series length N for the COS signal.
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Fig.1. Maximum reconstruction errors for two positions of a single outlier as a function of the series length N for the EXP
signal with δ = 1.
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5. CONCLUSIONS

For simplicity, we restrict ourselves to the case δ = const and ||H|| → ∞ as N → ∞. Then it follows from
the results of the paper that, if the ratio μmax/μmin is bounded (see Lemma 1), all is determined by the
quantity J2 defined in (8). Namely, if L/N → α ∈ (0, 1) and J2 → 0, then the SSA method is asymptotically
robust with respect to any single outlier.

Furthermore, it turns out that J2 corresponds to the linear term of perturbation theory and, since J2 is

expressed in terms of the projectors  and , the uniform norms of these projectors play a special role
here.
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