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Abstract For a weight structure w on a triangulated category C we prove that the corresponding
weight complex functor and some other (weight-exact) functors are ‘conservative up to weight-degenerate
objects’; this improves earlier conservativity formulations. In the case w = wsph (the spherical weight

structure on SH), we deduce the following converse to the stable Hurewicz theorem: Hsing
i (M) = {0}

for all i < 0 if and only if M ∈ SH is an extension of a connective spectrum by an acyclic one. We also
prove an equivariant version of this statement.

The main idea is to studyM that has no weights m,. . . ,n (‘in the middle’). For w=wsph, this is the case
if there exists a distinguished triangle LM →M →RM , where RM is an n-connected spectrum and LM
is an m−1-skeleton (of M ) in the sense of Margolis’s definition; this happens whenever Hsing

i (M) = {0}
for m ≤ i ≤ n and Hsing

m−1(M) is a free abelian group. We also consider morphisms that kill weights
m,. . . ,n; those ‘send n-w -skeleta into m−1-w -skeleta’.
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Introduction

Let us recall that, for any object M of a triangulated category C and any integer n,
a weight structure w on C gives (essentially by definition) an n-weight decomposition

triangle LM → M → RM → LM [1], where LM is of weights at most n and RM is of

weights at least n+1;1 however, this triangle is not canonical. In particular, for the
spherical weight structure wsph on the stable homotopy category SH (see §4.2 of [7],

Theorem 4.2.4 and Theorem 4.2.5(1) below) one can take LM to be an arbitrary choice

of an n-skeleton for the spectrumM in the sense of §6.3 of [20]; thus, LM is not determined
by M uniquely. However, it was noticed by J. Wildeshaus that if one can choose an n-

weight decomposition such that LM is of weights at most m− 1 for some m ≤ n, then

this stronger assumption makes the decomposition canonical. In this case, M is said to

be without weights m,. . . ,n. In this paper, we prove that M satisfies this condition if and
only if its weight complex t(M) is homotopy equivalent to a complex with zero terms

in degrees −n, . . . , −m;2 recall here that t is a ‘weakly exact’ functor from C into a

certain quotient Kw(Hw) of the homotopy category of complexes in the heart Hw of w.
It easily follows that one can find out whether M is without weights m,. . . ,n by applying

functors that are pure (in the sense of Definition 2.4.1 below) to M. Moreover, one can

put m = −∞ or n = +∞ in these statements to obtain that t is ‘conservative up to
weight-degenerate objects’. One may say that t is conservative up to objects of infinitely

small and infinitely large weights. This is a significant improvement over previously known

bounded conservativity results. One may say that objects of C may be ‘detected’ by means

of objects of a much simpler category Kw(Hw). We apply our conservativity of weight
complexes result to calculate certain intersections of purely generated subcategories (this

result was applied in [5]) and to prove that certain weight-exact functors are conservative.

The latter statement generalizes Theorems 2.5 and 2.8 of [29]; in particular, we treat not
necessarily bounded weight structures.

Moreover, we apply our general results to equivariant stable homotopy categories and

spherical weight structures on them (as introduced in §4 of [7]). The aforementioned
conservativity of weight complexes results yield a certain converse to the equivariant stable

Hurewicz theorem. In particular, in the case of a trivial group the weight complex functor

1That is, LM ∈ Cw≤n = Cw≤0[n] and RM ∈ Cw≥n+1 = Cw≥0[n+1].
2Here, one has to assume that C is weight-Karoubian, that is, that Hw is idempotent complete;
see Theorem 2.3.1(4). However, this is a reasonable assumption since it is fulfilled whenever
C is idempotent complete itself.
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On morphisms killing weights and stable Hurewicz-type theorems 3

essentially calculates singular homology; thus, we obtain that the singular homology of
a spectrum E ∈ ObjSH vanishes in negative degrees if and only if E is an extension

of a connective spectrum by an acyclic one. This statement appears to be completely

new since in all the previously existing formulations only the case where E is bounded
below was considered; see Theorem 2.1(i) of [18], Proposition 7.1.2(f) of [15] and Theorem

6.9 of [20]. Moreover, the vanishing of Hsing
i (E) for two subsequent values of i gives a

canonical ‘decomposition’ of E into a distinguished triangle. This result is new as well.

Our main definitions and statements are nicely illustrated by Theorems 4.2.4 and 4.2.5.
In particular, we prove that wsph-Postnikov towers are the cellular ones in the sense of

[20] (thus completing the proof of [7, Theorem 4.2.1]). Our central statements can also

be applied to Tate motives; see Remark 4.1.8(1) below.
The main tool for obtaining these results is the new interesting notion of morphisms

killing weights m,. . . ,n; for a morphism g :M →N this means that g is ‘compatible with’

some morphism w≤nM →w≤m−1N . This definition is equivalent to several other ones. In
particular, if m= n, then one can easily reformulate this condition in terms of t(g). Thus,

an SH-morphism g kills weight m if and only if Hm
sing(g,Γ) = 0 for every abelian group

Γ. More generally, an SH-morphism g kills weights m,. . . ,n whenever it ‘sends n-skeleta

into m−1-skeleta’; see Proposition 2.1.1(4) and Theorem 4.2.5.
Let us now describe the contents of the paper.

§1 contains some preliminaries, mostly on weight structures.

In §2, we define morphisms killing weights m,. . . ,n and objects without these weights
and study these notions in detail. In particular, we relate killing weights to weight

complexes and pure functors. This gives a new conservativity of the weight complex

functor result.
In §3, we extend some of the results of the previous section to the case where Hw is not

Karoubian (thus, Hw-idempotents do not yield direct summands in C), so we formulate

Theorem 3.1.3 that is central for this paper. We also give applications to intersections

of purely generated subcategories and prove that certain weight-exact functors are
‘conservative up to weight-degenerate objects’.

In §4, we study purely compactly generated categories. We also consider equivariant

stable homotopy examples to obtain certain converse stable Hurewicz theorems (see
Theorems 4.2.2 and 4.2.4) and several related statements (including the aforementioned

Theorem 4.2.5).

The author is deeply grateful to the referees for really actual comments.
An alternative version of this paper can be found at [6]. Another closely related text is

the new [12]; see Remark 2.3.2(2) below.

1. Weight structures: reminder

In §1.1, we introduce some notation and conventions. In §1.2, we recall some basics on

weight structures. The only new statement of this section is the technical (yet important)
Lemma 1.2.7(2).

In §1.3, we recall some properties of weight complex functors and of the weak homotopy

equivalence relation for morphisms between complexes.
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4 M. V. Bondarko

1.1. Some (categorical) notation

• Let C be a category and X,Y ∈ObjC. Then we will write C(X,Y ) for the set of
morphisms from X to Y in C.

• We say that X is a retract of Y if idX can be factored through Y.
• A subcategory P of an additive category C is said to be retraction-closed in C if

it contains all retracts of its objects in C.
• For any (C,P) as above the full subcategory KarC(P) of C whose objects are all

retracts of finite direct sums of objects P in C will be called the retraction-closure
of P in C. Note that this subcategory is obviously additive and retraction-closed
in C.

• Below A will always denote some abelian category; B is an additive category.
• We will write Kar(B) (no lower index) for the idempotent completion B; see

Definition 1.2 of [1]. Recall that its objects are the pairs (A,p) for A ∈ObjB, p ∈
B(A,A), p2 = p; the correspondence A �→ (A, idA) (for A ∈ObjB) fully embeds B
into Kar(B); see Proposition 1.3 and Remark 1.4 of loc. cit. Moreover, Kar(B) is
Karoubian, that is, every idempotent morphism gives a direct sum decomposition
in Kar(B), and Kar(B) is triangulated if B is; see Theorem 1.5 of loc. cit.

• The symbol C below will always denote some triangulated category. Usually it is
endowed with a weight structure w. The symbols C ′ and D will also be used for
triangulated categories only.

• For any A,B,C ∈ObjC we say that C is an extension of B by A if there exists a

distinguished triangle A
f→ C →B →A[1].

Moreover, we will write B =Cone(f). Recall here that different choices of cones
are connected by nonunique isomorphisms.

• ForX,Y ∈ObjC we writeX ⊥Y if C(X,Y )= {0}. If D and E are classes of objects
or subcategories of C, then we will write D ⊥ E if X ⊥ Y for all X ∈D, Y ∈ E.
Moreover, we write D⊥ for the class

{Y ∈ObjC : X ⊥ Y ∀X ∈D};

dually, ⊥D is the class {Y ∈ObjC : Y ⊥X ∀X ∈D}.
• We write C(B) for the category of cohomological complexes in B, and the

corresponding homotopy category will be denoted by K(B). We will write M =
(M i) if M i are the terms of the complex M.

• We say that an additive covariant (resp. contravariant) functor H from C into A
is homological (resp. cohomological) if it converts distinguished triangles into long
exact sequences. We will write Hi (resp. H

i) for the composition H ◦ [−i].

1.2. Weight structures: basics

Definition 1.2.1. We say that subclasses Cw≤0 and Cw≥0 ⊂ ObjC give a weight

structure w or (C,w) on a triangulated category C and that C is weighted if the following

conditions are fulfilled.
(i) Cw≥0 and Cw≤0 are retraction-closed in C, that is, they contain all C-retracts of

their objects).

(ii) Cw≤0 ⊂ Cw≤0[1] and Cw≥0[1]⊂ Cw≥0.
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On morphisms killing weights and stable Hurewicz-type theorems 5

(iii) Orthogonality: Cw≤0 ⊥ Cw≥0[1].

(iv) For any M ∈ObjC there exists a distinguished triangle

LM →M →RM→LM [1]

such that LM ∈ Cw≤0 and RM ∈ Cw≥0[1].

We also need the following definitions.

Definition 1.2.2. Assume that i,j ∈ Z and (C,w) is a weight structure.

1. The full subcategory Hw of C whose objects are Cw=0 = Cw≥0∩Cw≤0 is called the
heart of w.

2. Cw≥i (resp. Cw≤i, resp. Cw=i) will denote the class Cw≥0[i] (resp. Cw≤0[i], resp.

Cw=0[i]).

3. C [i,j] denotes Cw≥i∩Cw≤j , so, this class equals {0} if i > j.

4. We will say that C (or (C,w)) is weight-Karoubian if Hw is Karoubian.

5. Let C ′ be a triangulated category endowed with a weight structure w′; let F :C →C ′

be an exact functor.

Then F is said to be weight-exact with respect to w,w′ if it maps Cw≤0 into C ′
w′≤0

and sends Cw≥0 into C ′
w′≥0.

6. Let D be a full triangulated subcategory of C.

We will say that w restricts to D whenever the couple (Cw≤0 ∩ObjD, Cw≥0 ∩
ObjD) is a weight structure on D.

7. We say that M is left (resp., right) w-degenerate (or weight-degenerate if the choice

of w is clear) if M belongs to ∩i∈ZCw≥i (resp. to ∩i∈ZCw≤i).

8. We call ∪i∈ZCw≥i (resp. ∪i∈ZCw≤i) the class of w-bounded below (resp., w-bounded
above) objects of C.

9. We will say that w is bounded if every object of C is w -bounded both above and

below.

Remark 1.2.3. 1. For an arbitrary additive B one can take C =K(B) and setK(B)wst≤0

(resp. K(B)wst≥0) to be the class of complexes C-isomorphic to complexes concentrated

in degrees ≥ 0 (resp. ≤ 0); see Remark 1.2.3(1) of [9] for more detail. We will use this
notation below.

The heart of this weight structure wst is the retraction-closure of B in K(B); hence it

is equivalent to Kar(B).
2. The distinguished triangle in axiom (iv) is not determined by M.

Still for every m ∈ Z this axiom yields a distinguished triangle

w≤mM →M → w≥m+1M → (w≤mM)[1] (1.2.1)

with some w≤mM ∈ Cw≤m and w≥m+1M ∈ Cw≥m+1. We notate this triangle with

WDm(M) and call WDm(M) an m-weight decomposition of M.
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We will often use this notation below even though w≥m+1M and w≤mM are not
canonically determined by M. We call any possible choice either of w≥m+1M or of w≤mM

a weight truncation of M. Moreover, when we write arrows of the type w≤mM →M or

M → w≥m+1M we always assume that they come from some m-weight decomposition
of M.

3. In the current paper (along with several previous ones) we use the ‘homological

convention’ for weight structures, whereas in [4] the cohomological convention was used.

In the latter convention, the roles of Cw≤0 and Cw≥0 are interchanged, that is, one takes

Cw≤0 = Cw≥0 and Cw≥0 = Cw≤0.
We also recall that weight structures were independently introduced in [24]; D.

Pauksztello has called them co-t-structures.

Proposition 1.2.4. Let m≤ n ∈ Z, M,M ′ ∈ObjC.

1. The axiomatics of weight structures is self-dual, that is, on C ′ = Cop (so ObjC ′ =
ObjC) there exists the opposite weight structure wop for which C ′

wop≤0 = Cw≥0 and

C ′
wop≥0 = Cw≤0.

2. Cw≥0 = (Cw≤−1)
⊥ and Cw≤0 =

⊥Cw≥1.

3. Cw≤0 is closed with respect to all coproducts that exist in C.

4. Cw≤0, Cw≥0, and Cw=0 are additive.

5. If M ∈ Cw≥m, then w≤nM ∈ C [m,n] for every n-weight decomposition of M. Dually,
if M ∈ Cw≤n, then w≥mM ∈ C [m,n].

6. Assume g ∈C(M,M ′). If M ′ ∈Cw≥m, then g factors through w≥mM for any choice

of the latter object.

Dually, if M ∈ Cw≤m, then g factors through w≤mM ′.

7. If C is Karoubian, then it is also weight-Karoubian.

Proof. Assertions 1–5 were proved in [4] (cf. Remark 1.2.3(4) of [9] and pay attention to
Remark 1.2.3(3) above!), whereas the easy assertion 6 is given by Proposition 1.2.4(8) of

[7].

Assertion 7 follows from axiom (i) in Definition 1.2.1.

Now we will study certain morphisms between weight decompositions.

Definition 1.2.5. Adopt the notation and assumptions of Remark 1.2.3(2); let m′ ∈ Z.

Then a morphism of triangles

w≤mM
c−−−−→ M −−−−→ w≥m+1M⏐⏐�h

⏐⏐�g

⏐⏐�j

w≤m′M ′ −−−−→ M ′ −−−−→ w≥m′+1M
′

(1.2.2)
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On morphisms killing weights and stable Hurewicz-type theorems 7

will be said to be a morphism WDm(M) → WDm′(M ′) that extends g : M → M ′. We

will say that the morphisms h and j are w-truncations of g.

Remark 1.2.6. Clearly, one can compose morphisms of weight decompositions. That

is, for a morphism WDm(M) → WDm′(M ′) as above, m′′ ∈ Z, and any morphism

WDm′(M ′) → WDm′′(M ′′) that extends any g′ ∈ C(M ′,M ′′) one can compose the
corresponding arrows (provided that the corresponding choices of WDm′(M ′) coincide)

to obtain a morphism WDm(M)→WDm′′(M ′′) that extends g′ ◦g.

Lemma 1.2.7. Adopt the notation of Definition 1.2.5, and assume m′ ≥m.
1. Then an extension of g to a morphism WDm(M)→WDm′(M ′) exists. Moreover,

this extension is unique if m′ >m; consequently, in this case the morphism h (resp. j) is

the only one that makes the left- (resp. right-) hand square in diagram 1.2.2 commutative.

2. Assume that the rows of diagram 1.2.2 are equal, g = idM , m = m′, h2 = h, and
(C,w) is weight-Karoubian. Then there exists a decomposition w≤mM ∼=M1

⊕
M0 such

that h corresponds to idM1

⊕
0M0

, and the rows of (1.2.2) can be presented as the direct

sum of the corresponding two arrows in some m-weight decomposition M1 → M → M2

with (M0 → 0→M0[1]).

Proof. 1. This is Lemma 1.5.1(1,2) of [4].

2. Take a triangulated category C ′ that is equivalent to Kar(C) and contains C as a
(full) strict subcategory. Consider the decomposition w≤mM ∼=M1

⊕
M0 corresponding

to h in C ′. Since the diagram 1.2.2 is commutative, c = c ◦ h; thus, c factors through

M1. Hence, the rows of diagram 1.2.2 can be decomposed into the direct sum of the
C ′-distinguished triangle M0 → 0→M0[1] with a distinguished triangle M1 →M →M2.

Thus, M0 is a retract of w≥m+1M [−1] as well. Hence, the morphism idM0
factors through

some morphism a : w≤mM → w≥m+1M [−1]. Next, Proposition 1.2.4(6) implies that a

factors through N =w≥m(w≤mM); thus, M0 is a retract of N. Since N belongs to Cw=m

by Proposition 1.2.4(5) and Hw is Karoubian, M0 belongs to Cw=m ⊂ObjC. It follows

that M1 and M2 are objects of C as well. Applying axiom (i) of Definition 1.2.1 we

obtain M1 ∈ Cw≤m and M2 ∈ Cw≥m+1; hence, M1 →M →M2 →M1[1] is an m-weight
decomposition of M indeed.

1.3. On weight complexes and weak homotopy equivalences

To define the weight complex functor, we need the following definition. Recall here that

B is an additive category and C(B) is the category of B-complexes.

Definition 1.3.1. Let M and N be objects of K(B) and m1,m2 ∈ C(B)(M,N).
1. We writem1 �m2 ifm1−m2 = dNx+ydM for some collections x∗,y∗ ∈B(M∗,N∗−1),

where dM and dN are the corresponding differentials. We call this relation the weak

homotopy equivalence relation.
2. Assume k ≤ l ∈ ({−∞}∪Z∪{+∞}); also, k ∈ Z if k = l.

Then we write m1 �[k,l] m2 if m1−m2 is weakly homotopic to m0 ∈C(M,N) such that

mi
0 = 0 for k ≤ i≤ l (and i ∈ Z).
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We need the following properties of these equivalence relations.

Lemma 1.3.2. Adopt the notation of Definition 1.3.1.

1. Factoring morphisms in K(B) by the weak homotopy relation yields an additive

category Kw(B). Moreover, the corresponding full functor pw : K(B) → Kw(B) is
additive and conservative.

2. Let A : B → A be an additive functor, where A is any abelian category, and m1 is

weakly homotopic to m2. Then m1 and m2 induce equal morphisms of the homology

H∗(A(M i))→H∗(A(N i)).
Hence, the correspondence N �→ H0(A(N i)) gives a well-defined functor

Kw(B)→A.

3. Applying an additive functor F : B → B′ to complexes termwisely, one obtains an
additive functor Kw(F ) :Kw(B)→Kw(B

′).

4. m1 �[k,l] m2 if and only if m1 �[i,i] m2 for any i ∈ Z such that k ≤ i≤ l.

5. If k ∈ Z, then m1 �[k,k] 0 if and only if there exists m0 ∈ C(B)(M,N) such that

m1 =m0 in K(B)(M,N) and mk
0 = 0.

6. M belongs to K(B)wst≥0 if and only if idM �[1,+∞] 0M , and M ∈K(B)wst≤0 if and
only if idM �[−∞,−1] 0M .

Proof. Assertion 3 is obvious, and the remaining ones are contained in Proposition B.2

of [7].

Let us describe the approach to weight complexes that we use below.

Remark 1.3.3.

1. In the current paper, we consider an additive weight complex functor t :C→Kw(Hw)
for any triangulated category C endowed with a weight structure w. Still to define a

canonical functor of this sort one has to replace C by a certain equivalent category

Cw; see §1.3 of [7] (and cf. Remark A.2.1(3) of ibid. where the inaccuracies made in
[4, §3] are discussed). Thus, to define t one should compose the additive ‘canonical

weight complex functor’ tcan : Cw → Kw(Hw) with a splitting s of the canonical

equivalence Cw → C (see Proposition 1.3.4(3,6) of [7]). Clearly, any two splittings s
of this sort are isomorphic; thus, we can assume that s is chosen, and so t= tcan ◦s
is fixed.

2. Moreover, we have no need to describe weight complexes of all morphisms in C

explicitly. We prefer to list a collection of properties of t instead. So, we only sketch
the description of t(M) for M ∈ObjC. The details can be found in loc. cit.

We choose arbitrary weight truncations w≤nM of M for all n ∈ Z and take gn :

w≤nM → w≤n+1M to be the corresponding w -truncations of idM in the sense of
Definition 1.2.5. Denote Cone(gn) by M−n−1[n+1]. It is easily seen that M i ∈Cw=0

for all i∈Z and that the distinguished triangles coming from gn connect these objects

to form a complex (M i).
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On morphisms killing weights and stable Hurewicz-type theorems 9

Clearly, this complex depends on the choice of the objects w≤nM . However, for
any choice of this form, we have (M i)∼= t(M) in K(Hw). This isomorphism becomes

canonical in Kw(Hw).

3. t can ‘usually’ be enhanced to an exact ‘strong’ weight complex functor tst : C →
K(Hw). This is currently known to be the case if C possesses an ∞-enhancement
and w is either bounded (see Definition 1.2.2(9) and Corollary 3.5 of [26]) or is purely

compactly generated as in Theorem 4.1.2 below (see Remark 3.6 of ibid.).3

Consequently, the reader will not lose much if she assumes that tst exists
throughout the paper.

4. On the other hand, if Kw(B) differs from K(B) (cf. Proposition 4.1.7(1) below) then

Kw(B) cannot be endowed with a triangulated category structure compatible with

that for K(B), that is, the functor pw :K(B)→Kw(B) cannot be exact.
Indeed, Lemma 1.3.2(1) allows to reduce this claim to the following statement: If

p :C→C ′ is a full conservative exact functor, then p is also faithful. Now, assume that

p(m) = 0 for some C-morphism m :X → Y and take the corresponding distinguished
triangle

X
m→ Y

n→ Z →X[1].

Then p(n) is split injective. Since p is full and conservative, the easy Lemma 1.5.2(1)

of [7] says that n is split injective as well. Hence, m= 0, and we obtain faithfulness.

Now we list the main properties of our functor t : C →Kw(Hw).

Proposition 1.3.4. Assume that (C,w) is a weight structure, and M
g→M ′ h→ Cone(g)

are two sides of a C-distinguished triangle.

1. Then t◦ [n]C ∼= [n]Kw(Hw) ◦ t, where [n]Kw(Hw) is the obvious shift by [n] endofunctor

of the category Kw(Hw).

2. There exists a lift of the Kw(Hw)-morphism chain

t(M)
t(g)→ t(M ′)

t(h)→ t(Cone(g))

to two sides of a distinguished triangle in K(Hw).

3. If M ∈ Cw≤n (resp. M ∈ Cw≥n), then t(M) belongs to K(Hw)wst≤n (resp. to

K(Hw)wst≥n).

Moreover, if M is left or right w-degenerate (see Definition 1.2.2(7)), then
t(M) = 0.

3Actually, as was originally noted by O. Schnürer, one has to change the signs of differentials
in complexes to make the weight complex functor of ibid. compatible with our ‘weak’ version;
see Remark 1.3.5(3) of [7] or §2 and Definition 5.7 of [25]. However, this subtlety does not
appear to affect any of the applications of weight complexes known to the author; hence, the
reader may probably ignore it.

Moreover, tst also exists whenever w is bounded and C is the underlying category of a stable
derivator; combine Theorem 7.1 of ibid. with Theorem 7 of [22].
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10 M. V. Bondarko

4. Let C ′ be a triangulated category endowed with a weight structure w′; let F :C →C ′

be a weight-exact functor. Then the composition t′ ◦F is isomorphic to Kw(HF )◦ t,
where t′ is a weight complex functor corresponding to w′, and the functor Kw(HF ) :
Kw(Hw)→Kw(Hw′) is defined as in Lemma 1.3.2(3).

5. For any morphism of triangles

w≤n−1M
a−−−−→ w≤nM −−−−→ Cone(a)

⏐⏐�c

⏐⏐�d

⏐⏐�h

w≤n−1M
′ b−−−−→ w≤nM

′ −−−−→ Cone(b)

(1.3.1)

where a, b, c and d are the corresponding w-truncations of idM , idM ′ and g (see

Definition 1.2.5), respectively, we have Cone(a),Cone(b) ∈ Cw=n. Moreover, t(g) is

isomorphic as a Kw(Hw)-arrow to a morphism x whose −nth component x−n ∈
Mor(Hw) equals h[−n].

Furthermore, if t(g) is isomorphic to a Kw(Hw)-morphism y such that y−n = 0,

then any choice of the rows in diagram 1.3.1 can be completed to the whole diagram

with h= 0 in it.

Proof. Assertions 1–4 are given by Proposition 1.3.4(7,9,10,12) of [7].

Lastly, the first two parts of assertion 5 follow from the definition of t in ibid. and its

‘furthermore’ part easily follows from Proposition 1.3.4(13) of ibid. along with Lemma
1.3.2(5) above.

2. On morphisms killing weights

In this section, we introduce and study the main new notions of this paper.

In §2.1, we define morphisms killing weights m,. . . ,n and objects without these weights.
We give several equivalent definitions of these notions.

In §2.2, we establish several interesting properties of our notions. In particular, we prove

that any object without weights m,. . . ,n admits a weight decomposition avoiding these
weights (in the sense defined by J. Wildeshaus) if C is weight-Karoubian.

In §2.3, we prove that M is without weights m,. . . ,n if and only if t(M) possesses this

property.
In §2.4, we relate killing a weight m and objects without weights in a range to pure

functors; those were introduced in §2.1 of [7].

2.1. Killing weights: equivalent definitions

Proposition 2.1.1. Let M,N ∈ObjC, g ∈C(M,N) and m≤ n ∈ Z. Then the following
conditions are equivalent.

1. There exists a choice of w≤nM and w≥mN such that the composed morphism

w≤nM
x→ M

g→ N
y→ w≥mN is zero (here x and y come from the corresponding

weight decompositions; see Remark 1.2.3(2)).
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2. There exists a choice of w≤nM and w≤m−1N and of a morphism h making the
following square commutative:

w≤nM
x−−−−→ M

⏐⏐�h

⏐⏐�g

w≤m−1N −−−−→ N.

(2.1.1)

3. There exists a choice of w≥n+1M and w≥mN and of a morphism j making

commutative the square

M −−−−→ w≥n+1M⏐⏐�g

⏐⏐�j

N
y−−−−→ w≥mN.

(2.1.2)

4. Any choices of WDn(M) and WDm−1(N) can be joined by a morphism that extends

g in the sense of Definition 1.2.5.

5. For any choice of WDn(M) and WDm−1(N) and for the corresponding truncations
a : w≤m−1M → w≤nM and b : w≤m−1N → w≤nN of idM and idN (see Lemma

1.2.7(1)), there exists a commutative diagram

w≤m−1M
a−−−−→ w≤nM −−−−→ M

⏐⏐�c

⏐⏐�d

⏐⏐�g

w≤m−1N
b−−−−→ w≤nN −−−−→ N

(2.1.3)

along with h ∈ C(w≤nM,w≤m−1N) that turns the corresponding ‘halves’ of the left-

hand square of diagram 2.1.3 into commutative triangles.

6. For any choice of the diagram 2.1.3 as above, its left-hand commutative square can
be completed to a morphism of triangles as follows:

w≤m−1M
a−−−−→ w≤nM −−−−→ Cone(a)

⏐⏐�c

⏐⏐�d

⏐⏐�0

w≤m−1N
b−−−−→ w≤nN −−−−→ Cone(b).

(2.1.4)

7. There exists a choice of diagram 2.1.3 whose left-hand square can be completed to a

morphism of triangles as in diagram 2.1.4.

Proof. Conditions 1, 2 and 3 are equivalent by Proposition 1.1.9 of [2].

Loc. cit. also implies that any of these conditions implies the existence of a morphism

WDg :WD′
n(M)→WD′

m−1(N) that extends g, where WD′
n(M) (resp. WD′

m−1(N)) is
the corresponding n-weight decomposition of M (resp. m−1-weight decomposition of N ).

Next, Lemma 1.2.7(1) gives the existence of some choices of ‘modification of weight

decomposition’ morphisms WDn(M)→WD′
n(M) and WD′

m−1(N)→WDm−1(N) that
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extend idM and idN , respectively. Composing WDg with these morphisms (see Remark

1.2.6) we obtain condition 4. Conversely, this condition obviously implies conditions 1, 2

and 3.
Next, condition 5 clearly implies condition 2. Conversely, to obtain the commutative

diagrams in condition 5 we apply Lemma 1.2.7(1) and take a and b to be the canonical

truncations w≤m−1M →w≤nM and w≤m−1N →w≤nN of idM and idN , respectively. We
also take c= h◦a, and d= b◦h.
Next, condition 6 clearly yields condition 7. Now, consider the exact sequence

C(w≤nM,w≤m−1N)→ C(w≤nM,w≤nN) → C(w≤nM,Cone(b)) (for an arbitrary choice

of diagram 2.1.3). If condition 7 is fulfilled, the composed morphism w≤nM
d→ w≤nN →

Cone(b) is zero; hence, there exists a morphism h ∈ C(w≤nM,w≤m−1N) making the

corresponding triangle commutative. Combining this with the commutativity of the right-

hand square in diagram 2.1.3 we obtain condition 2.
It remains to verify that condition 5 implies condition 6. The aforementioned long exact

sequence gives the vanishing of the corresponding composed morphism w≤nM →Cone(b),

whereas the exact sequence

C(w≤nM,w≤m−1N)→ C(w≤m−1M,w≤m−1N)

→ C(Cone(a)[−1],w≤m−1N)→ . . .

yields the vanishing of the composed morphism Cone(a)[−1]→w≤m−1N . We obtain that

diagram 2.1.4 is a morphism of triangles indeed.

Now, we give the main original definitions of this paper.

Definition 2.1.2. Let m≤ n ∈ Z, g ∈ C(M,N).

1. We will say that g kills weights m,. . . ,n (and also that g kills weight m if n=m) if it

satisfies the equivalent conditions of Proposition 2.1.1; denote the class of C-morphisms
killing weights m,. . . ,n by Mor���[m,n]C.

2. We say that M is without weights m,. . . ,n if idM kills weights m,. . . ,n; the class of

C-objects without weights m,. . . ,n will be denoted by Cw/∈[m,n].

Remark 2.1.3. Proposition 1.2.4(1) easily implies that these definitions are self-dual

in the following natural sense: g ∈Mor���[m,n]C (resp. M ∈ Cw/∈[m,n]) if and only if g kills

wop-weights −n, . . . ,−m (resp. M is without wop-weights −n, . . . ,−m) in C ′ = Cop.

2.2. Basic properties of our notions

Theorem 2.2.1. Let M,N,O ∈ ObjC, h ∈ C(N,O), and assume that a morphism g ∈
C(M,N) kills weights m,. . . ,n for some m ≤ n ∈ Z. Then the following statements are

valid.

1. Assume m≤m′ ≤ n′ ≤ n. Then g also kills weights m′, . . . ,n′.

2. Mor���[m,n]C is closed with respect to direct sums and retracts (i.e.,
⊕

gi kills weights
m,. . . ,n if and only if all gi do that).

3. Mor���[m,n]C is a two-sided ideal of morphisms, that is, for any h′ ∈ C(O,M) both

h◦g and g ◦h′ kill weights m,. . . ,n.
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4. Assume that h kills weights m′, . . . ,m−1 for some m′ <m. Then h◦g kills weights

m′, . . . ,n.

5. Let F : C →D be a weight-exact functor (with respect to a certain weight structure
on D) and assume that h kills weights m,. . . ,n. Then F (h) kills these weights as

well.

6. For F and h as in the previous assertion, assume that F is a full embedding and

F (h) ∈Mor���[m,n]D. Then h ∈Mor���[m,n]C.

7. Assume that O is without weights m,. . . ,n and also is without weights n+1, . . . ,n′

for some n′ > n. Then O ∈ Cw/∈[m,n′].

8. O is without weights m,. . . ,n if and only if O is without weight i whenever m≤ i≤n.

9. Assume that there exists a distinguished triangle

X →O → Y →X[1] (2.2.1)

with X ∈ Cw≤m−1, Y ∈ Cw≥n+1. We call it a decomposition avoiding weights
m,. . . ,n for M.

Then triangle 2.2.1 gives an l-weight decomposition of O for every l ∈ Z, m−1≤
l ≤ n. Moreover, O is without weights m,. . . ,n, and this triangle is unique up to a
canonical isomorphism.

10. Assume that C is weight-Karoubian. Then the converse to the previous assertion is

also valid, that is, every O without weights m,. . . ,n admits a decomposition avoiding

weights m,. . . ,n.

Proof.

1. This is easy from Lemma 1.2.7(1); see Remark 1.2.6 and condition 2 of Proposition

2.1.1.

2. Proposition 1.2.4(4) implies that direct sums of l -weight decompositions are l -weight

decompositions. Here, we take l = n,m− 1. This implies the assertion easily; see

condition 1 in Proposition 2.1.1.
Assertions 3 and 4 easily follow from Lemma 1.2.7(1) as well; see Remark 1.2.6

and condition 2 in Proposition 2.1.1.

5. If we vanish in condition 1 of Proposition 2.1.1, then we obtain this condition

for F (h).
6. For any choice of w≤nM and w≥mN , the composed morphism

F (w≤nM)→ F (M)
F (h)→ F (N)→ F (w≥mN)

is zero (see condition 2 of Proposition 2.1.1); hence, h ∈Mor���[m,n]C.
7. Since idO ◦ idO = idO, the statement follows from assertion 4.

8. If O is without weight i whenever m ≤ i ≤ n, then, iterating the previous

assertion, we obtain that O is without weights m,. . . ,n. Conversely, if O ∈ Cw/∈[m,n]

and m ≤ i ≤ n, then idO kills weight i (i.e., O is without weight i) according to

assertion 1.

9. Each statement in this assertion easily follows from previous ones.
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Indeed, triangle 2.2.1 gives the corresponding l -weight decompositions of O just
by definition. We obtain that O is without weights m,. . . ,n immediately. Here, we

can use either condition 2 or 3 of Proposition 2.1.1. This triangle (2.2.1) is canonical

by Lemma 1.2.7(1); we take M =M ′ =O, g = idO, m= n−1, and m′ = n in it.
10. The idea is to ‘modify’ any fixed n-decomposition of O using Lemma 1.2.7(2).

We also fix an m-weight decomposition of O. According to condition 2 in

Proposition 2.1.1, there exists a commutative square

w≤nO −−−−→ O
⏐⏐�z

⏐⏐�idO

w≤m−1O −−−−→ O.

Next, Lemma 1.2.7(1) gives the existence and uniqueness of the square

w≤m−1O −−−−→ O
⏐⏐�t

⏐⏐�idO

w≤nO −−−−→ O.

Now, if we ‘compose’ these squares in the sense of Remark 1.2.6, then the

aforementioned uniqueness statement implies t = t ◦ z ◦ t. Thus, the endomorphism
u= t◦z is idempotent, and the square

w≤nO −−−−→ O
⏐⏐�u

⏐⏐�idO

w≤nO −−−−→ O

is commutative. Now, we apply Lemma 1.2.7(2); for X being the image of u, we
obtain an n-weight decomposition X →O→ Y . It remains to note that X ∈Cw≤m−1

since u factors through w≤m−1O.

Remark 2.2.2.

1. In the original Definition 1.10 of [28] O was said to be without weights m,. . . ,n

if there exists a decomposition (2.2.1) for it. Thus, our definition of this notion is
equivalent to loc. cit. if C is weight-Karoubian. Recall here that this is automatically

the case if C is Karoubian according to the easy Proposition 1.2.4(7). Yet in §3.3
below, we demonstrate that this equivalence fails in general; see also §3.3.2 of [6] for

a w -bounded (cf. Definition 1.2.2(9)) example of this sort.
Hence, the uniqueness statement in Theorem 2.2.1(9) coincides with Corollary 1.9

of [28]. Moreover, Lemma 1.2.7 and Theorem 2.2.1(9) imply Proposition 1.7 of ibid.

that is essentially as follows: If Xi → Oi → Yi are decompositions avoiding weights
m,. . . ,n, then any g :O1 →O2 uniquely extends to a morphism of these triangles.

2. Combining parts 2 and 3 of our theorem, one immediately obtains that the sum of

any two parallel morphisms killing weights m,. . . ,n kills these weights as well.
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Moreover, part 2 implies that Cw/∈[m,n] is additive and retraction-closed in C,
whereas part 3 yields that every C-morphism from M kills weights m,. . . ,n if (and

only if) M is without these weights.

2.3. Relation to the weight complex functor

Theorem 2.3.1. Let g ∈ C(M,N) (for some M,N ∈ObjC); m≤ n ∈ Z.

1. Then g kills weight m if and only if t(g) �[−m,−m] 0; see Definition 1.3.1 for this

notation.

2. If {fi} for n≥ i≥m form a chain of composable C-morphism such that t(fi)�[−i,−i]

0 for all i in this range, then fm ◦ · · · ◦fn−1 ◦fn kills weights m,. . . ,n.

3. M is without weights m,. . . ,n if and only if t(idM )�[−n,−m] 0.

4. Assume in addition that C is weight-Karoubian. Then M is without weights m,. . . ,n

if and only if t(M) is homotopy equivalent to a complex C = (Ci) with Ci = 0 for
−n≤ i≤−m.

Proof.

1. Immediate from Proposition 1.3.4(5); see condition 7 in Proposition 2.1.1.

2. Straightforward from assertion 1 combined with Theorem 2.2.1(4).

3. If M ∈ Cw/∈[m,n], then combining assertion 1 with Lemma 1.3.2(4) we obtain

t(idM ) �[−n,−m] 0. Conversely, if t(idM ) �[−n,−m] 0, then t(idM ) �[i,i] 0 for all i
between −n and −m; thus, applying the previous assertion to the composition

id◦n−m+1
M we obtain that M is without weights m,. . . ,n.

4. The ‘if’ implication follows from the previous assertion immediately; cf. Definition
1.3.1(2).

Conversely, assume that M is without weights m,. . . ,n. By Theorem 2.2.1(10), M

possesses a decomposition avoiding weights m,. . . ,n. Then for the corresponding

objects X and Y (see diagram 2.2.1) Proposition 1.3.4(3) says that t(X) ∈
K(Hw)wst≤m−1 and t(Y ) ∈ K(Hw)wst≥n+1. Recalling the definition of wst

in Remark 1.2.3(1) and applying Proposition 1.3.4(2), we obtain a K(Hw)-

distinguished triangle

TX → t(M)→ TY → TX [1],

where TX and TY have zero terms in degrees at most −m and at least −n,

respectively. Thus, we obtain the ‘only if’ implication.

Remark 2.3.2. 1. Let us demonstrate that Theorem 2.3.1(2) generalizes Theorem

3.3.1(II) of [4]. The latter says that for f = fm ◦ · · · ◦fn−1 ◦fn we have f = 0 whenever fi
are C [m,n]-morphisms (see Definition 1.2.2(3)) such that t(fi) = 0.
Now, if this is the case, then t(fi)�[−i,−i] 0 for m≤ i≤ n; hence, f kills weights m,. . . ,n

by Theorem 2.3.1(2). Next, if f ∈C(M,N) for M,N ∈C [m,n], then we can take w≤nM =

M and w≥mN =N . Thus, f = 0 indeed; see condition 4 in Proposition 2.1.1.
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Thus, we obtain an alternative proof of loc. cit. that does not depend either on it or on
Proposition 3.2.4 of ibid. (cf. Remark A.2.1(3) of [7]).

2. More criteria for killing weights for morphisms and for the absence of weights in

objects are given by Theorems 2.1.2 and 2.2.2 of [12]. These matters are also studied
in Theorem 3.1.1 of ibid., where the additional assumption of the existence of a t-

structure adjacent to w (see Definition 1.2.2(3) of ibid.) was imposed. Note here that

this assumption is fulfilled whenever w is purely compactly generated (see Theorem 4.1.2

below). In particular, it is valid if w = wG
Λ (see Proposition 4.2.1(2) and Remark 4.2.3(6)

below).

Let us now improve the conservativity property of weight complexes given by Theorem

3.3.1(V) of [4].

Definition 2.3.3. 1. We say that w is left (resp., right) nondegenerate if all left (resp.

right) w -degenerate objects (see Definition 1.2.2(7)) are zero.

We say that w is nondegenerate if it is both left and right nondegenerate.

2. We will say that M ∈ ObjC is w-degenerate or weight-degenerate if t(M) is zero in
Kw(Hw); hence, it is zero in K(Hw) as well.

Theorem 2.3.4. Let g :M →M ′ be a C-morphism, m ∈ Z.

I.1. Then t(g) is an isomorphism if and only if Cone(g) is w-degenerate.
2. Any extension of a left w-degenerate object Y of C by a right w-degenerate object X

is w-degenerate.

3. If M is an extension of a left w-degenerate object Y by Xm ∈Cw≤m (resp. an extension
of Ym ∈Cw≥m by a right w-degenerate object X), then t(M)∈K(Hw)wst≤m (resp. t(M)∈
K(Hw)wst≥m; see Remark 1.2.3(1)).

II. Assume that C is weight-Karoubian.

1. Then M is w-degenerate if and only if M is an extension of a left w-degenerate Y by
a right w-degenerate X; cf. assertion I.2.

2. t(M) ∈K(Hw)wst≤m (resp. t(M) ∈K(Hw)wst≥m) if and only if M is an extension

of a left w-degenerate Y by Xm ∈ Cw≤m (resp. an extension of Ym ∈ Cw≥m by a right
w-degenerate X; cf. assertion I.3).

Proof. I.1. Immediate from Proposition 1.3.4(2) combined with the conservativity of the

projection functor pw :K(B)→Kw(B) given by Lemma 1.3.2(1).

2. If N is left or right w -degenerate, then t(N) = 0 according to Proposition 1.3.4(3).
Hence, the assertion follows from the previous one.

3. Similarly to the previous assertion, it suffices to combine Proposition 1.3.4(3) with

assertion I.1.
II. If t(M) ∈ K(Hw)wst≤m, then for every n > m we have idt(M) �[−n,−m−1] 0; see

Lemma 1.3.2(6).

Since C is weight-Karoubian, for every n > 0 Theorem 2.2.1(10) gives a distinguished
triangle

Xm →M → Yn+1 →Xm[1] (2.3.1)
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with Xm ∈Cw≤m and Yn+1 ∈Cw≥n+1. All of these triangles are isomorphic to the one for
n=m+1 by the uniqueness statement in Theorem 2.2.1(9). Hence, T = Ym+1 is left w -

degenerate and we obtain the ‘only if’ implication for this case. Next, the ‘if’ implication

is given by assertion I.3.
The proofs of the two remaining statements are similar and left to the reader.

Remark 2.3.5. 1. Thus, we get a precise answer to the question when t(g) is an
isomorphism in the weight-Karoubian case. In particular, the weight complex functor

is conservative if and only if w is nondegenerate.

2. To obtain the latter statement in the general case, one should combine part I.1
of our theorem with Theorem 3.1.3 below. Moreover, that theorem contains several

equivalent conditions for t(M) to belong to K(Hw)wst≤0. However, those formulations

require Definition 3.1.1(2); see §3.3 below.

2.4. On the relation to pure functors

Let us prove that the assumption that a C-morphism g kills a given weight m can be
expressed in terms of pure functors.

Definition 2.4.1. Assume that C is endowed with a weight structure w.

We will say that a (co)homological functor H from C into an abelian category A is

w-pure or just pure if H kills both Cw≥1 and Cw≤−1.

Theorem 2.4.2. 1. Let A : Hw → A be an additive functor, where A is an abelian

category. For M ∈ ObjC and t(M) = (M j), we set H(M) = HA(M) to be the zeroth
homology of the complex (A(M j)). Then H(−) yields a pure homological functor, and the

assignment A �→HA is natural in A.

2. The correspondence A → HA is an equivalence of categories between the following
categories of functors: AddFun(Hw,A) and the category of pure homological functors from

C into A.

3. Dually, the correspondence sending a contravariant functor A′ into the functor HA′

that maps M into the zeroth homology of the complex (A′(M−j)) gives an equivalence

of categories between AddFun(Hwop,A) and the category of pure cohomological functors

from C into A.

Proof. Assertions 1 and 2 are contained in Theorem 2.1.2 of [7], and assertion 3 is their

dual; cf. Proposition 1.2.4(1) or Remark 2.1.3(1) of ibid.

We also need the following definitions.

Definition 2.4.3. Assume that C is smashing, that is, closed with respect to (small)

coproducts.

1. We will say that C is a Brown category if any cohomological functor from C into Ab
that converts C-coproducts into products of groups is representable in C.

2. We will say that a weight structure w on C is smashing if the class Cw≥0 is closed

with respect to C-coproducts (cf. Proposition 1.2.4(3)).
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Proposition 2.4.4. Assume that C is endowed with a weight structure w, g :M →N is
a C-morphism, and j ∈ Z.

I. Then the following assumptions are equivalent to g ∈Mor��[j,j]C.

1. Hj
A(g) = 0 for every pure cohomological functor HA as above.

2. Hj
A(g) = 0 for every pure cohomological functor HA coming from A∈AddFun(Hwop,

Ab) such that A converts Hw-coproducts into products of groups.
3. HA

j (g) = 0 for every pure homological functor HA.
II. Assume in addition that C is a Brown category and w is smashing. Then the functors

HA as in condition I.3 are the pure representable ones.

Proof. I. Proposition 1.3.4(1) enables us to assume j = 0.

Next, if g ∈ Mor��[0,0]C, then condition 1 is fulfilled by Proposition 1.3.4(2) combined

with Theorem 2.3.1(1). Moreover, condition 1 clearly implies condition 2.
Furthermore, if g /∈Mor��[0,0]C, then t(g) ��[0,0] 0 by Theorem 2.3.1(1); here, we use the

notation of Definition 1.3.1(2). Thus, Proposition B.2(8) of [7] gives the existence of a

functor A as in assertion 2 such that HA(g) �=0. Hence, condition 2 implies g ∈Mor��[0,0]C.
Lastly, g ∈Mor��[j,j]C if and only if condition I.3 is fulfilled since I.3 is the categorical

dual of condition I.1; see also Remark 2.1.3.

II. This is Proposition 2.3.2(8) of ibid.

3. Non-Karoubian generalizations and a conservativity application

In §3.1, we extend Theorem 2.3.4(II) to the case where C is not necessarily weight-

Karoubian.

In §3.2, we apply our results to prove that certain weight-exact functors are ‘conservative
up to weight-degenerate objects’; we also discuss the relation of this proposition to the

corresponding results of [29] and [7].

In §3.3, we consider an example; it demonstrates that the modifications made in §3.1
to generalize Theorem 2.3.4(II) cannot be avoided.

3.1. Main statements in non-weight-Karoubian categories

Definition 3.1.1. 1. We call a triangulated category C ′ ⊂ Kar(C) a weight-Karoubian

extension of C if C ′ contains C, the retraction-closures of Cw≤0 and Cw≥0 in C ′ give a
weight structure w′ on it, and Hw′ is Karoubian.

2. We say that an object M of C is essentially w-positive (resp. essentially w-negative)

if M is a retract of some M̃ ∈ObjC that is an extension of an element of Cw≥0 by a right

w -degenerate object of C (resp. of a left w -degenerate object by an element of Cw≤0; see
Definition 1.2.2(7)).

Proposition 3.1.2. 1. Let C ′ be a weight-Karoubian extension of C. Then the embedding
C →C ′ is weight-exact with respect to (w,w′), and C ′

w′=0 equals the retraction-closure of

Cw=0 in C ′.
2. Any (C,w) possesses a weight-Karoubian extension.
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Proof. Assertion 1 immediately follows from Theorem 2.2.2(I.1) of [9], and invoking part

III.1 of loc. cit., one also obtains assertion 2.

Now, we generalize Theorem 2.3.4(II) to arbitrary weighted categories; see Definition
2.3.3, Remark 1.3.3, and Theorem 2.4.2 for the definitions.

Theorem 3.1.3. The following assumptions on M ∈ObjC are equivalent.

1. M is w-degenerate (resp. t(M) ∈K(Hw)wst≤0).

2. M can be presented as an extension of a left w′-degenerate object Y ′ of C by a

right w′-degenerate object X ′ (resp. by X ′
0 ∈ C ′

w′≤0; cf. diagram 2.3.1) in a weight-

Karoubian extension (C ′,w′) of (C,w).

3. In any weight-Karoubian extension of C, there exists a presentation of M as in

condition 2.

4. M is a C-retract of an extension M̃ of a left w-degenerate object Y of C by a right

w-degenerate X (resp. M is essentially w-negative in the sense of Definition 3.1.1(2)).

5. The object M
⊕

M [−1] is an extension of a left w-degenerate Y ∈ ObjC by a right

w-degenerate X (resp. by X0 ∈ Cw≤0).

6. M is without weight i for all i ∈ Z (resp. for all i > 0).

7. Hi(M) = 0 for all i ∈ Z (resp. i > 0) and every w-pure homological functor H from
C.

8. Hi
A(M) = {0} for all i∈Z (resp. for i > 0) and every additive functor A :Hwop →Ab

that respects products; here we use the notation of Theorem 2.4.2(3).

Proof. Let us study the conditions in brackets (that correspond to the essential w -

negativity of M ).
Clearly, the corresponding version of condition 5 implies condition 4. 2 follows from 3

since a weight-Karoubian extension (C ′,w′) of C exists; see Proposition 3.1.2(2).

Condition 1 is easily seen to be equivalent to condition 6 according to Theorem 2.3.1(3,1)
combined with Lemma 1.3.2(4,6). Moreover, condition 1 is equivalent to t(M)�[i,i] 0 for

all i < 0 by the latter lemma; thus, applying Proposition 2.4.4(I), we obtain that this

condition is also equivalent to conditions 7 and 8.

Next, for any weight-Karoubian extension C ′ of C the complex tw(M) belongs
K(Hw)wst≤0 if and only if it belongs to K(Hw′)wst≤0; see Proposition 1.2.5(1) of [10]

that easily follows from Proposition 1.2.4(2) above. Applying Proposition 1.3.4(4), we

obtain that condition 4 implies 1.
Now, we fix some (C ′,w′) and apply Theorem 2.3.4(II.2) to C ′. We obtain that

condition 1 implies condition 3.

It remains to deduce condition 5 from condition 2. Any N ′ ∈ ObjC ′ is the image of
an idempotent p ∈ C(N,N) for some N ∈ ObjC (see §1.1), and Cone(p) ∼=N ′⊕N ′[1] ∈
ObjC; cf. Lemma 2.2 of [27]. Hence, the direct sum of the C ′-‘decomposition’ of M given

by condition 2 with its shift by [−1] yields condition 5.
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The equivalence of the conditions corresponding to t(M) = 0 is similar; note that the

functors K(Hw)→K(Hw′)→Kw(Hw′) are conservative.

Corollary 3.1.4. If w is a weight structure on C and M is its object, then the following

conditions are equivalent.

1. t(M) ∈K(Hw)wst≥0.

2. M is without weight i for all i < 0.

3. M is an extension of some Y ′
0 ∈ C ′

w′≥0 by a right w′-degenerate object X ′ in some

weight-Karoubian extension (C ′,w′) of C.

4. In any weight-Karoubian extension of C there exists a presentation of M as in
condition 3.

5. M is essentially w-positive in the sense of Definition 3.1.1(2).

6. The object M
⊕

M [1] is an extension of Y0 ∈ Cw≥0 by a right w-degenerate X.

7. Hi
A(M) = {0} for all i < 0 and all additive functors A : Hwop → Ab that respect

products.

Proof. Conditions 1–6 are the categorical duals of the corresponding conditions in
Theorem 3.1.3, whereas conditions 2 and 7 are equivalent according to Proposition

2.4.4(I).

Remark 3.1.5. 1. Clearly, the formulation of conditions 8 in Theorem 3.1.3 and

condition 7 of Corollary 3.1.4 can be combined with Proposition 2.4.4(II) to obtain the

following statement: If C is a Brown category and w is smashing, then an object M
is w -degenerate (resp. essentially w -negative, resp. essentially w -positive) if and only if

Hi(M) = {0} for any pure representable H and any i∈Z (resp. any i > 0, resp. any i < 0).

2. [9] contains a lot of information on weight-Karoubian extensions and related matters.
In particular, the smallest strict triangulated subcategory C ′ of Kar(C) that contains

both C and Kar(Hw) is essentially the minimal weight-Karoubian extension of C; thus,

it makes sense to apply conditions 3 of Theorem 3.1.3 and 4 of Corollary 3.1.4 for this
choice of C ′.
3. Moreover, in §3.1 of ibid. it was demonstrated that there does not have to exist

a weight structure on Kar(C) whose restriction to C equals w ; thus, weight-Karoubian

extensions are necessary for our arguments.

Now, let us prove a few results closely related to our theorem. The reader may consult
Definition 1.2.2(8, 6) for some notions mentioned below.

Proposition 3.1.6. Let w be a weight structure on C.
1. Assume that w is left (resp. right) nondegenerate.

Then every weight-degenerate object of C is right (resp. left) w-degenerate, and every

essentially w-negative (resp. essentially w-positive) object belongs to Cw≤0 (resp. to
Cw≥0).

2. Assume that w is left nondegenerate, an object M of C is weight-degenerate and either

M is w-bounded below or w is also right nondegenerate. Then M is zero.
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3. For an object M of C, assume that Hw-complexes tj = (M i
j) for j = 1,2 are K(Hw)-

isomorphic to t(M), and F : C → (C ′,w′) is a weight-exact functor that annihilates the

groups C(M i
1,M

i
2) for all i ∈ Z.

Then F (M) is w′-degenerate.
4. Assume that C1, C2, and C3 are full triangulated subcategories of C such that w

restricts to them; suppose that the Verdier localization functor F : C → C ′ = C/C3 exists

(i.e., all morphism classes in this localization are sets) and all Hw-morphisms between
elements of the corresponding classes C1,w1=0 and C2,w2=0 are killed by F.

Then there is a unique weight structure w′ on C ′ such that F is weight-exact, and

for any M ∈ ObjC1 ∩ObjC2 the object F (M) is w′-degenerate. Moreover, if w′ is
left nondegenerate, then F (M) is w′-right degenerate, and M belongs to KarC(ObjC3)

whenever M is w-bounded below.

Proof. 1. By axiom 1.2.1(i), retracts of left (resp. right) w -degenerate objects are left
(resp. right) w -degenerate. The assertion follows easily.

2. According to the previous assertion, M is right weight-degenerate, that is, it belongs

to ∩i∈ZCw≤i. On the other hand, M belongs to Cw≥i+1 for some i ∈ Z (and it actually
belongs to all of these classes in the second case by the previous assertion). Since Cw≤i ⊥
Cw≥i+1, M ⊥M ; hence, M = 0.

3. Let m be a Kw(Hw)-isomorphism t1 → t2. Then, for the functor Kw(HF ) :
Kw(Hw)→Kw(Hw′) given by Lemma 1.3.2(3), we clearly have Kw(HF )(m) = 0. Here,

HF is the restriction of F to hearts. Since Kw(HF )(m) is also an isomorphism, we

obtainKw(HF )(t1) = 0. On the other hand, by Proposition 1.3.4(4) we have tw′(F (M))∼=
Kw(HF )(t(M))∼=Kw(HF )(t1); hence, tw′(F (M)) = 0, as desired.
4. w′ exists according to Proposition 8.1.1(1) of [4], and w′ is uniquely determined by

w according to Proposition 3.1.1(1) of [10].

Next, Proposition 1.3.4(4) gives the existence of Hw-complexes t1 and t2 such that
t(M) ∼= t1 ∼= t2 (both in Kw(Hw) and in K(Hw); see Lemma 1.3.2(1)). The terms M i

1

belong to C1,w1=0, and the terms of t2 belong to C2,w2=0. Thus, F (M) is w′-degenerate
by assertion 3.
By assertion 1, it follows that F (M) is right w′-degenerate whenever w′ is left

nondegenerate. Lastly, if M is weight-bounded below, then F (M) also is. Hence, our

assumptions imply that F (M) = 0 according to assertion 2. Thus, M belongs to

KarC(ObjC3). Here, we apply the well-known Lemma 2.1.33 of [23].

We will describe some consequences of Proposition 3.1.6(4) in Corollary 4.1.4 and
Remark 4.1.5 below.

3.2. A conservativity application

Our results imply that certain weight-exact functors are ‘almost conservative’.

Proposition 3.2.1. Let F : (C,w)→ (C ′,w′) be a weight-exact functor.

Assume that the induced functor HF : Hw → Hw′ is full. Every Hw-endomorphism
killed by HF is nilpotent, and for some M ∈ObjC the object F (M) belongs to C ′

w′ /∈[m,n]

for some m ≤ n ∈ Z (resp. F (M) is w′-degenerate, resp. essentially w′-positive, resp.

essentially w′-negative).
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Then M is without weights m,. . . ,n (resp. M is weight-degenerate, resp. essentially w-

positive, resp. essentially w-negative).

Consequently, M = 0 if F (M) is w′-degenerate and w is nondegenerate.

Proof. Let us prove the first statement in our proposition for m= n; thus, assume that

F (M) is without weight m. We should prove that this assumption implies M ∈Cw/∈[m,m];

we call this implication Claim (*).

According to Theorem 2.3.1(3), this claim is equivalent to the following one:
t(idM )�[−m,−m] 0 whenever tw′(idF (M))�[−m,−m] 0.

Now, we can assume that tw′(F (M)) is obtained from the weight complex t(M) =

(M i,di); see Proposition 1.3.4(4). Thus, there exist morphisms h′ ∈ Hw′(F (M−m),
F (M−m−1)) and j′ ∈ Hw′(F (M1−m),F (M−m)) such that idF (M−m) = j′ ◦ F (d−m) +

F (d−m−1) ◦ h′. Since the restriction of F to Hw is full and conservative, we can lift

h′ and j′ to some Hw-morphisms h and j, and for lifts of this sort the endomorphism

ε= idM−m −j ◦d−m−d−m−1 ◦h :M−m →M−m

is nilpotent. Hence, there exists n > 0 such that

idM−m = (j ◦d−m+d−m−1 ◦h)(idM−m +ε+ ε2+ · · ·+ εn−1).

Therefore, idM−m can be presented in the form a ◦ d−m + d−m−1 ◦ b for some a ∈
Hw(M−m,M−m−1) and b∈Hw(M1−m,M−m); one can just write down explicit formulas

for a and b in this setting. Thus, t(idM )�[−m,−m] 0.

Next, the general case of the ‘without weights m,. . . ,n part’ follows from Claim (*)

immediately according to Theorem 2.2.1(8).
Lastly, our remaining statements follow from Claim (*) as well; see condition 6 in

Theorem 3.1.3, condition 2 in Corollary 3.1.4 and Proposition 3.1.6(2).

Remark 3.2.2.

1. Our proposition essentially says that F is ‘conservative (and detects weights; cf.

Remark 1.5.3(1) of [7]) up to weight-degenerate objects’. The latter feature of the

result is unavoidable. Indeed, arguing similarly to Proposition 4.2.1(1) of [10] one can
easily prove that for any set W of weight-degenerate objects of C the localization

of C by the triangulated subcategory generated by W gives a weight-exact functor

that restricts to a full embedding Hw → C ′.

2. Let us relate our proposition to earlier results.
In Theorem 1.5.1(1,2) of [7], only the case where M is bounded either above or

below was considered. On the other hand, HF was just assumed to be full and

conservative. Thus, neither our proposition implies loc. cit. nor the converse is valid.
Note also that, in the case where the endomorphisms killed by HF are nilpotent, all

the conclusions of loc. cit. can be easily deduced from our proposition.

Next, we recall that in Theorem 2.8 of [29] (as well as in the weaker Theorem
2.5 of ibid.) it was assumed that F is weight-exact, HF is full and conservative,

Hw is Karoubian and semiprimary and w is bounded (see Definition 1.2.2(9)). Now,

these assumptions imply that endomorphisms killed by HF are nilpotent. Indeed,
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the conservativity of HF means that these endomorphisms belong to the radical of
Hw, and semiprimality means that all elements of this radical are nilpotent. Thus,

our proposition implies Theorem 2.8 of ibid.

3. One can obtain plenty of examples to our proposition by taking F =K(G) :K(B)→
K(B′); here, G :B →B′ is a full additive functor such that every B-endomorphism
killed byG is nilpotent, and one takes w and w′ to be the corresponding stupid weight

structures. Note that in this case we have HF ∼=Kar(G) (see Remark 1.2.3(1)); thus,

HF fulfills our assumptions as well.
Since w is nondegenerate, our proposition implies that F is conservative. The

author wonders whether a proof of this statement ‘without killing weights’ exists.

This may allow to modify the assumptions on HF in Proposition 3.2.1.
Other examples to our proposition are given by Corollary 4.1.4(2).

3.3. An ‘indecomposable’ weight-degenerate object

Let Kb(L−vect) be the category of bounded complexes of vectors spaces over a field L.

We take C ′ = (Kb(L− vect))3 and C to be the subcategory of C ′ consisting of objects

whose ‘total Euler characteristic’ is even in the following sense: The sum of dimensions
of all homology of all the three components of M = (M1,M2,M3) should be even. We

define C ′
w′≤0 as the class of all M = (M1,M2,M3) such that M1 = 0 and M2 is acyclic

in negative degrees; M ∈ C ′
w′≥0 if M3 = 0 and M2 is acyclic in positive degrees. We set

Cw≤0 =C ′
w≤0∩ObjC and Cw≥0 =C ′

w≥0∩ObjC. Obviously, w′ is a weight structure on

C ′. w is a weight structure on C since for (M1,M2,M3) ∈ObjC any triangle of the form

(0,M ′,M3)→ (M1,M2,M3)→ (M1,M
′′,0),

where M ′ →M2 →M ′′ is a wst-decomposition of M2 with the corresponding parities of
the Euler characteristics, gives a w -decomposition. Clearly, (C ′,w′) is a weight-Karoubian

extension of C.

Take M = (L,0,L) and a distinguished triangle X ′ →M → Y ′ with X ′ = (0,0,L) and

Y ′ = (L,0,0). Then X ′ (resp. Y ′) is right (resp. left) w′-degenerate. Thus, M is weight-
degenerate and without weight 0 both in C ′ and in C; see conditions 1 and 2 in Theorem

3.1.3 and Theorem 2.2.1(9,6).

Next, for a distinguished triangle X →M → Y with X ∈ C ′
w′≤−1, Y ∈ C ′

w′≥1, we have
X ∼= X ′ and Y ∼= Y ′ by Theorem 2.2.1(9). Since X ′ (as well as Y ′) is not an object of

C, X is not an object of C either. Thus, neither of the parts of Theorem 2.3.4(II) nor

Theorem 2.2.1(10) extends to C.
Consequently, the notions of essential w -positivity and w -negativity are necessary for

Theorem 3.1.3 and Corollary 3.1.4.

Note also that tw(M) = 0; hence, Theorem 2.3.1(4) does not extend to C as well.

4. On ‘topological’ examples and converse Hurewicz theorems

In this section, we discuss the applications of our results to equivariant stable homotopy

categories as well as to general purely compactly generated weight structures. We

significantly extend the main results of [7, §4].
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In §4.1, we recall some properties of weight structures generated by sets of compact
objects in their hearts and apply the main results of the previous sections to this setting.

As an application, we establish important prerequisites for [5].

In §4.2, we apply our results to prove some new properties of the spherical weight
structure wG on the equivariant stable homotopy category SH(G) of G-spectra (wG was

introduced in [7]; actually, we work in a somewhat more general context). We obtain a

certain converse Hurewicz theorem in this setting. Moreover, the theory of objects without

weights gives canonical ‘decompositions’ of spectra whose singular homology vanishes in
two subsequent degrees; see Theorem 4.2.4(5) and Remark 4.2.3(2) below.

4.1. On purely compactly generated weight structures

In this section, we always assume that C is a smashing triangulated category; see

Definition 2.4.3.

Definition 4.1.1. Let P be a full subcategory of C.

1. We will say that P is connective in C if P ⊥ (∪i>0P[i]).4

2. Let P ′ be the category of ‘formal coproducts’ of objects of P, that is, the objects of

P ′ are of the form
∐

iPi for families of Pi ∈ObjP, and

P ′(
∐

Mi,
∐

Nj) =
∏

i

(
⊕

j

P(Mi,Nj)). (4.1.1)

Then we will call the idempotent completion of P ′ the smashing idempotent

completion of P.

3. We will say that a full triangulated subcategory D ⊂ C is localizing whenever D is
closed with respect to C-coproducts. Respectively, we will call the smallest localizing

subcategory of C that contains a given subcategory P ⊂C the localizing subcategory

of C generated by P.

4. An object M of C is said to be compact if the functor HM = C(M,−) : C → Ab
respects coproducts.

5. We will say that C is compactly generated by its subcategory P if P is small, generates

C as its own localizing subcategory and objects of P are compact.

Now, let us recall the main properties of purely compactly generated weight structures.

These are the ones provided by the following theorem.

Theorem 4.1.2. Let P be a connective subcategory of C that compactly generates it.

Then the following statements are valid; cf. Definition 2.4.3.

1. C is a Karoubian Brown category.

2. There exists a unique smashing weight structure w on C such that P ⊂Hw; w is left

nondegenerate.

4In earlier texts of the author, connective subcategories were called negative ones; another
related notion is silting.
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3. The corresponding Cw≤0 (resp. Cw≥0) is the smallest subclass of ObjC that is closed

with respect to coproducts and extensions and contains ObjP[i] for i ≤ 0 (resp. for

i≥ 0), and Hw is equivalent to the smashing idempotent completion of P.
Moreover, Cw≥0 = (∪i<0P[i])⊥.

4. Let H be a cohomological functor from C into an abelian category A that converts all

small coproducts into products. Then it is pure if and only if it kills ∪i
=0P[i].

5. Let F :C →D be an exact functor that respects coproducts, where D is a triangulated
category endowed with a smashing weight structure v. Then F is weight-exact if and

only if it sends P into Hv.

6. The category Ht ⊂ C of w-pure representable functors from C is equivalent to the
category AP of additive contravariant functors from P into Ab (i.e., we take those

functors that respect the addition of morphisms).5Moreover, AP (and thus also Ht)

is Grothendieck abelian and has enough projectives. Consequently, AP is cogenerated

by an object I that is injective in it; we fix the choice of I.
Furthermore, restricting functors representable by objects of P to Hw one obtains

a fully faithful functor AP : Hw → AP whose essential image is the subcategory of

projective objects of AP .

7. The following assumptions on an object M of C are equivalent.

(i). t(M) ∈K(Hw)wst≥0.

(ii). HAP
j (M) = 0 for j < 0; see Theorem 2.4.2(3) for this notation.

(iii). M ⊥ (∪j<0{I[j]}).
8. Assume that there exists an integer j > 0 such that P ⊥ ∪i≥jP[−i]. Then w is

nondegenerate.

Proof. Assertions 1–7 were mostly established in [23] and [10]; see §3.2 of [7] for the

detail.
Next, if P ⊥ (∪i≥jP[−i]), then the compactness of elements of P along with the

description of Cw≤0 in assertion 3 imply that ∪i≥jP[i]⊥Cw≤0. Thus, every right weight-

degenerate element of C belongs to (∪i∈ZP[i])⊥. Now, the well-known Proposition 8.4.1
of [23] says that the latter class is zero since C is compactly generated by P; hence,

w is right nondegenerate. Since w is also left nondegenerate by assertion 2, we obtain

assertion 8.

Remark 4.1.3. We will now discuss certain examples to our theorem. Note, however,

that the spherical weight structure on SH is purely compactly generated and still right
weight-degenerate; see Remark 4.2.3(4) below.

Corollary 4.1.4. Let n > 0.

1. The assumptions of Theorem 4.1.2 are fulfilled if C is one of the following categories:

(i) the derived category of a small differential graded category B (see §3.2 [16]) such
that the complex B∗(M,N) is acyclic in positive degrees whenever M,N ∈ B. Here, we

take P to be the subcategory of C corresponding to B;

5According to Proposition 4.3.3 of [7], the category Ht is actually the heart of a t-structure on
C (cf. Remark 4.2.3(6) below), whence the notation.
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(ii) the derived category of E-modules, where E is an S-algebra and πi(E) = {0} if i < 0;

see Example 1.2.3(f) of [15] for the detail. In this case, we take P = {E}.
Moreover, the additional assumption of Theorem 4.1.2(8) is fulfilled in these cases as

well whenever all the complexes B∗(M,N) are acyclic in degrees less than −n or if πi(E)=

{0} for i > n, respectively.

2. Let A and B be differential graded algebras whose cohomology H∗(A) and H∗(B) is
concentrated in negative degrees, and assume that B is a right A-module.

Take C =D(A), wA to be the weight structure corresponding to P = {A} according to

assertion 1 and Theorem 4.1.2(2), C ′ =D(B), wB to be the weight structure corresponding
to P ′ = {B}. Assume that n-th power of the kernel of the ring homomorphism C(A,A)→
C ′(B,B) induced by F is zero.

Then for the exact functor F : C = D(A) → C ′ = D(B) described in §3.8 of [16], the

assumptions of Proposition 3.2.1 are fulfilled. Here, we take X =B and consider X as an
A−B-bimodule when we apply loc. cit.

3. Assume that C is compactly purely generated by its subcategory P, and that for

i = 1,2,3 we have full subcategories Pi of P such that all morphisms between P1 and P2

factor through P3. Denote by Ci the localizing triangulated subcategory of C generated by

Pi (i= 1,2,3).

Then the localization functor F :C →C ′ =C/C3 exists (cf. Proposition 3.1.6(4)), there
is a unique weight structure w′ on C ′ such that F is weight-exact and for any M ∈
ObjC1∩ObjC2, the object F (M) is right w′-degenerate. Moreover, M is an object of C3

whenever M ∈ObjC1∩ObjC2 and M is w-bounded below.

Proof. 1. In case (i), the objects of C coming from B are compact by Corollary 3.7

of [16]. Moreover, in the discussion preceding loc. cit. the equality (∪i∈ZP[i])⊥ = {0} is
mentioned. Hence, P compactly generates C by Proposition 8.4.1 of [23]. Next, formula

(3) in [16, §3.2] says that for every j ∈Z and M,N ∈B the j th cohomology of the complex

(Bi(M,N)) is isomorphic to C(M,N [j]). This easily implies all the remaining statements
for this case.

The statement that {E} compactly generates C in case (ii) can be found in Example

1.2.3(f) of [15]. Furthermore, loc. cit. states that C(E,X) is the zeroth homotopy group of
the underlying spectrum X for any object X of C. This yields all the remaining statements

for this case.

2. The description of F given in §3.8 of [16] immediately implies that F is exact, respects

coproducts and F (A)∼=B. Applying Theorem 4.1.2(5), we obtain that F is weight-exact.
Next, the hearts of wA and wB are equivalent to the categories of projective modules

over C(A,A) and C ′(B,B), respectively, according to Theorem 4.1.2(3). Hence, the

nilpotence condition in Proposition 3.2.1 follows from our nilpotence of the kernel
assumption.

3. It clearly suffices to prove that C3 is retraction-closed in C, (C,w,Ci)

satisfy the assumptions of Proposition 3.1.6(4), and the corresponding w′ is left
nondegenerate.

C3 is retraction-closed in C since C3 is Karoubian (see Theorem 4.1.2(1)). Next, w

restricts to C1 and C2 by Theorem 4.1.2(5).
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The localization functor F is well-known to exist and (also) to respect coproducts

and the compactness of objects; see Proposition 9.1.19, Theorem 8.3.3, Corollary 3.2.11

and Theorem 4.4.9 of [23]. Thus, Theorem 4.1.2(3) implies that all Hw-morphisms
between elements of the corresponding classes C1,w1=0 and C2,w2=0 are killed by F ;

see equality 4.1.1.

Lastly, by Proposition 3.1.6(4) there exists a unique weight structure w′ such that F is
weight-exact. Thus, F (P)⊂C ′

w′=0; hence, F (P) is a connective subcategory of C ′. Since
P compactly generates C, F (P) compactly generates C ′ and applying Theorem 4.1.2(5),

we obtain that w′ is purely compactly generated by F (P). Hence, w′ is left nondegenerate
by Theorem 4.1.2(2).

Remark 4.1.5. Corollary 4.1.4(3) slightly generalizes Proposition 1.9 of [5] which
seriously depended on an earlier version of the current paper. Thus, we obtain an

unconditional proof of loc. cit. This is crucial for ibid.

Now, let us relate purely compactly generated weight structures to the main definitions
of the current paper.

Corollary 4.1.6. Adopt the notation and the assumptions of Theorem 4.1.2. Let m ≤
n ∈ Z.

1. The class of essentially w-positive objects coincides with ⊥ ∪j<0 {I[j]}, where I is

an injective cogenerator of AP . This class is also characterized by the vanishing of

HAP
j (−) for j < 0.

2. The class of w-degenerate objects coincides with ⊥∪j∈Z {I[j]} and also with ⊥∪j∈Z

{Ht[j]}. Moreover, this class is characterized by the vanishing of HAP
j (−) for all

j ∈ Z.

3. A C-morphism g kills weight m if and only if Hm(g) = 0 for every pure representable
functor H.

4. An object M of C is without weights m,. . . ,n if and only if Hj(M) = 0 whenever H

is pure and representable and m≤ j ≤ n.

5. Cw≤0 =
⊥(∪j>0Ht[j]). Moreover, this class is also annihilated by Hi for all i > 0 and

for every w-pure homological functor H from C.

Proof. 1. According to Corollary 3.1.4, an object M of C is essentially w -positive if and
only if t(M) ∈K(Hw)wst≥0. Combining this fact with Theorem 4.1.2(7), we obtain our

assertion.

2. w is left nondegenerate by Theorem 4.1.2(2); hence, Proposition 3.1.6(1) implies
that M is essentially w -positive if and only if it belongs to Cw≥0. On the other hand,

M is weight-degenerate if and only if it is right weight-degenerate. Thus, M is weight-

degenerate if and only if M [j] is essentially w -positive for all j ∈ Z. Hence, our assertion
follows from the previous one.

3. Since w is smashing and C is a Brown category, the assertion follows from Proposition

2.4.4 immediately.
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4. This is a straightforward consequence of the previous assertion combined with
Theorem 2.3.1(1,3) along with Lemma 1.3.2(4).

5. Since w is left nondegenerate, Cw≤0 coincides with the class of all essentially w -

negative objects according to Proposition 3.1.6(1). Thus, Theorem 3.1.3 gives the result
in question; cf. Remark 3.1.5(1).

Now, let us demonstrate that one can say more on this setting if an additional
assumption is imposed.

Proposition 4.1.7. Adopt the notation and assumptions of Theorem 4.1.2, and suppose

in addition that the category AP is of projective dimension at most 1, that is, any its object
has a projective resolution of length 1. Let m≤ n ∈ Z and g : E → E′ be a C-morphism.

1. Then the category Kw(Hw) equals K(Hw), and the natural functor K(Hw) →
D(AP) is an equivalence.

2. For any objects C and C ′ in D(AP), we have natural isomorphisms C ∼=
∐

Hj(C)[j]

and

D(AP)(C,C
′)∼=

∏

j∈Z

AP(Hj(C),Hj(C
′))

⊕
(
∏

j∈Z

Ext1AP
(Hj(C),Hj+1(C

′))).

3. g kills weight m if and only if HAP
m (g) = 0, the class of t(g) in the group

Ext1AP
(Hm−1(t(E)),Hm(t(E′))) (here we use the identification provided by the

previous two assertions) vanishes, and the morphism HAP
m−1(g) factors through a

projective object of AP .

4. E is without weights m,. . . ,n (resp. E ∈ Cw≤m−1) if and only if HAP
j (E) = 0 for

m≤ j ≤ n (resp. for j ≥m) and HAP
m−1(E) is a projective object of AP .

Proof. 1. These statements easily follow from Theorem 4.1.2(6) according to Remark
3.3.4 of [4].

2. The first splitting statement is well-known, and the second statement easily follows

from the vanishing of higher extension groups in AP .
3. Once again, we should check whether t(g) �[−m,−m] 0; see Theorem 2.3.1(1). Now,

assertion 2 implies that

t(E)∼=K(Hw)

∐

i∈Z

Ci, (4.1.2)

where Ci = Cone(Ai
fi→ Bi)[i], and fi are Hw-monomorphisms; thus, fi are also AP -

monomorphisms between projective objects. Similarly, we present t(E′) as
∐

C ′
j , where

C ′
j =Cone(A′

j

f ′
j→B′

j)[j]. Clearly, it suffices to treat all our assumptions on t(g) separately

for the morphisms gij : Ci → C ′
j induced by t(g), for {i,j} ⊂ {m,m−1}.

Next, Cm ⊥ C ′
m−1 since f ′

m−1 is monomorphic. It remains to verify that the three
remaining cases of (i,j) give our three conditions on g.

Assertion 2 implies that K(Hw)(Cm−1,C
′
m) ∼= Ext1AP

(HAP
m−1(E),HAP

m (E′)). Moreover,

gm−1,m �[l,l] 0 for all l �= −m; thus, gm−1,m = 0 if and only if gm−1,m kills weight m.
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Hence, gm,m−1 kills weight m if and only if the class of t(g) in Ext1AP
(HAP

m−1(E),HAP
m (E′))

vanishes.
Next, if g kills weight m, then HAP

m (g) = 0 by Proposition 2.4.4(I). Conversely,

K(Hw)(Cm,C ′
m)∼=AP(H

AP
m (E),HAP

m (E′)); thus, if HAP
m (g) = 0, then gmm = 0.

Lastly, gm−1,m−1 �[−m,−m] 0 if and only if gm−1,m−1 factors through the obvious

morphism B′
m−1[m− 1] → C ′

m−1. The latter condition clearly implies that HAP
m−1(g)

factors through B′
m−1. Conversely, if H

AP
m−1(g) factors through a projective object of AP ,

then gm−1,m−1 factors through Cw=m−1. Note here that AP embeds into K(Hw)wst≥m−1

via projective resolutions. Thus, gm−1,m−1 factors through B′
m−1[m−1]. Here, we apply

Proposition 1.2.4(6) to the category C = K(Hw) endowed with the stupid weight
structure.

Assertion 4 follows from the previous one more or less easily. Combining Corollary 3.1.4

(see condition 2 in it) with Proposition 3.1.6(1) we obtain that E belongs to Cw≤m−1 if
and only if idE kills weight i for all i≥m. Recall also that E is without weights m,. . . ,n if

and only if idE kills weight i form≤ i≤n; see Theorem 2.2.1(8). Hence, it remains to note

that for every i ∈ Z the morphism HAP
i (idE) clearly equals the corresponding identity,

whereas the classes of t(idE) in all the groups Ext1AP
(Hi(E),Hi+1(E)) (see assertion 2)

are zero.

Remark 4.1.8. 1. Let us describe a motivic example to our proposition.

One can take C to be the localizing subcategory DTM generated by the Tate motives
Z(i), i∈Z, in the category DM of motives with integral coefficients over any perfect field

k ; see §4.2 of [13]. Then the category P = {Z(i)[2i], i ∈ Z} is connective in DTM since

Z(i)[2i] ⊥ Z(j)[2j] for every i �= j ∈ Z, whereas DM(Z(i)[2i],Z(i)[2i]) ∼= Z for all i ; see
Corollary 6.7.3 of [3]. Hence, the corresponding category AP is equivalent to AbZ; thus,

AP is of projective dimension 1.

Moreover, AP is of projective dimension 1 for the R-linear motivic category DTMR

whenever R is a Dedekind domain or a field. Note also that for any R the corresponding

functor HAP essentially computes the so-called Chow-weight homology of Tate motives

(inside DMR ⊃DMeff
R ); see [8] and [11].

2. The case E ∈Cw≤m−1 in part 4 of our proposition is an abstract generalization of [20,
Proposition 6.16] (where C =SH was considered; see Theorem 4.2.4 below). Respectively,

Proposition 6.17 of loc. cit. is the corresponding case of the orthogonality axiom for the

weight structure wsph. Note, however, that the methods of loc. cit. do not seem to extend
to the case of a general G as well as to the setting of Theorem 4.1.2.

4.2. Equivariant spectra and converse Hurewicz theorems

Let us generalize Theorem 4.1.1 of [7] to the setting of S -local equivariant stable homotopy

categories and extend it. We need some notation.

• Choose a set of prime numbers S ⊂ Z, and denote Z[S−1] by Λ. S may be empty.
Then Λ = Z, and this case is quite important.

• G is a fixed compact Lie group. We will write SH(G) for the stable homotopy
category of G-spectra indexed by a complete G-universe; see [19] and [21] for lots
of detail on these categories.
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• We write SHΛ(G) for the full subcategory of S -local objects of SH(G), that
is, M ∈ ObjSHΛ(G) whenever the morphism p idM is invertible for every p ∈ S.
According to Proposition A.2.8 of [17], SHΛ(G) is a triangulated subcategory of
SH(G) and there exists an exact left adjoint lS = (−)[S−1] to the embedding
SHΛ(G)→ SH(G).

• We take P to be the set of spectra of the form lS(S
0
B), where B is a closed subgroup

of G (cf. Definition I.4.3 of [19]. Recall that S0
B =

∑∞
G/B+ is constructed

starting from the G-space G/B). We will write P for the corresponding preadditive
subcategory of SHΛ(G). If Λ = Z, then P is the (stable) orbit category of ibid.
Recall also that S0

B [n] ∈ ObjSH(G) is the corresponding sphere spectrum Sn
B

essentially by definition; see loc. cit.
• The equivariant homotopy groups of an object E of SH(G)⊃ SHΛ(G) are defined

as πB
n (E) = SH(G)(Sn

B,E) (for all n ∈ Z; see §I.6 and Definition I.4.4(i) of ibid.).
• We will write EMG for the full subcategory of SHΛ(G) whose object class is

(∪i∈Z\{0}P[i])⊥. In the case Λ=Z, the objects of EMG are the Eilenberg–MacLane
G-spectra; see §XIII.4 of [21].

• We write MG for the category of additive contravariant functors from P into Ab
(cf. Theorem 4.1.2(6)). We call its objects Mackey functors. Respectively, AP :
P →MG is the Yoneda embedding.

• We call ⊥(∪i∈ZEMG[i]) ⊂ ObjSHΛ(G) the class of acyclic spectra; that is, a
spectrum is acyclic if it is annihilated by Hi for all H represented by S -local
Eilenberg–MacLane spectra and i ∈ Z.

Now, let us describe a weight structure on SHΛ(G).

Proposition 4.2.1. Let n ∈ Z. Then the following statements are valid.

1. The restriction of lS to the category SHΛ(G) ⊂ SH(G) is fully faithful. Moreover,

SHΛ(G)(lS(S
n
B),lS(C)) ∼= SH(G)(Sn

B,lS(C)) ∼= πB
n (C)⊗Z Λ for any closed subgroup

B of G and an object C of SH(G).

2. The category C = SHΛ(G) and the class P specified above satisfy the assumptions of

Theorem 4.1.2. The heart HwG
Λ of the corresponding weight structure wG

Λ on SHΛ(G)

consists of retracts of coproducts of elements of P, and HwG
Λ is equivalent to the

smashing idempotent completion of P; see Definition 4.1.1(2).

3. The class of n− 1-connected S-local spectra (see Definition I.4.4(iii) of [19]; that

is, this is the class (∪i<nP[i])⊥) coincides with SHΛ(G)wG
Λ≥n. In particular,

SHΛ(G)wG
Λ≥0 is the class of S-local connective spectra. It is the smallest class of

objects of SHΛ(G) that contains ∪i≥0P[i] and is closed with respect to coproducts

and extensions.

4. SHΛ(G)wG
Λ≤0 is the smallest subclass of ObjSHΛ(G) that is closed with respect

to coproducts and extensions and contains P[i] for i ≤ 0. This class also equals
⊥(∪i≥0EMG[i]) =

⊥SHΛ(G)wG
Λ≥1. Moreover, it is annihilated by Hi for all i > 0

and for every pure homological functor H from SHΛ(G).
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5. A (co)homological functor from SHΛ(G) into an abelian category A that respects

coproducts (resp. converts them into products) is wG
Λ -pure if and only if it kills

∪i
=0P[i].
In particular, all objects of EMG represent wG

Λ -pure functors.

6. The category EMG is naturally equivalent to MG via Yoneda; thus, EMG is

Grothendieck abelian and has an injective cogenerator I.

Proof. 1. The restriction of lS to SHΛ(G) is fully faithful since lS is left adjoint to

the embedding SHΛ(G)→ SH(G). Next, the only nontrivial isomorphism for morphism

groups in the assertion is given by Corollary A.2.13 of [17].

2. The fact that objects of the form S0
B form a connective subcategory of SH(G) that

compactly generates this category can be deduced from the results of [19]; see [7, Theorem

4.1.1] for more detail. Applying the previous assertion, we obtain that P is connective in

SHΛ(G). Next, the functor lS sends any family of compact generators of SH(G) into a
one for SHΛ(G) according to Proposition A.2.8 of [17]. Lastly, we apply Theorem 4.1.2(3)

to compute the heart of wG
Λ .

3. By definition, aG-spectrumN is n−1-connected whenever πB
i (N)∼=SH(G)(Si

B,N)=
{0} for all i < n and every closed subgroup B of G. Since SH(G)(Sn

B,N) ∼=
SHΛ(G)(lS(S

n
B),lS(N)) (see assertion 1), it remains to apply Theorem 4.1.2(3) to obtain

all the statements in question.

4. The first of these descriptions of SHΛ(G)wG
Λ≤0 is given by Theorem 4.1.2(1). Next,

SHΛ(G)wG
Λ≤0 = ⊥SHΛ(G)wG

Λ≥1 according to Proposition 1.2.4(2). It remains to apply
Theorem 4.1.2(5) to conclude the proof.

Assertion 5 follows from Theorem 4.1.2(4) immediately. Lastly, assertion 6 is just the

corresponding case of Theorem 4.1.2(6).

Now, we apply the results of this paper to wG
Λ ; consult Definitions 2.3.3, 2.1.2, 3.1.1(2)

and 2.4.1 for the notions mentioned in it.

Theorem 4.2.2. Let E ∈ObjSH(G); I is an injective cogenerator of EMG.

1. The following conditions are equivalent.

(i). E is acyclic.
(ii). E is wG

Λ -degenerate.

(iii). E is right wG
Λ -degenerate.

(iv). E ⊥ SHΛ(G)wG
Λ≥i for every i ∈ Z.

(v). HAP
i (E) = 0 for every i ∈ Z.

(vi). E ⊥ (∪i∈ZI[i]).

2. The following assumptions on a SHΛ(G)-morphism h are equivalent.
(i). h kills weight 0.

(ii). H(h) = 0 for every wG
Λ -pure functor H from SHΛ(G).

(iii). For every J ∈ EMG and P = SHΛ(G)(−,J), we have P (h) = 0.

3. The following conditions are equivalent as well.

(i). E is essentially wG
Λ -positive.

(ii). E is an extension of a connective spectrum by an acyclic one.
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(iii). H(E[j]) = 0 for every wG
Λ -pure functor H from SHΛ(G) and j > 0.

(iv). E ⊥ I[j] for all j < 0.

(v). HAP
j (E) = 0 for all j < 0.

4. Let m≤ n ∈ Z. Then the following conditions are equivalent.

(i). E is without weights m.. . n.

(ii). There exists a distinguished triangle E1 → E → E2 → E1[1] such that E1 ∈
SHΛ(G)wG

Λ≤m−1 and E2 ∈ SHΛ(G)wG
Λ≥n+1. Moreover, if this is the case, then this

triangle is canonically determined by E.

(iii). E ⊥ (∪m≤i≤nEMG[−i]).

(iv). E is annihilated by Hi whenever m≤ i≤n and H is a pure homological functor
from SHΛ(G).

Proof. 1. According to Proposition 4.2.1(2), we can apply Corollary 4.1.6(2) to obtain
that conditions (i), (ii), (v) and (vi) are equivalent. Next, conditions (ii) and (iii) are

equivalent since wG
Λ is left nondegenerate (see Theorem 4.1.2(2) and Proposition 3.1.6(1)),

and applying Proposition 1.2.4(2) we obtain the equivalence of (iii) and (iv).
Assertion 2 immediately follows from Proposition 2.4.4.

3. Since SHΛ(G) is Karoubian, conditions (i) and (ii) are equivalent according to

Corollary 3.1.4(II) combined with Proposition 4.2.1(3) and assertion 1. Moreover, (i)
is equivalent to (iv) and (v) by Theorem 4.1.2(1), and condition (iii) clearly implies

condition (iv).

4. By definition, E is without weights m.. . n if and only if idE kills these weights.

Hence, applying assertion 2 we obtain the equivalence of conditions (i), (iii) and (iv).
Lastly, conditions (i) and (ii) are equivalent according to Theorem 2.2.1(9,10).

Remark 4.2.3.

1. Let us explain that part 3 of our theorem is a certain converse to the natural Hurewicz
theorem for this context.

We recall that the ‘usual’ stable Hurewicz theorem essentially says that in the

case G = {e} (and Λ = Z, so SH(G) = SH) a wG
Λ = wsph-bounded below spectrum

E is connective if and only if its singular homology is concentrated in nonnegative

degrees. An equivariant version of this statement is given by Theorem 2.1(i) of [18]

(cf. also Theorem 1.11 of ibid. and Proposition 7.1.2(f) of [15]). Note that one replaces
singular homology by HAP in it (cf. part 4 of this remark).

Now, it is easily seen that those essentially wG
Λ -positive objects that are wG

Λ -

bounded below are connective. Hence, part 3 of our theorem naturally generalizes

the aforementioned converse equivariant Hurewicz theorem to arbitrary objects of
SHΛ(G). Our generalization depends on the notion of acyclic spectra, and the

corresponding part 1 of our theorem also appears to be quite new; cf. also part

4 of this remark.

2. The notions of killing weights and being without weights m,. . . ,n (along with parts

2–4 of our theorem see also Proposition 4.2.1(4)) appear to be new in this context

even when restricted to the case C = SH. Note that one can obtain canonical
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‘decompositions’ of some spectra (see condition 4. (ii) in our theorem) by looking at

their cohomology with coefficients in Eilenberg–Maclane spectra.

3. Recall that if Λ = Z, then the pure homological functor HAP is the equivariant
ordinary homology with Burnside ring coefficients functor HG

0 considered in [18] (cf.

also Definition X.4.1 of [21]), and for every Mackey functor M the corresponding

pure functor HM coincides with H0
G(−,M) in Definitions X.4.2 and §XIII.4 of ibid.

Clearly, it follows that the functors HAP and HM are closely related to these notions

as well.

4. None of the descriptions of acyclic spectra in part 1 of our theorem characterizes

them ‘explicitly’. In the case G= {e}, our definition of this notion coincides with the
definition in [20]; see Theorem 4.2.4(2) below. Thus, Theorem 16.17 of ibid. gives an

explicit example of a nonzero acyclic spectrum.

5. Proposition 4.1.7 certainly gives some more information on (‘weights of’) objects

of SHΛ(G) whenever the corresponding category MG is of projective dimension at
most 1. So we note that this assumption is fulfilled whenever G is a finite group of

order n and 1/n ∈ Λ. One should join Theorem 2.1 of [14] with the finite projective

dimension statement established in §6 of ibid. to obtain this fact.

6. Let us mention some nice properties of wG.

Firstly, it restricts to the subcategory of compact objects of SHΛ(G); cf. Theorem

4.1.1(2) of [7]. Next, the class SHΛ(G)wG≥0 can also be described as SHΛ(G)t≥0

for a certain Postnikov t-structure t (see Definition 4.3.1(I) and Proposition 4.3.3 of
ibid.), yet this t-structure does not restrict to compact objects of SHΛ(G).

Note also that our theory gives a certain converse Hurewicz-type theorem (and also

other ‘decompositions’ as well as several new definitions; see part 2 of this remark)
for the so-called connective stable homotopy theory as discussed in §7 of [15]; cf.

version (ii) of Corollary 4.1.4(1) and see Remark 4.3.4(2) of [7] for more detail.

Now, we apply our results to the stable homotopy category SH. Some of these

statements were already stated in Theorem 4.2.1 of [7]. This corresponds to the case

of trivial G and S in Proposition 4.2.1, so we will write EM for EMG and wsph for wG
Λ

in this case and use the remaining notation from the proposition.

Theorem 4.2.4. Set P = {S0}, and assume m ≤ n ∈ Z and g : E → E′ is an SH-

morphism.

1. Then the functor SH(S0,−) gives equivalences Hwsph →FreeAb (free abelian groups)
and EM→Ab; thus, AP is equivalent to Ab as well.

2. The last of the aforementioned equivalences makes the functor AP isomorphic to the

singular homology functor Hsing =Hsing(−,Z). Consequently, acyclic spectra in SH

are characterized by the vanishing of their singular homology (cf. §6.2 of [20]).

3. For every abelian group Γ and the corresponding spectrum EMΓ ∈ ObjEM, the

functor SH(−,EMΓ) is isomorphic to the singular cohomology with coefficients

in Γ.
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4. g kills weight m if and only if Hsing
m (g) = 0, the class of t(g) in the group

Ext1Ab(H
sing
m−1(E),Hsing

m (E′)) (see Proposition 4.1.7(3)) vanishes and the morphism

Hsing
m−1(g) factors through a free abelian group.

This condition is also equivalent to the vanishing of Hm
sing(−,Γ)(g) for every abelian

group Γ.

5. E is an extension of an n-connected spectrum Y by Xm−1 ∈ SHwsph≤m−1
6 if and

only if Hsing
j (E) = {0} for m≤ j ≤ n, and Hsing

m−1(E) is a free abelian group.

6. E is an extension of a connective spectrum by an acyclic one if and only if Hsing
j (E)=

{0} for all j < 0. This is also equivalent to the vanishing of Hj
sing(E,Q/Z) for all

j < 0.

Proof. Assertions 1–3 easily follow from Theorem 4.1.2. They are also contained in

Theorem 4.2.1 of [7]. These facts also yield that Theorem 4.1.2(3) implies our assertion 6.

Next, the category Ab ∼= AP is of cohomological dimension 1; hence, we can combine
Proposition 4.1.7(3,4) with the preceding assertions along with Theorem 4.1.2(2,4) to

obtain assertions 4 and 5.

Now, we can relate wsph to central notions of [20].

Theorem 4.2.5. 1. The following assumptions on a spectrum E (that is, an object of

SH) are equivalent.
(i) E ∈ SHwsph≤n;

(ii) Hsing
i (E) = {0} for i > n and Hsing

n (E) is a free abelian group;

(iii) Hi
sing(E,Γ) = {0} for every i > n and every abelian group Γ;

(iv) E is an n-skeleton (of some spectrum) in the sense of [20, §6.3].
2. A wsph-Postnikov tower (see Definition 1.3.3 of [7]) for E is the same thing as a

cellular tower for E in the sense of [20, §6.3].

Proof. Applying Theorem 4.2.4(1–3) we obtain that Proposition 4.2.1(4) gives the

equivalence of conditions 1(i) and 1(iii), and also that Proposition 4.1.7(4) implies the

equivalence of conditions 1(i) and 1(ii). Moreover, the latter equivalence statement implies

that these conditions are fulfilled if and only if E is an n-skeleton, and also that assertion
2 is valid according to Theorem 4.2.1(4,5) of [7].
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6SHwsph≤m−1 consists precisely of m−1-skeleta; see Theorem 4.2.5(1).

https://doi.org/10.1017/S1474748022000470 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000470


On morphisms killing weights and stable Hurewicz-type theorems 35

References

[1] P. Balmer and M. Schlichting, ‘Idempotent completion of triangulated categories’,
J. of Algebra 236(2) (2001), 819–834.

[2] A. Beilinson, J. Bernstein and P. Deligne, ‘Faisceaux pervers’, Asterisque 100,
(1982), 5–171.

[3] A. Beilinson and V. Vologodsky, ‘A DG guide to Voevodsky motives’, Geom. Funct.
Analysis 17(6) (2008), 1709–1787.

[4] M. V. Bondarko, ‘Weight structures vs. t-structures; weight filtrations, spectral
sequences, and complexes (for motives and in general)’, J. of K-theory 6(3) (2010), 387–
504, see also http://arxiv.org/abs/0704.4003

[5] M. V. Bondarko, ‘Intersecting the dimension and slice filtrations for motives’, Homology,
Homotopy and Appl. 20(1) (2018), 259–274.

[6] M. V. Bondarko, ‘On morphisms killing weights and Hurewicz-type theorems’, Preprint,
2019, arxiv.org/abs/1904.12853.

[7] M. V. Bondarko, ‘On weight complexes, pure functors, and detecting weights’, J. of
Algebra 574 (2021), 617–668.

[8] M. V. Bondarko and D. Z. Kumallagov, ‘On Chow-weight homology of motivic
complexes and its relation to motivic homology (Russian)’, Vestnik St. Petersburg Uni-
versity, Mathematics 65(4) (2020), 560–587. Translation in Vestnik St. Peters. Univers.,
Mathematics 53(4) (2020), 377–397.

[9] M. V. Bondarko and V. A. Sosnilo, ‘On constructing weight structures and
extending them to idempotent extensions’, Homology, Homotopy and Appl. 20(1) (2018),
37–57.

[10] M. V. Bondarko and V. A. Sosnilo, ‘On purely generated α-smashing weight structures
and weight-exact localizations’, J. of Algebra 535 (2019), 407–455.

[11] M. V. Bondarko and V. A. Sosnilo, ‘On Chow-weight homology of geometric motives’,
Trans. AMS. 375(1) (2022), 173–244. See also arxiv.org/abs/1411.6354.

[12] M. V. Bondarko and S. V. Vostokov, ‘Killing weights from the perspective of
t-structures’, to appear in Proc. Steklov Inst. Math.
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